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Probing density waves in fluidized granular media with diffusing-wave spectroscopy
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Density waves are characteristic for fluidized beds and affect measurements on liquidlike dynamics in fluidized
granular media. Here the intensity autocorrelation function as obtainable with diffusing-wave spectroscopy is
derived in the presence of density waves. The predictions by the derived form of the intensity autocorrelation
function match experimental observations from a gas-fluidized bed. The model suggests separability of the
contribution from density waves from the contribution by microscopic scatterer displacement to the decay
of correlation and thus paves the way for characterizing microscopic particle motions using diffusing-wave
spectroscopy as well as heterogeneities in fluidized granular media.
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I. INTRODUCTION

Characterization of the particle dynamics encountered in
fluidized granular media, both the dynamics of the individual
grains and the emergent regimes of fluidization, is crucial
for advances in research on three-dimensional granular flows
[1]. Approaches to this challenge were made in the past
two decades to track particle motion in fluidized beds using
coherent laser light [2–7]. These measurements rely on
the principle of diffusing-wave spectroscopy (DWS), which
allows connecting temporal intensity fluctuations of coherent
light to displacements of microscopic scattering centers in
opaque samples by the intensity autocorrelation function
(IACF) [8,9]. The DWS measurements on fluidized granular
media received some attention, as they supported analogies
among dense granular media and thermal glassy systems [6,7].

For such an analogy to hold, granular media need some
form of agitation, such as the one present in a fluidized bed.
However, basically all fluidized beds are unstable and exhibit
particle number density waves that propagate along the flow
direction of the fluid [10]. The wavelengths of these density
fluctuations are on the order of the container size of the
fluidized bed and can be observed by pressure fluctuations
or by incoherent optical probes [11–15]. These measurements
confirmed the presence of number density waves in fluidized
beds at all levels of fluidization, even in the state commonly
referred to as uniform fluidization [10,14,16].

The number density waves, which can be observed as
intensity fluctuations when using the incoherent optical probes,
should also leave a signature in the intensity fluctuations
as observed in the DWS measurements using coherent light
sources. We evaluate in the following section the consequences
of density waves for the intensity autocorrelation function.
Then, in Sec. III, we test the theoretical predictions by
measurements in a gas-fluidized bed. The results show that the
density waves become apparent in the IACF by a second decay
with trailing oscillations, which signifies the periodicity of the
density waves. The derived form of the IACF indicates that
the two contributions to the intensity fluctuations, the density
waves and the phase shifts created by microscopic motions of
scattering centers, can be separated for correct interpretation.
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II. THEORETICAL CONSIDERATIONS

A central quantity obtainable in DWS measurements is the
time-averaged IACF 〈I (t)I (t + τ )〉, where I (t) is the intensity
at some time t , τ denotes a delay time, and the angular
brackets indicate temporal averaging. The temporal averaging
is not necessarily equal to ensemble averaging, as granular
media are not inherently ergodic [17,18], and the density
waves considered here prevent a stationary state. We derive
a formulation of the IACF in the presence of density waves
within the frame of path-bound propagation of light.

In highly opaque samples like granular media the incoming
electromagnetic wave from a source is strongly scattered
and eventually fades and multiple waves propagate from
scattering center to scattering center. This multiple scattering
and eventually diffusive wave propagation can be represented
by propagation of fields along distinct paths [9]. The total field
E(t) at the position of a detector becomes the sum of the waves
that propagated along individual paths P :

E(t) =
∑
P

EP ei�P (t), (1)

where Ep represents the amplitudes and �P (t) the phases
of the individual fields. The field autocorrelation function is
linked to phase shifts ��P (τ ) along the paths with time,

〈E(t)E∗(t + τ )〉 =
〈(∑

P

EP ei�P (t)

)(∑
P ′

E∗
P ′e

−i�P ′ (t+τ )

)〉

=
∑
P

〈|EP |2〉〈ei(�P (t)−�P (t+τ )〉

=
∑
P

〈IP 〉〈ei��P (τ )〉. (2)

Here the conventional assumptions were made that the phase
and amplitude of the field of a certain path are uncorrelated
and that phases along different paths, P �= P ′, are uncorrelated
(i.e., we assume that phases are evenly distributed over
intervals of 2π ), so only terms with P = P ′ contribute. The
phase shifts of the waves are linked to the displacements of
scattering centers and the length of the respective paths, and
statistical considerations on the path length distribution then
lead to the conventional scheme of DWS [9,19].
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Only intensities are experimentally accessible, I (t) =
E(t)E(t)∗. The Siegert relation establishes a connection
between the intensity autocorrelation function and the field
autocorrelation function [20]

〈I (t)I (t + τ )〉 = 〈I (t)〉2 + |〈E(t)E∗(t + τ )〉|2, (3)

where E(t) and E∗(t) are assumed normally distributed
variables in the derivation of the Siegert relation. This
holds true for the total field in Eq. (1) by the central
limit theorem, as E(t) is a sum of fields with stationary
uncorrelated amplitudes and evenly distributed random phases.
A normal distribution of the field values in time results in an
exponential distribution of intensity values, if instantaneous
intensities could be measured, or to �-distributed intensity
values if some time integration is involved [21]. The measured
IACFs are usually normalized by their long delay time limit
〈I (t)I (t + τ )〉|τ→∞ = 〈I (t)〉〈I (t + τ )〉 = 〈I (t)〉2, as is done
in the hardware correlation used in the experiments. This leads
to an intercept (τ → 0) of the IACF of 2 within the validity of
the Siegert relation

〈I (t)I (t + τ )〉
〈I (t)〉2

∣∣∣∣
τ→0

= 1 + |〈E(t)E∗(t + τ )〉|2
〈I (t)〉2

∣∣∣∣∣
τ→0

= 2. (4)

The exact nature of the scattering centers linked to the paths
of diffusive wave propagation is hard to define in an ensemble
of large granular particles. Certainly, Mie-like scattering of
the large spheres play a role, but also scattering from surface
asperities, scattering from inhomogeneities within the particle
material, and maybe even diffraction within narrow gaps
formed by the densely packed particles can be non-negligible.
Thus paths can be formed by scattering centers within or on
the surface of the particles and change shape when the particle
translate or rotate (Fig. 1).

Density waves create periodic fluctuations of the concen-
tration of particles in certain subvolumes of the sample, in
particular also in the region illuminated by the laser beam.
Inhomogeneous and collimated light sources like laser beams
with Gaussian intensity distributions will thus be much more
sensitive to this fluctuation mechanism than extended homo-
geneous light sources, which may average over the wavelength
of the density wave. The effect of a density fluctuation in the
illuminated region could be taken into account by changing the
ensemble of paths P , which is summed over in the previous
equations, to a time-dependent path-length distribution, with
complications for the DWS evaluation. Here we suggest
taking the density waves into account in a different way:
Electromagnetic waves extend infinitely; even the intensity
of a Gaussian laser beam rapidly decays radially, but has no
strict cutoff radius. Also, the scattering at the various scattering
centers has a nonvanishing scattering amplitude at any angle.
This motivates the view that irrespective of how the particles
associated with a respective path move relative to each other
and relative to the light source, the path will still exist and will
be excited by the incoming light. Only the intensity transported
along the path may become insignificant with displacement of
the particles (Fig. 1). We thus assume a stationary ensemble
of paths and only the amplitude of the electromagnetic wave
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x
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FIG. 1. Schematic drawing of the time dependence of path
amplitudes in a fluidized sample, with two highlighted paths a and
b that change between large and small transported amplitude with
time. A laser beam with radially decaying intensity profile I (x)
illuminates a sample with microscopic scattering centers on the
surface or within the bulk of macroscopic particles. The position
of the scattering centers relative to each other and relative to the
incoming beam changes with rotation or translation of the particles.
The paths will persist due to the continuity of the angular scattering
at the microscopic scattering centers, but the transported amplitude
will become position dependent.

propagating along a respective path is changing in time:

E(t) =
∑
P

EP (t)ei�P (t). (5)

It may be hypothesized that fewer and shorter paths carry
a large amplitude during a low-density state of the volume
illuminated by the laser, while during high-density states more
and longer paths carry an overall lower amplitude. The field
amplitudes in Eq. (5) will follow the temporal behavior of the
density waves in the fluidized bed, thus in general they will not
be uncorrelated anymore. This violates the assumptions for the
central limit theorem and limits the applicability of the Siegert
relation. A deviation from a normal distribution of the fields
could be tested experimentally by comparing the distribution
of the intensity values to a � distribution [21].

We calculate the instantaneous intensity I (t) = E(t)E(t)∗,
the time-averaged intensity 〈I (t)〉, and the time-averaged
intensity autocorrelation 〈I (t)I (t + τ )〉 from this total electric
field to clarify differences from the case without density waves:

I (t) =
∑
P

∑
P ′

EP (t)E∗
P ′(t)ei[�P (t)−�P ′ (t)]. (6)

We again use the assumptions that the phase and amplitude
of the field of a certain path and the phases along different
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paths P �= P ′ are uncorrelated to obtain the averaged intensity

〈I (t)〉 = 〈E(t)E∗(t)〉 =
〈∑

P

∑
P ′

EP (t)E∗
P ′(t)ei[�P (t)−�P ′ (t)]

〉

=
∑
P

∑
P ′

〈EP (t)E∗
P ′(t)〉〈ei[�P (t)−�P ′ (t)]〉 =

∑
P

〈|EP (t)|2〉 =
∑
P

〈IP (t)〉 ≡ 〈It (t)〉. (7)

Here we derived a time-dependent instantaneous total intensity It (t), which is the summed up instantaneous intensity of all
paths. The calculation of the full form of the IACF is then straightforward:

〈I (t)I (t + τ )〉 = 〈E(t)E∗(t)E(t + τ )E∗(t + τ )〉

=
〈∑

P

∑
P ′

∑
P ′′

∑
P ′′′

EP (t)E∗
P ′(t)EP ′′(t + τ )E∗

P ′′′ (t + τ )ei[�P (t)−�P ′ (t)+�P ′′ (t+τ )−�P ′′′ (t+τ )]

〉
. (8)

As before, we separate the phase and amplitude averages and assume uncorrelated paths. Then contributions arise only for
P = P ′, P ′′ = P ′′′, and P = P ′′′ �= P ′ = P ′′, so the intensity autocorrelation function is given by〈∑

P

∑
P ′′

EP (t)E∗
P (t)EP ′′(t + τ )E∗

P ′′ (t + τ )

〉
+

〈∑
P

∑
P ′

EP (t)E∗
P (t + τ )EP ′(t)E∗

P ′(t + τ )ei[�P (t)−�P (t+τ )−�P ′ (t)+�P ′ (t+τ )]

〉

=
〈∑

P

∑
P ′′

IP (t)IP ′′(t + τ )

〉
+

〈∑
P

∑
P ′

EP (t)E∗
P (t + τ )EP ′(t)E∗

P ′(t + τ )ei[�P (t)−�P (t+τ )]e−i[�P ′ (t)−�P ′ (t+τ )]

〉
. (9)

We assume that the phase shifts fluctuate much more rapidly than the path amplitudes and thus can replace the amplitude
terms in the second summand by their initial value. Using the notation above for the time-dependent total intensity and the
independence of amplitude and phase, we obtain

〈It (t)It (t + τ )〉 +
〈∑

P

∑
P ′

EP (t)E∗
P (t)EP ′(t)E∗

P ′(t)ei[�P (t)−�P (t+τ )]e−i[�P ′ (t)−�P ′ (t+τ )]

〉

= 〈It (t)It (t + τ )〉 +
∑
P

∑
P ′

〈IP (t)IP ′(t)〉〈ei[�P (t)−�P (t+τ )]〉〈e−i[�P ′ (t)−�P ′ (t+τ )]〉

= 〈It (t)It (t + τ )〉 +
∑
P

∑
P ′

〈IP (t)IP ′(t)〉|〈ei��p(τ )〉|2. (10)

The last step could be considered as a reformulation of the
Siegert equation in the presence of time-dependent amplitudes
[compare Eqs. (2) and (3)]

〈I (t)I (t + τ )〉 = 〈It (t)It (t + τ )〉 + ∣∣〈E(t)E∗(t + τ )〉∣∣2
.

(11)

The IACF thus has turned into the sum of two τ -dependent
contributions in the presence of time-dependent amplitudes,
the phase shifts of the waves propagating along the paths
and the fluctuations of the total instantaneous intensity. The
intercept of the IACF normalized in the conventional way
[cf. Eq. (4)] by the long-time limit 〈I (t)〉2 depends on the
fluctuations of the instantaneous intensity and in general will
exceed 2:

〈I (t)I (t + τ )〉
〈I (t)〉2

∣∣∣∣
τ→0

= 〈It (t)It (t + τ )〉
〈I (t)〉2

∣∣∣∣
τ→0

+ |〈E(t)E∗(t + τ )〉|2
〈I (t)〉2

∣∣∣∣∣
τ→0

= 〈It (t)2〉
〈I (t)〉2

+ 1

� 2. (12)

Summarizing, several import consequences follow for
experiments using fluidized beds and DWS from the consider-
ations and the derivation above. The electric field E(t) at the
detector will not be normally distributed and consequently the
intensity I (t) will not be �-distributed anymore. Thus, also
the values of the IACF and the field autocorrelation function
at τ = 0 will deviate from 2 and 1, respectively, the values
derived for normally distributed fields [22]. Most importantly,
the IACF will exhibit decays of two distinct contributions.
One arises from intensity fluctuations that follow the temporal
behavior of density waves in the fluidized bed. The other
contribution arises from phase shifts of the individual fields
propagating along different paths, which carry information on
microscopic displacements in the sample. Both contributions
can be separated by subtracting one of the terms in Eq. (11).
These predictions will be compared to results from a gas
fluidized bed in the following.

III. EXPERIMENTAL RESULTS

The experimental setup consists of a conventional gas-
fluidized bed. Dry nitrogen is passed from below through a
packing of opaque white 220 μm polystyrene particles resting
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FIG. 2. Normalized IACFs obtained from a fluidized bed at
increasing gas flows. The inset shows a scheme of the setup, with
laser, cylindrical fluidized bed, collimation, and polarization filter.
The labels indicate the gas flows for the respective curve. The IACFs
exhibit two distinct decays and a growing intercept upon increased
gas agitation.

on a glass frit in a glass tube with 10 mm inner diameter.
The gas flow is controlled by a manual volume flow controller
(Swaqelok), which allows adjusting volume flows between 0.5
and 5 l/h with a resolution around 0.2 l/h. A Coherent Verdi
G5 SLM (5 W, 532 nm, operated at 250 mW output power) is
used as a light source. Light is detected in transmission through
a linear polarizing filter (Owis GmbH) by a single-mode fiber
(Thorlabs), fed into a beam splitter (Schäfter+Kirchhoff), and
finally guided into two avalanche photodiodes (ID Quantique).
The signal is evaluated using a hardware correlator (ALV
7002/USB-25) by cross correlation of the two detector signals
to suppress after-pulsing effects. The hardware correlator
provides a fast count rate trace with a time resolution of 200 μs
and an IACF with a 25 ns sampling time.

The measured IACFs indicate that the sample stays static
at low gas flows [below approximately 2.5 l/h (see Fig. 2)].
Then a single decay emerges in the IACF in a narrow regime
of gas flows below 3 l/h. Above 3 l/h, two decays in the
correlation functions emerge. The height of the second decay
grows with increasing gas flow. Simultaneously, the intercept
of the correlation curves rises above 2. We note that the exact
gas flow values at which the sample fluidized vary from one
experimental run to another, which might be due to charging
of the particles in the dry nitrogen stream.

The fast count rate traces of measurements with two decays
in the IACF are qualitatively different from measurements
with a single decay (Fig. 3). Measurements with low gas flows
and single decay in the IACF exhibit count rates fluctuating
randomly in a narrow band of intensity values. Measurements
with high gas flows and two decays periodically exhibit broad
spikes with increased intensity superimposed on top of the
random fluctuations.

The periodic spikes in intensity strongly affect the dis-
tribution of intensity values (Fig. 4). The distribution of
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FIG. 3. Intensity traces (photon counts/s) of an experiment with
a single decay in the IACF and of an experiment with a double decay
in the IACF (the latter trace is offset for clarity). A double decay in
the IACF is linked to periodic spikes in the intensity traces, showing
fluctuations in the transmitted intensity.

intensity values is plotted together with a fitted � distribution.
The hardware correlator integrates intensity fluctuations over
200 μs to obtain the fast count rate traces. The intensity
distribution from normally distributed intensities turn from
an exponential distribution to a � distribution with finite
integration times, where the variance of the distribution is
determined by the number of independent correlation intervals
in the time integration interval [21]. The fit of a � distribution
to the normalized experimental intensity distributions gave 4.1
correlation intervals for the experiments with a single decay
(2.6 l/h) and 4.9 correlation intervals for the experiment with
two decays (5 l/h) within the integration time of 200 μs. This
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FIG. 4. Time-averaged intensity probability distribution p(I ) for
experiments with single and double decay in the IACF. The solid line
is a fitted � distribution, i.e., expectation from normally distributed
intensity statistics. A broadening of the distribution compared to the
expectation can be observed, which becomes much stronger for the
measurement exhibiting a strong second decay.
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FIG. 5. Results of the TRC analysis of an sample with double
decay in the IACF. The top graph gives the TRC traces with fixed
1-ms delay time of an experiment with two decays, the bottom graph
the associated intensity trace. Periods with high transmitted intensity
correlate with periods of conserved correlation.

indicates that the fields become uncorrelated to a large extent
after 50 μs for the lower gas flow and within ≈40 μs for
the sample with higher gas flow, which matches the observed
first decay of the correlation functions (Fig. 2). A deviation
of the intensity distribution from the expected � distribution
becomes apparent, which becomes enhanced for larger gas
flows and measurements with pronounced second decay.

We additionally calculate time-resolved correlation (TRC)
functions C from the count rate traces to gain insight into the
dynamics during periods of high and low transmissivity [23]:

C(t) = 〈I (t)I (t + τ )〉�t

〈1/2[I (t)2 + I (t + τ )2]〉�t

. (13)

We take a moving average over a time interval of �t =
100 ms to take into account that we cannot average over as
many independent correlation areas as with a CCD camera.
The delay time τ is set to 1 ms. At this time the fluctuations
leading to the first decay in the IACF are readily averaged,
but the fluctuations of the second decay should be well
characterized.

The time-resolved correlation shows oscillations that follow
the same periodicity as the intensity trace (Fig. 5). Spikes in
the intensity traces correspond to periods where correlation
is conserved most. This might indicate that during periods
with higher density, more, longer, and thus faster fluctuating
paths contribute, while during periods with low-density and
high-transmission shorter paths prevail.

IV. DISCUSSION

The experimental observations support the considerations
above for fluidized beds exhibiting density waves. The in-
tensity autocorrelation functions exhibit two distinct drops
in correlation, with an intercept exceeding 2. The inten-
sity distribution obtained from fluidized bed measurements
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FIG. 6. Isolated second decay of the experimental IACFs, exhibit-
ing a remarkable constancy in the time scales of the function. The inset
gives the fit parameter amplitude and frequency of the oscillations in
the second decay as a function of flow rate. The frequency stays
constant around 11 Hz.

deviates from the prediction by normally distributed electric
fields. The intensity and the time-resolved correlation show
periodic fluctuations in intensity and correlation.

The derived equation for the IACF, Eq. (11), suggests
the separability of the contributions from path amplitude
fluctuations and from phase shifts. We fit a cosine function
multiplied with an exponential decay to the second decay of
IACF, in order to take the periodicity of the density waves
with noise into account. This functional form fits the second
decay with a coefficient of determination R2 of 0.998. The
isolated contribution of the path amplitude fluctuations is given
in Fig. 6. The amplitude of these fluctuations increases with
increasing gas flow, while the frequency of these fluctuations
stays remarkably constant over the whole range of gas
flows at 11 Hz. This conserved time scale is in agreement
with predictions of a dominant wave vector of the density
fluctuations in fluidized beds [10] and observations of strong
periodicity in density fluctuations in deep fluidized beds by
incoherent probes [13].

The electric field autocorrelation functions are isolated after
subtracting the fits to the second decay from the experimental
IACFs and taking the square root (Fig. 7). A constant intercept
of the correlation functions is recovered after correction for
the amplitude fluctuations. The field autocorrelations decay
faster with increasing gas flow, indicating faster motion
of microscopic scattering centers. Interestingly, the decay
of the field autocorrelation function turns from a stretched
exponential decay to an exponential decay, as can be seen in
the inset of Fig. 7. This might be attributed to a transition
from subdiffusive to diffusive motion of the scattering centers
[24]. Alternatively, averaging over many localized intermittent
rearrangements on scales larger than the wavelength also
results in an nearly exponential decay [25]. However, the in-
terpretation of these field autocorrelations has to be done with
care. The curves are obtained by time averaging over the non-
stationary low-density and high-density states of the probed
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FIG. 7. Isolated field autocorrelation functions after correction
for the intensity fluctuations. The amplitude of the field autocorrela-
tion stays close to 1 for all gas flows, showing the Gaussian statistics
of the underlying phase fluctuations. The inset gives a log-lin plot of
the field correlations with symbols identical to the main panel. They
turn from a stretched exponential to an exponential function with
increased gas agitation.

volume and the sample may exhibit dynamic heterogeneities,
thus ensemble averaging might require additional efforts. Also,
a conclusive interpretation of the field correlation function
obtained from granular samples certainly requires further
investigation, potentially including contributions from rotation
of rough inhomogeneous particles.

The interpretation and evaluation of an IACF is never
unambiguous and requires additional assumptions about the
system investigated. It is thus worth checking the plausibility
of the interpretation of the particular shape of the measured
IACFs presented here (sum of path amplitude fluctuations by
density waves and phase shifts by microscopic displacements)
by comparing to other possible interpretations.

The IACF derived in Sec. II is very similar to the functions
derived in the case of source fluctuations [22], intermittency
[26], and number fluctuations [27]. The measured IACFs
(Fig. 2) alone hardly allow for discrimination of those cases.
The measured IACFs even would allow for the additional inter-
pretation of increasingly glasslike localized particle dynamics
upon increased gas flow, similar to the glassy interpretation in
other experiments [6,7]. These cases, however, make slightly
different predictions and seem unlikely here.

Including source fluctuations in the derivation of the IACF
leads to predictions very similar to the path amplitude fluc-
tuations introduced here. An additional time scale not related
to scatterer dynamics will be present in the IACF and the
probability distribution p(I ) will be wider than from normally
distributed fluctuations alone. The IACF in this case becomes
the product of two terms representing phase and amplitude
fluctuations [22], not the sum as in our case. Such a contribu-
tion of a fluctuating source is unlikely in our case, as it should
be present in all measurements independent of the gas flow.

Intermittent dynamics lead to an IACF with additional terms
added to represent the different dynamical states contributing

to the total decay of correlation [26]. A time-resolved corre-
lation function allows quantifying the switching between the
states [23]. Thus the calculated TRC traces (Fig. 5) are in
agreement with an interpretation of the IACFs as a result as
intermittent dynamics. However, for intermittent dynamics the
fields obey Gaussian statistics in all the dynamical states, the
distribution of intensity values p(I ) should not be altered (as
in Fig. 4), and the amplitude of the IACF does not exceed the
Gaussian prediction of 2 [26], as they do here (Fig. 2).

Microscopic localization of particle dynamics does not
include any modification to the intercept of the IACF and
the distribution p(I ) nor any periodicity in the signal. Glassy
localization thus cannot explain the intensity distribution
(Fig. 4), the TRC results (Fig. 5), and the observed periodicity
in the second decay (Fig. 6); it is also counterintuitive that it
emerges upon increased gas flow.

Particle number fluctuations actually lead to a prediction
for the IACF and p(I ) that has a form very similar to the
derived form here [27]. However, a proper sensitivity to
number fluctuations can only be obtained in the regime of
single scattering, not in the regime of multiple scattering, and
number fluctuations do not lead to the observed periodicity in
the second decay (as in Fig. 6).

Density waves are very common and basically happen
in every stage of fluidization, not only for bubbling beds,
but also for small particle sizes and water fluidized beds
[10,14,16]. This suggests that the data evaluation scheme
presented here might be regularly considered when performing
DWS measurements on fluidized beds.

V. CONCLUSION

We derived a formulation of the intensity autocorrelation in
the presence of density waves. The predictions match well the
experimental observations obtained from a gas fluidized bed
with granular particles. The model has similarities to source
fluctuations, intermittency, and number fluctuations, but can
be discriminated by detailed inspection of the count rate traces
by the intensity probability distribution and the time-resolved
correlation.

The formulation derived allows separating the contribution
from microscopic displacements of scattering centers, which
result in phase shifts of electric fields transported through
the sample, from the contribution by density waves, which
result in fluctuations of the total instantaneous intensity.
The microscopic motion becomes monotonically faster with
increasing gas flow, while the density waves only increase their
amplitude and not their frequency.

The approach presented here should pave the way for exact
characterization of particle displacements in fluidized beds,
but might also support establishing methods to characterize
the emergence of heterogeneity in granular media, with
prospective applications to cooling, clustering, agglomeration,
and instabilities in fluidized beds.
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