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The nonequilibrium process by which hard-particle systems may be compressed into disordered, jammed states
has received much attention because of its wide utility in describing a broad class of amorphous materials. While
dynamical signatures are known to precede jamming, the task of identifying static structural signatures indicating
the onset of jamming have proven more elusive. The observation that compressing hard-particle packings towards
jamming is accompanied by an anomalous suppression of density fluctuations (termed “hyperuniformity”) has
paved the way for the analysis of jamming as an “inverted critical point” in which the direct correlation function
c(r), rather than the total correlation function h(r), diverges. We expand on the notion that c(r) provides
both universal and protocol-specific information as packings approach jamming. By considering the degree
and position of singularities (discontinuities in the nth derivative) as well as how they are changed by the
convolutions found in the Ornstein-Zernike equation, we establish quantitative statements about the structure of
c(r) with regards to singularities it inherits from h(r). These relations provide a concrete means of identifying
features that must be expressed in c(r) if one hopes to reproduce various details in the pair correlation function
accurately and provide stringent tests on the associated numerics. We also analyze the evolution of systems of
three-dimensional monodisperse hard spheres of diameter D as they approach ordered and disordered jammed
configurations. For the latter, we use the Lubachevsky-Stillinger (LS) molecular dynamics and Torquato-Jiao (TJ)
sequential linear programming algorithms, which both generate disordered packings, but can show perceptible
structural differences. We identify a short-ranged scaling c(r) ∝ −1/r as r → 0 that accompanies the formation
of the delta function at c(D) that indicates the formation of contacts in all cases, and show that this scaling
behavior is, in this case, a consequence of the growing long rangedness in c(r), e.g., c ∝ −1/r2 as r → ∞ for
disordered packings. At densities in the vicinity of the freezing density, we find striking qualitative differences
in the structure factor S(k) as well as c(r) between TJ- and LS-generated configurations, including the early
formation of a delta function at c(D) in the TJ algorithm’s packings, indicating the early formation of clusters of
particles in near contact. Both algorithms yield structure factors that tend towards zero in the low-wave-number
limit as jamming is approached. Correspondingly, we observe the expected power-law decay in c(r) for large r ,
in agreement with previous theoretical work. Our work advances the notion that static signatures are exhibited
by hard-particle packings as they approach jamming and underscores the utility of the direct correlation function
as a sensitive means of monitoring for the appearance of an incipient rigid network.

DOI: 10.1103/PhysRevE.94.032902

I. INTRODUCTION

Packings of hard particles in d-dimensional Euclidean
space Rd have been used ubiquitously as a powerful model to
describe many-body systems such as liquids, glasses, colloids,
granular materials, particulate composites, and biological
systems, among others [1–26]. In three dimensions, the
venerable hard-sphere model is particularly useful, owing to its
mathematical simplicity and the rich diversity of equilibrium
and nonequilibrium behavior that it exhibits.

It has been shown that bringing hard-particle packings
towards jamming (roughly speaking, mechanical stability)
is accompanied by an anomalous suppression of large-scale

*torquato@princeton.edu

density fluctuations [27–32]—a phenomenon known as “hy-
peruniformity” [6,7]. A many-particle system is hyperuniform
if the structure factor S(k) (trivially related to the Fourier
transform of pair statistics in direct space) tends to zero in the
limit that the wave number |k| tends to zero. Hyperuniformity
may be conceptualized as an “inverted critical point” in which
the direct correlation function c(r), which is defined through
the Ornstein-Zernike integral equation for a system with
number density ρ,

h(r12) = c(r12) + ρ

∫
Rd

h(r23)c(r13)d r3, (1)

becomes long-ranged, i.e., its volume integral diverges [6].
This is to be contrasted with the usual thermal critical point
(e.g., liquid-vapor or Curie critical points) in which the
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total correlation function h(r) [rather than c(r)] becomes
long-ranged. Accordingly, a static length scale, obtained from
the Fourier transform of c(r), ξ = [−c̃(k = 0)]1/d , grows as
a system approaches a hyperuniform state and ultimately
diverges at this critical state. In hard-particle packings, this
occurs as jamming is approached [30], and a similar analysis
can be used to obtain meaningful information about the nature
of glassy states of particles with soft interaction potentials [33].
Because of this, it has been an intriguing prospect to investigate
disordered hyperuniform systems by adapting standard tools
used to investigate critical phenomena.

At the same time, the direct correlation function has proven
to be a fruitful starting point for efforts to characterize the struc-
ture of disordered systems such as simple liquids since the pair
statistics may be obtained through Eq. (1) [34]. Physically, the
equation suggests that pair statistics between any two particles
may be decomposed into a “direct” contribution encoded in
c(r) as well as an “indirect” contribution mediated through
“chains” of particles, expressed mathematically through the
convolution between h(r) and c(r). For systems with suitably
well-behaved interactions, one may equivalently think of c(r)
as describing the linear response of a system to a perturbation
in an externally applied potential field [34].

It has been observed that maximally random jammed (MRJ)
hard-sphere packings, which constitute the most disordered
configurations as measured by some scalar order metric subject
to the constraint of jamming and isostaticity [35,36], are
hyperuniform and exhibit a nonanalytic linear behavior in
the structure factor for low k, namely, S ∝ k [37]. Hopkins
et al. [30] studied the behavior of very large (N = 106) sphere
packings produced by the Lubachevsky-Stillinger event-driven
molecular dynamics algorithm [38] under rapid compression
so as to study the approach to the MRJ-like states at densities
well above the freezing density and close to jamming. They
found evidence that the nonanalytic linear behavior in S(k)
was evident considerably in advance of jamming, and that
upon further compression, the extrapolated value at the origin
tended towards zero, implying that corresponding long-ranged
behavior in c(r) might be observable for this protocol. Their
computations for the Fourier-transformed direct correlation
function showed c̃ extending towards negative infinity near
the origin as the packings were compressed, supporting this
prediction.

In the current work, we further develop the view that one
may find static, structural precursors to jamming in hard-
particle systems. Because c(r) is known to generally possess
a qualitatively simpler functional form while still encoding
the complete pair statistics of the system, we will focus
primarily on the signatures therein, paying particular attention
to features that point towards the development of an incipient
contact network and hyperuniform density fluctuations [i.e.,
long-rangedness in c(r)]. Moreover, g2(r) is known to possess
various singularities at jamming (e.g., a Dirac delta function at
contact, discontinuity at a distance of two diameters), and we
determine to what extent these features are inherited by c(r).

However, one should also bear in mind that different
packing protocols will tend to produce different ensembles of
disordered jammed states [39]. In this paper, we will also bring
attention to qualitative differences in protocols’ approach to
their jammed states. Additionally, it is nontrivial to ensure

that standard protocols approach properly-jammed states and
avoid becoming stuck in unstable mechanical equilibria. This
has been found to be related to a “critical slowing down” that
becomes of practical concern for large systems [32]. Therefore,
we carry out our current investigation as if our systems are
indeed jammed and hyperuniform with the important caveat
that this is more difficult to do with high precision in practice
than previously thought. If one had a protocol that were able to
produce better-jammed packings, we expect that the packings
would possess stronger structural signatures consistent with
hyperuniformity.

To this end, we analyze computer-generated packings of
monodisperse hard spheres of diameter D created by the
LS algorithm as well as the Torquato-Jiao (TJ) sequential
linear programming algorithm [40]. We consider these two
algorithms since (i) they are both known to generate highly
disordered packings under suitable conditions, but also be-
cause (ii) the jammed states they produce possess considerable
differences in their macroscopic properties, including density,
rattler fraction, and degree of order as measured by various
standard order metrics [41]. By investigating multiple proto-
cols that differ considerably, we seek to discern what features
are protocol dependent, and which are in common to a diversity
of MRJ-like states. We also briefly consider the behavior of
the hard-sphere fcc crystal, conjectured to be the equilibrium
phase [42,43] at packing fractions φ ∈ [0.55,φfcc) along the
solid branch ending at close packing with a packing fraction of
φfcc = π/

√
18. This case provides valuable information about

jamming under an arguably more well-behaved setting, where
one need not worry about metastability, and hyperuniformity
may be approached to arbitrary numerical precision with
minimal practical issues.

We observe that the TJ and LS protocols exhibit markedly
different qualitative behavior in c(r), even at packing fractions
far from jamming. Specifically, we find that the direct
correlation of packings produced by the TJ algorithm exhibit
signs of a delta function at r = D at packing fractions below
the freezing density φ ≈ 0.494, whereas features in c(r)
exhibited by LS for r > D are substantially more subtle up
until much higher densities. With the development of the
expected delta function at c(r = D), we observe a concomitant
development of a dominant −1/r scaling for c(r < D) as
r → 0. We show using theoretical arguments that one can
predict this numerical observation. Interestingly, we observe
the power-law scaling c(r) ∝ −1/r2 in the limit r → ∞ that is
a consequence of the linear trend in S(k) for small k. Observing
this behavior is difficult in practice because it requires an
accurate measurement of S(k) for small wave numbers, which
requires that one consider large packings. Our work advances
the notion that static signatures are exhibited by hard-particle
packings as they approach jamming and underscores the utility
of the direct correlation function as a sensitive means of
monitoring for the appearance of an incipient rigid network.

The remainder of the paper is organized as follows: in
Sec. II, we discuss some relevant analytical results pertaining
to the structure of disordered hard-sphere packings through
c(r) and the Ornstein-Zernike equation. In Sec. III, we discuss
quantitatively the manner by which c(r) inherits singularities
from g2(r). In Sec. IV, we review some known facts regarding
the critical scaling behavior expected for systems approaching
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hyperuniformity. In Sec. V, we review the protocols that we use
to generate nearly jammed hard-sphere packings. In Sec. VI,
we present the structure factor and direct correlation functions
of our ordered and disordered packings as they approach
jamming and point out emergent static structural features
exhibited by each. Conclusions and discussion are presented
in Sec. VII.

II. ORNSTEIN-ZERNIKE EQUATION AND JAMMING

We begin by reviewing a number of relationships between
the standard pair statistical descriptors of point processes
with the goal of relating the direct correlation function to
other familiar statistical descriptors. We then proceed by
reviewing theoretical progress that has been made in obtaining
an accurate description of disordered hard-sphere systems by
use of the direct correlation function, including shortfalls that
persist with the current state of the art which point to the
necessity for our present numerical investigations.

The structure factor is defined for a translationally invariant
system in Rd as

S(k) = 1 + ρh̃(k), (2)

where h̃(k) is the Fourier transform of the total correlation
function. This is related to the scattering intensityS(k), defined
for a single system of N particles within a fundamental cell
under periodic boundary conditions as

S(k) = 1

N

∣∣∣∣∣∣
N∑

j=1

e−ik·rj

∣∣∣∣∣∣
2

, (3)

which includes forward scattering, i.e., S(0) ≡ N . This is to
be contrasted with the definition of Eq. (2), in which S(0)
is related to the volume integral of h(r). Apart from at k =
0, the scattering intensity is identical to the structure factor
for a single configuration. For an ensemble of periodic point
configurations (e.g., derived from the particle centers of our
packings), the ensemble average of S(k) is directly related to
the structure factor S(k) via

lim
N,vF →∞

〈S(k)〉 = (2π )dδ(k) + S(k), (4)

where δ(k) is the Dirac delta function and the limit being
taken on N and the fundamental cell volume vF are such
that the relevant physical system (e.g., unjammed packings
at some constant density or at some given distance to the
jamming density φc) is preserved. In practice, we directly
compute S(k) from our simulation data and average the data
from a large number of packings with the same system size to
approximate S(k) for the ensemble of packings generated by a
given protocol, keeping in mind that finite-system artifacts are
expected to persist to some degree. In all cases, the quantity
S(0) must be inferred through extrapolation to the origin. Using
this ensemble average, one may combine the Fourier transform
of Eq. (1) with Eq. (2) in order to express the Fourier transform
of the direct correlation function as

c̃(k) = S(k) − 1

ρS(k)
, (5)

from which c(r) may be computed by inverse Fourier trans-
form.

A number of closure relations have been proposed to offer
approximate solutions to Eq. (1). In particular, the Percus-
Yevick (PY) closure demands that h(r) = −1 for 0 � r < D

and c(r) = 0 for r > D for monodisperse spheres of unit
diameter [44]. Physically, these requirements specify that no
two spheres may overlap, and that direct interactions [in the
sense of Eq. (1)] are absent beyond the particles’ hard cores.
We would like the former criterion to apply in any solution
for hard spheres, but the latter assumption is increasingly
violated as the packing fraction φ = πρ/6 increases. The cubic
polynomial form of c(r) produced by the PY closure that
solves Eq. (1) accurately describes much of the equilibrium
liquid branch of the hard-sphere system with good quantitative
agreement for φ < 0.40 and qualitative agreement for φ <

0.49. However, it possesses various shortcomings at higher
densities still within the liquid branch that one might like to
improve: it underpredicts g2(1+) (and thus the pressure), and
oscillations in the pair correlation function are out of phase and
decay too slowly with increasing r [45]. At higher densities,
g2(r) fails basic satisfiability criteria such as non-negativity
and hence ceases to be physical.

In order to address this shortcoming, a variety of adjust-
ments have been made to the PY approximation to improve the
range of densities over which it may apply. A classic approach
is to introduce a Yukawa term beyond the core [46–48],
i.e., c(r > D) = K e−z(r−D)/r . This improves the degree to
which the approximation matches qualitative features in c(r)
and provides additional fitting parameters to allow for a
quantitative match of additional system properties. To this
end, the recent work of Jadrich and Schweizer [49] used a
two-Yukawa generalized mean spherical approximation which
allowed them to match the system’s compressibility as well
as g2(D+) and its first derivative in an attempt to accurately
describe the behavior of the hard-sphere system along some
metastable branch leading towards a disordered jammed state.
By allowing z and K to approach infinity, this model may
capture the appearance of a delta function at c(r = D), and
predicts a functional form for c(r) inside the core that departs
from the solution to the Percus-Yevick approximation. For a
single-Yukawa form with d = 3, one finds [46]

c(x) = − a − bx − φax3/2

− ν
1 − e−zx

zx
− ν2 cosh(zx) − 1

2Kz2ez
(6)

for x < 1, where x = r/D, a = 1 − 24φ
∫ ∞

0 c(x)x2dx, ν =
24φ

∫ ∞
1 x e−z(x−1)g2(x)dx, b satisfies

24φy2
0 = −4b + 2νz − ν2

Kez
, (7)

24φ
(
y2

1 − 2y0y2
) = 24φa − 2νz3 + ν2z2

Kez
, (8)

and yi = (di/dxi)[xg2(x)]D+ . Interestingly, upon taking k and
z towards infinity so as to obtain a delta function at c(r = D),
we see that the fourth term in Eq. (6) scales as −1/r for rz < r

as r → 0, where rz ≈ 1/z. Thus, as z is taken to infinity, rz goes
to zero. For r < rz, the term saturates to a constant. Note that,
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in order for this scaling behavior to imply that c(r) diverges
at the origin, one must have ν → ∞. This is not necessarily
implied by this analysis [50].

While this approach improves upon these features, it
still lacks the correct long-r scaling behavior for MRJ-like
packings, i.e., c(r) ∝ −1/r2 as r → ∞. Accordingly, the
small-k behavior of the structure factor is not in qualitative
agreement either. In addition to this, several salient features
in the pair correlation function, including (i) the power-law
divergence as r → D+, (ii) the cusp at r/D = √

3, and (iii)
the correct step discontinuity at r/D = 2, remain elusive.

III. INHERITANCE OF FEATURES IN c(r) FROM g2(r)

Here, we present a derivation for the magnitude of the step
discontinuity in g2(2) in terms of the information in c(r) for
the specific case of disordered, jammed hard-sphere packings
in three dimensions. Critically, we assume throughout this
analysis that (i) g2 and c are isotropic (radial) functions
and that (ii) the packings are isostatic, meaning that the
average contact number for backbone spheres in the packing
is z = 6 + O(1/NB), where NB = (1 − fr )N is the number
of backbone spheres in a packing with rattler fraction fr .
It is estimated that fr = 0.015 for TJ and fr = 0.025 for
LS [41]. The particular form of the O(1/NB ) term depends
upon whether one is considering collective or strict jamming,
but becomes irrelevant in the infinite-system limit [51]. The
pivotal observation from which this analysis follows is that
a singularity of a given order in c may not contribute to
a singularity in g2 of lower order. For example, a step
discontinuity in c cannot cause a delta function to appear in g2.
This assumption is justified by recursively inserting the form
of h(r) into the Ornstein-Zernike relation to obtain

h(r12) = c(r12) + ρ

∫
R3

c(r13)c(r23)d r3

+ ρ2
∫
R3

c(r13)c(r34)c(r24)d r3d r4 + · · ·
(9)

and noting that each successive convolution ought to increase
the order of the differentiability class of the term by one.

We begin with the delta function at g2(1). By Eq. (9), we
see immediately that the only contribution to this must come
from a delta function in c(1), and that the two must be of
equal magnitude. The number of particles that are separated
at a distance r is given by z(r) = limε→0

∫ r+ε

r−ε
4πx2ρg2(x)dx.

We substitute z(1) = 6fb, where fb = 1 − fr is the backbone
fraction, and obtain the result that the strength of the delta
function in g2(1) is equal to fb/4φ.

We now proceed to identify the source of the jump
discontinuity found at g2(r = 2). We begin by decomposing
c(r) into three parts:

c(r) = c◦(r) + cδ(r) + c	(r), (10)

where cδ(r) = fbδ(r − 1)/4φ is the delta function contribu-
tion from above; c	(r) = A(1 − 	(r − 2)), where 	(x) is
the Heaviside step function, captures the step discontinuity
predicted in c at r = 2, and c◦(r) captures the remainder of the
direct correlation and is assumed to be at least continuous at

r = 2. Substituting this into Eq. (9) gives

h(r12) = c◦(r12) + cδ(r12) + c	(r12)

+ρ

∫
R3

[(c◦(r13) + cδ(r13) + c	(r13))

× (c◦(r23) + cδ(r23) + c	(r23))]d r3 + · · · . (11)

Substituting in r12 = 2 + ε and r12 = 2 − ε into this and
subtracting the two equations from each other while letting
ε → 0 gives


εh(2) = 
εc◦(2) + 
εcδ(2) + 
εc	(2) + ρ
εI (2), (12)

where we have used the shorthand 
εf (x) = limε→0 f (x +
ε) − f (x − ε) and defined

I (r12) =
∫
R3

c(r13)c(r23)d r3. (13)

We notice that 
εcδ(2) = 
εc◦(2) = 0, meaning that the
only surviving term of the first three is 
εc	(2) = −A.
Furthermore, by considering the decomposition of Eq. (10)
as applied to Eq. (13), we can see that the term with the
differentiability class of the lowest degree is given by

Iδ(r12) =
∫
R3

cδ(r13)cδ(r23)d r3, (14)

and that 
εIδ(2) should be nonzero so long as the delta function
represented by cδ has a nonzero amplitude (i.e., cδ is not
trivially zero everywhere). All other terms contributing to I (r)
are continuous at r = 2, as are all higher-order convolutions.
Thus we are left with


εh(2) = ρ
εIδ(2) − A. (15)

To evaluate the first term, we define r̄ = (r1 + r2)/2, so that

Iδ(r12) =
∫
R3

cδ

(
r3 − r̄ + r12

2

)
cδ

(
r3 − r̄ − r12

2

)
d r3.

(16)

We invoke the convolution theorem to write

Ĩδ(k) = c̃δ(k)2,

where we have invoked translational invariance to remove r̄
and the symmetry of the two terms within the integrand with
respect to r12. Carrying out the inverse Fourier transform gives
the result

ρIδ(r12) = ρ

2π2r

∫ ∞

0
c̃2
δ (k)k sin kr dk

= ρ

2π2r

∫ ∞

0

(
π

φk
sin k

)2

k sin kr dk

= 3

πφr

∫ ∞

0

1

k
sin2 k sin kr dk

= 3

4φr
(1 − 	(r − 2)). (17)

Because Iδ represents the “sharpest” contribution from the
single convolution term, we can conclude immediately that no
other terms within the first convolution term (and no further
convolution terms) will contribute to the quantity limε→0 h(2 +
ε) − h(2 − ε) since they will be too smooth (i.e., they do not
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retain a step discontinuity following convolution). Thus we
arrive at the result that the magnitude of the step discontinuity
in the total correlation function (and, equivalently, the pair
correlation function) at r = 2 is


εh(2) = 
εc(2) − 3

8φ
. (18)

By extending this analysis, we can claim that even in the
absence of any additional nonanalytic features in c(r), g2(r)
is expected to have discontinuities in successively higher
derivatives at further integer values of r . For example, there
ought to be a discontinuity in the first derivative of g2 at
r = 3D, a discontinuity in the second derivative at r = 4D,
and so on.

IV. SCALING RELATIONS FOR SYSTEMS
IN THE VICINITY OF HYPERUNIFORMITY

In this section, we recall various scaling behaviors for
various pair statistics in direct and Fourier spaces for ordered
and disordered packings of hard spheres in the vicinity of
jamming that are particularly germane to this paper.

Torquato and Stillinger have shown [6] that a hyperuniform
system with a structure factor that scales as

S(k) ∝ k2−η, k → 0 (19)

may be thought of as an “inverted critical point.” At this point,
the direct correlation becomes long-ranged, scaling as

c(r) ∝ −r2−d−η, r → ∞ (20)

in dimension d, where η is a critical exponent such that 2 −
d < η < 2. Additionally, the inverse of the structure factor at
the origin exhibits critical scaling behavior in the vicinity of
its critical density, i.e.,

S−1(0) ∝ (1 − φ/φc)−γ (21)

for densities close to, but below φc [6].
In the case of the equilibrium crystal branch, we may exploit

the compressibility relation relating the structure factor to the
isothermal compressibility κT at temperature T

S(0) = ρkBT κT (22)

along with the free-volume equation of state [52] which
predicts that the pressure p behaves as

p

ρkBT
= d

1 − φ/φJ

, (23)

to obtain the result that κT ∝ (1 − φ/φc)2 in the vicinity of
jamming. From this, it follows that

γ = 2 (equilibrium crystal). (24)

Note that this result is independent of dimension. One may
also define a correlation length ξ with the critical behavior

ξ ∝ (1 − φ/φc)−ν, (25)

which may be related to the previous critical exponents through

γ = (2 − η)ν. (26)

As mentioned before, one such length scale can be defined
by the volume integral of the direct correlation function: ξ =
(− ∫

R3 c(r)d r)1/d .
For packings along glassy metastable branches leading to

MRJ-like states, one cannot use the compressibility relation
because the states are nonequilibrium in nature [30]. However,
one may reconcile the differing pictures presented by S(0) and
κT by introducing a “nonequilibrium index,” defined as

X ≡ S(0)

ρkBT κT

− 1. (27)

Hopkins et al. studied the behavior of X under rapid compres-
sion toward jamming for MRJ-like packings prepared by the
LS algorithm for system sizes up to N = 106 and found that,
as φ increased toward jamming, X ∝ (1 − φ/φc)−1 [30].

By combining this result with the observation that the
pressure in MRJ-like packings again diverges according to
the free-volume equation of state, we get the result that

γ = 1 (MRJ packings). (28)

By Eq. (26), this implies that ν = 1 for MRJ packings as
well. This is a noteworthy result because it tells us that
while both MRJ-like and equilibrium crystalline packings
become increasingly hyperuniform as they are compressed,
they are different universality classes with respect to the critical
exponents η and γ associated with hyperuniformity. While
ensembles of packings are known to exist that interpolate
between these extremes, the interpolation is not unique, owing
to the large diversity of jammed packings that are known to
exist. Thus it is an interesting, outstanding question how these
critical exponents might evolve between these two extreme
states.

V. SIMULATION METHODS

In order to study the behavior of the equilibrium hard-sphere
fcc crystal for densities between φ = 0.55 and the close-
packing density φfcc = π/

√
18, we used standard event-driven

molecular dynamics [38]. Configurations of N = 4M3 spheres
with 4 � M � 63 were placed on their lattice sites and
allowed to equilibrate at fixed packing fraction within a cubic
fundamental cell with periodic boundary conditions for 105

collisions per sphere before taking statistics. Measurements of
the structure factor were made every 103 collisions per sphere
to verify that equilibrium had been attained.

To generate disordered, strictly jammed sphere packings in
three dimensions, we begin with initial conditions produced by
random sequential addition (RSA) at an initial packing fraction
of φ = 0.10. We use the Torquato-Jiao (TJ) sequential linear
programming method [40] with system sizes of up to N = 104

using the same parameters as those used to study the MRJ
state in Ref. [41]. The final mean density of these packings
is φ = 0.6352 ± 2.6 × 10−4 for a system size of N = 2000.
After the algorithm terminates and a putatively jammed state
is reached, the packing is equilibrated within its jamming
basin using event-driven molecular dynamics at fixed density.
We also compare these packings to those generated using
the well-known event-driven Lubachevsky-Stillinger (LS)
molecular dynamics algorithm [53]. For LS, we use an initial
dimensionless growth rate of � = dD/dt

√
m/(kBT ) = 10−2
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FIG. 1. Structure factor of the hard-sphere fcc crystal at various
densities and system size N = 2048. Dashed lines showing S = (1 −
(φ/φfcc)1/d )2 highlighting that the critical behavior of S(0) is included.

until packings reach a dimensionless pressure of P =
pV/NkBT = 104, at which point the expansion rate is slowed
to γ = 10−5, and packing continues until P = 108. The mean
density of the final packings as prepared under this protocol is
φ = 0.6434 ± 1.0 × 10−4 at a system size of N = 10 000.

VI. RESULTS

In this section, we present results pertaining to our
computer-generated hard-sphere packings as they approach
both ordered and disordered jammed states. We will present
our analysis assuming that the particle diameter D is unity
unless otherwise specified.

A. fcc hard-sphere crystals

We begin by examining the behavior of the hard-sphere fcc
crystal because the behavior exhibited by the crystal undergo-
ing thermal motion away from jamming serves as a interesting
starting point from which we can make several observations
to guide our subsequent investigation of disordered jammed
systems. We will investigate the crystal’s approach to close
packing with attention to the fluctuating component of the
structure factor as well as the implications it has for the
qualitative form of c(r).

Figure 1 shows plots of the radially averaged structure
factor S(k) for the equilibrated fcc crystal for a variety of
densities along the solid branch; our computation follows
the collective coordinate formulation of Eq. (3). Curves are
averaged over ensembles of 100 packings with N = 2048.
Figure 2 shows the corresponding radially averaged direct
correlation function evaluated numerically using discrete
Fourier transform techniques following Eq. (5).

In addition to the Bragg peaks that arise from the crystal
geometry from the “frozen-in” structure of the packings,
the curves possess a background contribution derived from
thermal fluctuations which scales as k2 starting at a sufficiently
high wave number (on the order of unity) and saturates to
S = 1. While the domains of interest in the scaling descriptions
of Eqs. (19) and (20) as written are k → 0 and r → ∞, one

10−2 100

r/D

100

105

1010

|c(
r)
|

φfcc − φ = 10−4

φfcc − φ = 10−2

φ = 0.55

FIG. 2. Radially averaged direct correlation function of the hard-
sphere fcc crystal at various densities and system size N = 2048. The
thick dashed line is included as a guide for the eye and shows a 1/r

scaling as r → 0.

might reasonably suspect that it is possible to invert the two
limits so as to infer the scaling behavior of c(r → 0) from
S(k → ∞). In the case of our fcc data, we see that this implies
that the direct correlation function ought to scale as r−1 for
r < 1. Looking at Fig. 2, this seems to be the case. We note
in passing that this is also consistent with the prediction given
by the analysis of the Yukawa form mentioned in Sec. IV.

At sufficiently low wave numbers, S(k) converges to a
constant, given to a good approximation as S(0) = (1 −
(φ/φfcc)1/3)2, confirming that the critical exponent γ = 2
as predicted in Eq. (24). Importantly, at the point of exact
jamming, the fcc crystal is trivially stealthy (its structure factor
is identically zero up to some positive wave number), meaning
that the critical exponent η may be thought of as being infinite.
This discontinuous change from the equilibrium behavior at
even vanishingly small distances to jamming highlights the
singular nature of jamming and underscores the need to be
careful when considering limiting behavior.

It is important to note that a structure factor that scales
as k2 can be obtained by applying random, uncorrelated
displacements to each particle in the crystal [54]. Given
the inherent anharmonicity of the system owing to the
singular nature of the hard-sphere interaction potential, we
are motivated to ask whether the probability distribution of
the pair separation of nearest-neighbor spheres in the crystal
might be, to a good approximation, statistically independent
from pair to pair on certain length scales. On larger length
scales (lower wave numbers), the exact form of S(k) is in
excellent agreement with a normal mode analysis based on the
fictitious interparticle potential derived in Ref. [55], suggesting
underlying correlated displacements on corresponding length
scales.

B. Disordered packings and the MRJ state

We now turn our attention to characterizing the approach
to jamming in disordered packings produced by the LS and
TJ algorithms as described in Sec. V. Unlike the case for the
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FIG. 3. Structure factor for ensembles of packings created using
TJ (solid lines) and LS (dashed lines) at various packing fractions φ

and distances to jamming 1 − φ/φc. Note that very little change is
observed upon compressing the systems from 1 − φ/φc = 3 × 10−5

to 3 × 10−8.

fcc crystal, MRJ-like packings do not strongly indicate signs
of an incipient jammed structure at densities far below that of
jamming. Furthermore, there is a strong protocol dependence
yielding qualitative differences in various packing protocols’
approaches towards disordered, jammed states.

Figure 3 shows the ensemble-averaged structure factor
of our packings for a variety of densities and protocols.
As jamming is approached, limk→0 S(k) approaches zero,
implying that the jammed state is hyperuniform, in agreement
with previous investigations [30,37]. Because the data are
presented on a log-log scale, the vertical offset between the
nearly jammed TJ and LS configurations corresponds to a
difference in slope in their respective linear behavior in the
vicinity of the origin. Interestingly, the packings produced
by the TJ algorithm display anomalous behavior well before
jamming is reached, including a structure factor that increases
as the wave number approaches zero for intermediate densities.
By contrast, S(k) for LS-generated packings seems to mono-
tonically decrease for kD/2π < 1 at all packing fractions
leading up to jamming. This suggests that the intermediate
configurations that TJ creates on its way to jamming are
far from equilibrium—even at packing fractions below the
freezing density φf ≈ 0.494 [56]. For configurations that are
close to jamming at a density of φc, we group packings
according to the quantity 1 − φ/φc rather than φ.

The TJ algorithm seems to find configurations that are
consistently more disordered than those visited by LS starting
at intermediate densities and continuing up to jamming [57].
We consider the order metric [58]

τ = 1

(2π )d

∫
|k|<kmax

(S(k) − 1)2dk, (29)

which may be thought of as quantifying extent to which a given
configuration differs from a Poisson process (for which S = 1
for all k). This order metric was introduced and used in Ref.
[58] with kmax → ∞. The order metric τ is also reminiscent of

10−1 100 101 102

kmaxD/2π

100

101

102

103

104

105

106

τ
(k

m
a
x
)

TJ, φ = 0.40
φ = 0.50
φ = 0.60
1 − φ/φc = 3 × 10−5

1 − φ/φc = 3 × 10−8

LS

FIG. 4. Order metric τ for ensembles of packings created using
TJ (solid lines) and LS (dashed lines) at various packing fractions φ

and distances to jamming 1 − φ/φc for different cutoffs kmax. Note
that very little change is observed upon compressing the systems from
1 − φ/φc = 3 × 10−5 to 3 × 10−8.

the direct-space order metric T ∗ that has been utilized before
[41,59], which measures deviations in the pair correlation
function from unity, as well as the two-body excess entropy s(2)

[59–62]. Here, we keep kmax finite to prevent τ from diverging
due to the contributions of developing Dirac delta functions
in the corresponding direct-space statistics characteristic of
packings being compressed toward jamming; a similar issue
arises in the aforementioned order metrics as discussed in [59].

Looking at Fig. 3, one can see immediately that S(k)
for TJ-generated packings remains much closer to unity at
intermediate densities than for LS. This difference persists
up to jamming. Figure 4 shows the quantity τ computed
for ensembles of 1000 packings created by the TJ and LS
algorithms corresponding to the densities used for Fig. 3 as a
function of kmax. Consistent with other order metrics including
T ∗ as well as the standard bond-orientational order metric Q6,
which primarily measure short-range order, τ demonstrates
that the packings generated by TJ are also more disordered
than those produced by LS on larger length scales [41]. Thus
τ provides complementary information to T ∗ and Q6.

Near jamming and at sufficiently high wave numbers, the
behavior of the integrand in Eq. (29) is dominated by the
contribution arising from the delta function in c at r = D.
This causes τ to diverge toward infinity at a rate that is linear
in kmax. The thick black line in Fig. 4 illustrates the slope
associated with this behavior. If the delta function is not sharp
(because of a spread in nearest-neighbor distances), then τ will
saturate to a constant. This is seen for the LS and TJ packings
for φ = 0.40 and 0.50 as well as for LS at φ = 0.60. This
suggests that, while near-contacts accumulate starting at low
densities as TJ densifies its packings, they remain spread out
over a range of pair distances beyond contact.

Because of the noise in measuring the structure factor
numerically (due to both a finite number of packings in
the ensemble as well as finite system sizes), the decaying
oscillations converging to S = 1 will eventually saturate to
white noise. Therefore, τ will begin to grow with increasing
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FIG. 5. Direct correlation functions computed for packings generated by (a) LS and (b) TJ for various densities. Note that c(r) for both
protocols can take either positive or negative values for distances beyond the hard core (r = 1) at sufficiently high densities.

cutoff as kd
max. The beginning of this trend is visible in Fig. 4

for our ensembles at lower densities.
Figure 5 shows the corresponding direct correlation

functions for these ensembles of packings. The first salient
feature is that the direct correlation function for the packings
produced by the TJ algorithm exhibits a prominent peak at
r = 1 that is clearly visible at packing fractions as low as
φ = 0.50. This is accompanied by a steep decrease in c(r)
for r < 1 that is dominated by a −1/r scaling as r → 0.
As mentioned in Sec. II, the analysis of a Yukawa-like c(r)
beyond the core as z goes to infinity [46–49,63] provides the
rationalization for the appearance of a scaling behavior of
this form. However, it only becomes dominant if the volume
integral of c(r) outside the core is sufficiently large. That is,
the short-ranged behavior of c(r) seems to be, fascinatingly,
communicating its growing long-rangedness in the sense of
the theoretical considerations of Sec. IV.

The early appearance of a delta function in c at r = 1
leads us to suggest that cluster formation in TJ occurs long
before the packing is confined to a jamming basin. This result
is likely related to the observation of Shen et al. [64] that
athermal packings of spheres compressed from low densities
in the presence of a viscous background exhibit a “contact
percolation” which is accompanied by the emergence of a
nontrivial mechanical response to applied stress at densities
significantly below that of jamming. Because of the manner in
which the sequential linear programming algorithm searches
for local optimizations in packing fraction, which require little
reconfiguration at low densities, there is reason to believe that
the TJ algorithm explores available configuration space in a
similar fashion to the procedure of Shen et al. for low to
intermediate densities.

We also note in passing that the direct correlation functions
exhibit both a cusp at r = √

3 and a mild step discontinuity
at r = 2, mirroring the features found in the pair correlation
function. We have noticed that the step discontinuity observed
in g2 of jammed packings is consistently larger than what
is produced as an effect of the delta function at c(r = 1);

this is explained in light of the result contained in Eq. (18).
Note also that the particular form of Eq. (18) relies on the
assumption that the packing is isostatic, meaning that there are
the minimum number of backbone contact pairs necessary to
ensure jamming. In the infinite system limit, this corresponds
to a mean backbone coordination number of z = 6 + O(1/N),
where the vanishing term reflects the difference between
collective or strict jamming [51].

Figure 6 shows −c(r) plotted on a log scale for both
protocols at selected packing fractions. While c(r) is negative
for LS over most of the domain shown, some curves for
TJ have significant regions were c(r) is positive. Therefore,
positive c(r) data are multiplied by −1 and are indicated in
the figure with a dashed line. As jamming is approached, we
observe that c ∝ −1/r2 for large r , confirming numerically
the prediction of Eq. (20) for η = 1 in the case of disordered
packings. This scaling behavior is difficult to obtain
numerically since one must accurately obtain S(k) data for
low wave numbers in order to extract the large-r behavior of
c. In particular, one must necessarily extrapolate S(0), as a
direct computation using Eq. (3) contains a forward scattering
contribution which must be omitted. Additionally, to improve
numerical stability, our c̃(k) data were multiplied by the
Fourier transform of a narrow triangular window so that the
real-space data is smoothed accordingly via convolution.
Details of the procedure are given in the Appendix.

The difference in the protocols’ approaches to jamming may
be readily traced back to differences in the dynamics involved:
on one hand, the constant thermal motion inherent to LS acts to
equilibrate packing and avoid metastable branches terminating
at low-density jammed states; an aggressive expansion rate
works against this, though one must worry about the algorithm
becoming trapped in an unstable mechanical equilibrium
(which is, by definition, not a jammed state). The possible
displacements obtained by TJ are highly degenerate since, in
general, there are many different displacements which allow
for the same increase in the packing fraction (which is limited
to a small value so that the linear approximations in the LPs’
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FIG. 6. Log-log representation of −c(r) for (a) LS and (b) TJ packings at system sizes of N = 10000 and N = 2000, respectively. Data
for positive c is shown using dashed lines of the same color in (b). The thick black dashed guide line in each graph shows a slope of −1/r2.

formulation remain reasonably accurate). Therefore, TJ tends
to displace spheres in a “sluggish” fashion, only moving
what is necessary to increase the packing fraction and no
more.

Evidence of this aforementioned qualitative difference
may be observed directly; Fig. 7 shows snapshots of two-
dimensional packings of monodisperse disks created by TJ
and LS (using a rapid compression rate) at a packing fraction
of φ = 0.55. In two dimensions just as in three, we can see
that the structures of the packings are qualitatively different.
In particular, the TJ algorithm exhibits clustering of particles
that might be quickly dispersed through thermal motion; in the
absence of this, the clusters continue to combine and aggregate
as jamming is approached. We point out that particles within
these clusters do not necessarily contact one another; some
separation is expected to remain between particles owing to the
nonlinearities that are not captured in the TJ algorithm’s linear
approximation to the packing problem. In LS, on the other
hand, particles tend to space themselves out more uniformly
through their thermal motion.

We note in passing that, while this difference does not
prevent the LS algorithm from discovering MRJ-like states
in 3D, the two-dimensional case was recently shown to be

(a) (b)

FIG. 7. Two-dimensional packings of monodisperse disks created
by the (a) LS and (b) TJ algorithms at a packing fraction of φ = 0.55.

considerably more subtle—the difference in how TJ creates
jammed packings has led to the first observations of MRJ-like
isostatic packings of monodisperse disks in two dimensions
[65], whereas the LS algorithm and other standard protocols
are unable to observe them, finding hyperstatic, denser, and
significantly more ordered, polycrystalline structures even
under rapid compression. These 2D monodisperse-disk results
clearly distinguish MRJ states from so-called random close
packing (most probable) states, as detailed in Ref. [66].

VII. CONCLUSIONS AND DISCUSSION

In this work, we have compared and contrasted the
approach of both ordered and disordered hard-sphere packings
towards jammed states through considering the behavior of
their structure factors and direct correlation functions. By
considering the degree and position of singularities in c(r)
as well as how they are changed by the convolutions found
in Eq. (1), we have established quantitative statements about
the structure of the direct correlation function with regards
to features it inherits from g2(r). These relations provide a
concrete means of identifying what features must be expressed
in c(r) if one hopes to reproduce various details in g2(r)
accurately.

Moreover, we found that the LS and TJ protocols approach
their respective jammed states in markedly different manners,
as shown by various pair statistics. Specifically, the structure
factor of TJ-generated packings shows anomalous increasing
behavior for small k at intermediate densities, and generally
remains closer to S = 1 at all densities leading up to jamming
when compared to LS. The order metric τ compares a config-
uration’s pair statistics to that of an uncorrelated (Poisson)
point process, which may be thought of as a maximally
disordered reference state. In this sense, τ may be thought
of as a “disorder metric.” At low to intermediate densities, τ

suggests that packings created by TJ are more disordered on
large length scales, but more ordered on short length scales as
evidenced by the crossover as the truncation in the integration
domain kmax is made increasingly large. This is consistent
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with the intuition that TJ does not disturb the packings as they
are compressed as much as LS does, leaving the large-scale
characteristics similar to the initial conditions obtained from
low-density RSA. On the other hand, the formation of near
contacts well before jamming may be interpreted as a sort
of “ordering” that LS avoids through equilibration; therefore,
LS yields configurations that are more disordered locally at
densities far from jamming.

TJ shows signs of particles in close proximity at surprisingly
low densities as evidenced by the appearance of a clear
precursor to the delta function at c(1) and corresponding −1/r

scaling within the core as r → 0. We have shown that the
latter numerical observation can be predicted from theoretical
considerations using a Yukawa model for c(r). By evaluating
τ , we see that these near contacts that cause the delta function
to appear are distributed across a range of pair separations,
and the delta function’s precursor is not “sharp” until higher
densities. This is to be expected because of the linear
approximations that TJ makes as the packing is compressed;
the inaccuracies due to nonlinear contributions are largest
when large changes in the system configuration (particle
translations and box deformations) are made. This is the case at
densities far from jamming, where the linear approximations to
the packing problem still leave a large amount of configuration
space accessible. Nonetheless, this feature in the intermediate-
density structures produced by the TJ algorithm suggests
that it possesses important qualitative commonalities with the
physical process of compressing hard spheres embedded in
a dampening background, providing a conceptual physical
analog to the algorithm as witnessed in practice.

It has been suggested previously [6,30] that the hyper-
uniform, linear nonanalytic behavior of S(k) for MRJ-like
packings ought to give rise to a long-ranged direct correlation
function which exhibits a power-law decay of c ∝ −1/r2. We
have confirmed this numerically using simulated packings of
hard spheres generated by two very different protocols, adding
to the evidence to the conjectured link between jamming and
hyperuniformity [36,37] and supporting the idea that the emer-
gence of large-r scaling behavior consistent with hyperunifor-
mity may be regarded as a structural precursor to jamming. It
would be interesting to consider new semiempirical forms for
c(r) incorporating this long-range behavior in order to gain
understanding regarding its structural consequences.

It is interesting that the structure factor of the fcc crystal
exhibits scaling that is constant for low k, but gives way
to k2 beginning at wave numbers on the order of unity,
extending to an increasingly large maximum wave number
as jamming is approached. We noted above that this would
imply that the average pair distance between any given pair of
nearest-neighbor particles might be spatially uncorrelated to a
good approximation. It has been observed elsewhere [66] that
the fluctuating component of the structure factor in disordered
packings of thermally excited soft spheres exhibits a similar
quadratic scaling at densities slightly above the jamming
transition density. We have noticed that this behavior is also
exhibited for disordered hard-sphere packings at packing
fractions below, but close to jamming, suggesting similarly that
the pair separations between nearest-neighbor particles may
fluctuate in an uncorrelated manner to a good approximation.

We suspect that the aforementioned differences between
the LS and TJ algorithms should be evident in other ways. In
particular, the tools of percolation theory are expected to yield
additional insights into the incipient rigid network in these
jammed systems and provide an avenue for future work.
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APPENDIX: NUMERICAL PROCEDURE
FOR OBTAINING c(r) FROM S(k) DATA

In this Appendix, we provide procedural details regarding
our numerical computation of the direct correlation function
used to ascertain the large-r behavior.

We begin by measuring S(k) at wave vectors that are
integer combinations of the columns of the reciprocal matrix
�R defined as �R = [(2π )�−1]T , where the columns of
� ∈ Rd×d span the fundamental cell of our system in direct
space. Measurements are then binned and averaged according
to their wave number with a bin width of 
k/2π = 0.01,
so that we have reported measurements at wave numbers
given by kn = (
k/2π )(1/2 + n) for n = 0,1,2 . . . . Because
the density of wave vectors scales as kd−1, we randomly
select wave vectors with a probability proportional to the
inverse of this density such that, for higher wave numbers,
the expected number of measurements per bin is E(ns) = 105.
At smaller wave numbers, the structure factor is measured at
every available wave vector.

Once we have obtained data for all of our packings, we
perform an ensemble average. If there are empty bins, then we
linearly interpolate a value for those bins, expecting that this
is representative of the large-system limit. We also linearly
extrapolate S(k) down to zero if any bins are missing data; our
results are qualitatively robust against small variations in this
extrapolation.

Our data is then converted via Eq. (5) to give us c̃(k).
Because of the asymptotic behavior of c̃(k), we find that it is
necessary to apply a convolution in order to eliminate artifacts
caused by difficulties associated with numerically integrating
this high-frequency behavior. We do this by multiplying c̃(k)
with the Fourier transform of a triangular window in direct
space given by w(r) = (3/πr3

c )(1 − r/rc)(1 − 	(r − rc)).
The Fourier transform of this radial function is

w̃(k) =
{ 12

(krc)4 (2 − 2 cos(krc) − krc sin(krc)), k > 0,

1, k = 0.

(A1)

For a general three-dimensional, radial function f (r) ≡
f (|r|), the Fourier transform and its inverse may be expressed
[45] as

f̃ (k) =
{

4π
k

∫ ∞
0 rf (r) sin(kr)dr, k > 0,∫

R3 f (r)d r, k = 0,
(A2)
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f (r) =
{

1
2π2r

∫ ∞
0 kf̃ (k) sin(kr)dk, r > 0,

1
(2π)3

∫
R3 f̃ (k)dk, r = 0.

(A3)

Note that both the forward and inverse transforms are equiva-
lent up to their scaling coefficients. In order to take advantage
of the usual one-dimensional fast Fourier transform algorithm
for our three-dimensional, radial c̃(k), we take our discrete
Cn = c̃(n
k) for n = 0,1,2, . . . ,l and compute

C ′
n =

⎧⎨
⎩

(n − l)
kCl−n−1, n = 0,1, . . . ,l,

0, n = l + 1,

(n − l − 1)
kCn−l−1, n = l + 2, . . . ,2l + 1.

(A4)

We then compute the usual one-dimensional inverse FFT on
this data, defined here as

c′
m = F−1[C ′

n; m]

= 
k

2l + 1

2l+1∑
n=0

C ′
ne

2πnm/(2l+1), (A5)

where m = 1, . . . ,2l + 1. We then apply the prefactor and a
phase correction to correct for the fact that the index n = l + 1
corresponds to k = 0 to obtain

cm = c′
m

2π2rm

e−2πiml/(2l+1), (A6)

where rm = m
r and 
r = 2π/
k(2l + 1). Through anal-
ogy with Eq. (A3), one expects that cm is completely imaginary,
while one expects the Fourier transform to be completely real
valued. This is reconciled by dropping the imaginary unit
from cm; doing so is justified since the imaginary prefactor
is expected if one applies Euler’s formula to the exponential
term in Eq. (A5), but is missing as a prefactor to the sine term in
Eq. (A3). Finally, the value for c0 corresponding to c(r = 0) is
obtained by integrating Cn numerically according to Eq. (A3).

Once the direct space c(r) has been found (represented
discretely through cm), one must then be sure to truncate
the data at rmax = Lmax/2 where Lmax is the width of the
simulation box; data beyond this point is subject to finite-size
artifacts.
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