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(Received 19 March 2016; revised manuscript received 23 June 2016; published 22 September 2016)

The growing sluggishness of glass-forming liquids is thought to be accompanied by growing structural order.
The nature of such order, however, remains hotly debated. A decade ago, point-to-set (PTS) correlation lengths
were proposed as measures of amorphous order in glass formers, but recent results raise doubts as to their
generality. Here, we extend the definition of PTS correlations to agnostically capture any type of growing order
in liquids, be it local or amorphous. This advance enables the formulation of a clear distinction between slowing
down due to conventional critical ordering and that due to glassiness, and provides a unified framework to assess
the relative importance of specific local order and generic amorphous order in glass formation.
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I. INTRODUCTION

It is tempting to attribute the spectacular dynamical slow-
down of glass-forming liquids as one lowers temperature to an
increasingly collective behavior characterized by the growth of
a static length. The puzzle of glass formation, however, lies in
the elusive nature of such a length and of the associated spatial
correlations [1–3]. The structural changes measured by static
pair density correlations, as probed by common scattering
experiments, stay remarkably weak. Hence, the sought-after
static correlations must be quite subtle and, as a result, hard
to detect. To make matters worse, whatever the definition
of the putative static length, its increase over the dynamical
range accessible to computer simulations and experiments is
expected to be modest—by less than a factor of 10—due to
the activated scaling form between the relaxation time τ and
the static length ξ ,

log

(
τ

τ0

)
∼ B

ξψ

T
, (1)

with τ0 and B being liquid-specific constants and ψ � d an
effective exponent bounded by the spatial dimension [1–4]. It is
much harder to detect large growing lengths in glass-forming
liquids than in systems approaching standard second-order
critical point, whereat the dynamics also slows down, but a
power law relates time and length scales,

τ

τ0
∼ C ξz, (2)

with a dynamical exponent z = O(1) [5].
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Although this difficulty once motivated attempts to avoid
making explicit reference to collective changes in static prop-
erties of glass-forming liquids [6,7], evidence linking static
correlations to their sluggishness has since grown prevalent
[8]. Two main proposals have been formulated to identify
static correlations in glass formers. (i) The first involves the
spatial extent of locally preferred structure(s) as obtained, for
instance, from multibody correlations associated with bond-
orientational order [9]. In fluids of spherical particles, these
bond-orientational correlations can detect polytetrahedral or
icosahedral local order in d = 3 and sixfold local order in
d = 2 [10]. An unfortunate drawback of this proposal is that
the prevalent local order is a liquid-specific property that may
be hard to access in generic molecular glass formers. (ii) The
second considers the correlations associated with metastability
[11–13], as inspired by the paradigm of a rugged free-energy
landscape and by the random first-order transition (RFOT)
theory of the glass transition [3,14]. Various ways to access this
type of length have been proposed [15–17], but we focus here
on that relying on freezing particles outside a spherical cavity.
Simply put, one probes over what distance the amorphous
boundary stabilizes a metastable state. Such length scales
are expected to capture an incipient amorphous order related
to the rarefaction of available metastable states—and thus
a decrease in the corresponding configurational entropy—as
the liquid becomes sluggish. They are associated with point-
to-set (PTS) correlations that go beyond standard multibody
quantities.

In this work we address two key issues. First, PTS lengths
have been claimed to be order agnostic, i.e., with no need to
specify the type of order potentially growing in the system, be
it local or amorphous. If true, this appears as a clear strength of
such observables. Yet, recent work by Russo and Tanaka [18]
shows that the commonly implemented method of studying
PTS correlations is unable to track the growth of sixfold local
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FIG. 1. Overlaps for monodisperse hard disks at packing fraction φ = 0.695 < φhexatic and cavity radius R = 6.25 ≈ ξPTS
�=6 ≈ 2ξPTS

pos . The
positional (left) and bond-orientational overlaps for � = 6 (middle) and 8 (right) between a specific equilibrated configuration Y with a given
reference configuration X are evaluated at the particle centers of the former (top). Averaging over reference and equilibrated configurations
yields smooth overlap profiles (bottom). To compare different types of overlaps, their average values for two identical configurations are
rescaled to unity. Cavity overlap profiles clearly confirm that the � = 6 overlap detects the incipient hexatic order while positional and other
bond-orientational overlaps are blind to it.

order in a two-dimensional hard-disk model. They concluded
that such correlations are irrelevant to slow dynamics in this
system and therefore cannot be order agnostic [18]. Second,
behind the two proposals for defining relevant static length
scales are often two lines of research that seem largely at odds
and often ignore each other. On the one hand, PTS correlations
have become an important tool for theorists aiming at assessing
the validity of the mean-field description of the glass transition
and of the RFOT theory for glass-forming liquids in two and
three dimensions [1,19]. On the other hand, explanations of
glass formation based on the growth of some specific local
order are prevalent among soft-matter [20] and metallic-glass
scientists [21,22]. Since, for the reasons given above, length
scales do not grow large in physical glass formers, it is
hard to disentangle the two explanations and ascertain if the
collective behavior underlying glass formation is primarily due
to specific local order or generic amorphous order.

We resolve the first point by putting forward the following
central idea: to agnostically capture incipient ordering PTS
correlations must take into account all degrees of freedom
that are potentially relevant to describe configurations at a
coarse-grained level, as one would do in crystallography.
For liquids, one should thus extend PTS correlations to (i)
positional, (ii) bond-orientational, and (for molecular liquids)
(iii) orientational degrees of freedom. (Similarly, a crystalline
profile is defined by the equilibrium positions of the atoms
on an underlying lattice, modulo small displacements due to
vibrations and permutations of identical atoms, and the lattice
itself is characterized according to translational and orien-
tational symmetries.) In order to validate this proposal, we

perform a computer study of several slowly relaxing liquids,
including two-dimensional hard disks heading toward quasi-
long-range ordered phases and a canonical three-dimensional
glass former (see Appendix A). Our results show that properly
defined PTS correlations capture whatever order is growing in
a liquid, be it generic amorphous order or a more specific local
order (Fig. 1).

Concerning the second issue, we show that, based on
the behavior of PTS correlations, one can unambiguously
disentangle glassiness from critical slowing down due to
ordering. This further leads to a natural taxonomy of relaxation
slowdown in liquids and provides a unified framework to assess
the relative importance of specific local order and generic
amorphous orders in glass-forming liquids.

II. EXTENDED SET OF PTS CORRELATIONS

PTS correlations are studied by first pinning a fraction of the
particles in equilibrium configurations, then letting the rest of
the system explore phase space in presence of this constraint,
and, finally, measuring the degree of similarity (or overlap)
between a new equilibrium configuration and the initial one
[11,13,23–25]. What had not been previously appreciated is
that PTS correlations are defined not only by a pinning protocol
[23] but also by the degrees of freedom considered in assessing
the similarity of configurations. For spherical particles studied
here, we consider positional as well as bond-orientational
overlaps, and freeze particles outside a cavity of radius R

in order to ensure a proper localization of both degrees of
freedom within specific states [26].
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FIG. 2. Decay of the PTS correlations with cavity radius R for monodisperse hard disks: (a) positional gPTS
pos (R) and [(b) and (c)] bond-

orientational gPTS
� (R) for � = 6,8 at packing fractions φ = 0.600 (red cross), 0.650 (green circle), 0.680 (cyan square), 0.690 (blue diamond),

and 0.695 (black plus). Solid lines are exponential fits. Note that the y-axis range is an order of magnitude larger for � = 6 than for � = 8.
(b) The growth of positional (red square) and hexatic (blue diamond) PTS correlation lengths extracted through the exponential fits track the
correlation lengths (dashed lines) extracted from the radial and coarse-grained � = 6 correlation functions, respectively. Lengths are relative to
the results for ξ0 ≡ ξ (φ0 = 0.650).

Positional overlap is defined in terms of the particle
density by computing the average overlap [〈Qpos〉](R). Bond-
orientational overlap could be defined using a bond density,
but it is more convenient to project that bond density onto
circular (in d = 2) or spherical (in d = 3) harmonics of rank
� and study overlaps defined for a range of � (� = 1–16 is
typically sufficient; higher harmonics get increasingly noisy).
A bond-orientational overlap field of rank � between the
reference configuration X and a configuration Y equilibrated
in the presence of the frozen particles is then

QXY
� (r) ≡ N�

∑
m

{
ψX

�,m(r)
}∗

ψY
�,m(r) , (3)

where ψX
�,m(r) is the local bond-orientational order parameter,

and both the summation over m and the normalization N�

are d dependent (see Appendix B). The mean overlap of
rank �, [〈Q�〉](R), is then the average of QXY

� over the
configuration Y, and over the reference configuration X.
We also define gPTS(R) ≡ [〈Q〉](R) − [〈Q〉](∞) for both
positional and bond-orientational PTS correlations.

Note that what enters our definition of PTS correlations are
not microscopic configurations per se, but spatially and orien-
tationally coarse-grained configurations, because approximat-
ing the notion of states or density profiles requires averaging
over vibrations [27]. Hence, while bond-orientational and
positional degrees of freedom are entirely tied up at the purely
microscopic level, upon coarse-graining they become partly
independent fields.

III. LOCAL ORDER THROUGH PTS CORRELATIONS

In order to show that this extended set of PTS correlations
can indeed detect growing local order, we first consider a
system of monodisperse hard disks. This system is known to
order first into a hexatic phase at a packing fraction φhexatic =
0.700(1) and then into a hexagonal phase at φhexagonal =
0.716(2) [28–31]. The local order in the liquid is the sixfold
bond-orientational order, which can be measured from the
decay of the standard correlation function of the local hexatic
order parameter, g6(r) = 〈ψ6(0)∗ψ6(r)〉. Although the liquid-
hexatic transition has been recently shown to be weakly first

order for this model [31], the associated correlation length, ξ6,
nonetheless grows rapidly and significantly upon approaching
φhexatic. [32] (By “weakly first-order transition,” we mean a
transition with a small jump of the order parameter and a large
yet finite correlation length.) Meanwhile, the positional length
ξpos extracted from the two-point radial correlation function
g(r)—and bond-orientational length ξ� extracted from the
“two-point” bond-orientational correlation function g�(r) for �

incompatible with the hexatic order—grows much more slowly
(see Appendix C).

Let us now examine the behavior of positional and bond-
orientational PTS correlations in this liquid (Fig. 2 for � =
6,8 and Fig. 6 in Appendix for � = 1–16). As also observed
by Russo and Tanaka [18], we find that the positional PTS
correlation length grows only slightly, staying of the order of
ξpos. However, bond-orientational PTS correlations for � = 6
extend over longer distances as φ increases and perfectly track
the growth of the hexatic order. Interestingly, one also notes
that bond-orientational PTS correlations for � 	= 6,12 show
no distinctive features of the growing hexatic order. When
systematically investigated, there is thus no need to a priori
know or guess the symmetry of the incipient local order. In
other words, when properly extended to account for all degrees
of freedom, PTS correlations capture the full extent of the local
order in a liquid (see Fig. 1).

IV. AMORPHOUS ORDER THROUGH PTS
CORRELATIONS

We next investigate a canonical d = 3 glass-forming liquid,
the Kob-Andersen binary Lennard-Jones (KABLJ) model
(see Appendix A). Its local order, based on arrangements
in the form of bicapped square antiprisms (also denoted as
(0,2,8) polyhedra [33,34]), is known to be strongly frustrated
and does not correlate over large distances as temperature
decreases [35]. One expects that the symmetry of the preferred
local arrangement again leads to nonzero projections on at
least some of the bond-orientational local order parameters.
We therefore systematically compute the standard bond-
orientational correlation functions g�(r) and contrast them with
both positional and bond-orientational PTS correlations.
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FIG. 3. PTS correlations [(a)–(c)], susceptibilities [(d)–(f)], and lengths (g) for the d = 3 KABLJ model as a function of cavity radius
R: positional [(a) and (d)] and bond-orientational results for � = 6 [(b) and (e)] and 8 [(c) and (f)] at T = 1.00 (red cross), 0.80 (green
circle), 0.60 (cyan square), 0.51 (blue diamond), and 0.45 (black-plus). For PTS correlations, solid lines are compressed exponential fits
gPTS = A exp[−(R/ξPTS

fit )η] with η = 3; for susceptibilities, solid lines are guides for the eye, and dashed lines for T = 0.45 are extrapolated
from R = 3.2 to the extrapolated peak (star) at R ≈ 3.8 [36]. (g) The bond-orientational PTS lengths ξPTS

� for � = 6 (blue diamond), 7 (green
cross), 8 (black plus), and 12 (cyan circle) follow the positional PTS length ξPTS

pos (red-square). Dotted lines depict the standard pair positional
length ξpos and bond-orientational lengths ξ� for � = 6,7,8,12, all of which increase at a slower pace with decreasing temperature, in agreement
with Ref. [35]. Each length is relative to ξ0 ≡ ξ (T0 = 0.800).

Results down to T = 0.45 [36], which is near the mode-
coupling crossover, show no striking differences between the
various overlap functions (Fig. 3 for � = 6,8 and Fig. 8 in
Appendix B for � = 1–16). In this model, positional PTS
correlations and bond-orientational PTS correlations thus go
hand in hand. In addition, although the growth of the associated
length scale over the accessible regime is moderate, it is
nonetheless larger than either the two-body positional length or
the lengths associated with the local structure, as measured by
standard bond-orientational correlation functions [Fig. 3(g)].

The behavior of the KABLJ model appears typical of a
glass-forming phenomenology in which the growth of generic
amorphous order captured by PTS correlations comes without
any significant contribution from the locally preferred order.
The latter stays relatively short ranged, which can be taken
as a manifestation of its frustration. This frustration has the
dual effect of preventing the extension of locally preferred
structures—here partly through compositional constraints
[34]—and of generating a rugged landscape with a multitude
of equivalent low-energy metastable states above the ground
state. The only significantly growing length scale is that
associated with PTS correlations, which neatly capture the
growing amorphous order.

V. GLASSINESS VERSUS CRITICAL SLOWING DOWN

Studying PTS correlations associated with all relevant
degrees of freedom has allowed us to contrast two quite
different kinds of slowing down in liquids: that of systems
heading toward a continuous or weakly first-order transition
and that due to a glassy behavior controlled by a multiplicity of

metastable states with no significant extension of some locally
preferred order.

The monodisperse hard-disk system studied above is an
example of slowly relaxing liquids approaching a continuous
(or weakly first-order) transition. In these systems, bond-
orientational PTS and conventional correlations – for some
spherical harmonics of rank � that detect the local order –
track the growth of the incipient order as one approaches
the transition. By contrast, positional PTS correlations (as
well as the bond-orientational PTS for � incompatible with
the local order) merely follow standard pair correlations.
These correlations do not extend over large distances if, as
in the above examples of hexatic phases, the (quasi-)ordered
phase does not involve additional breaking of translational
symmetry. The relaxation slowdown is then controlled by the
incipient local order, which grows because a phase transition is
approached. Sluggish dynamics is thus here a form of critical
slowing down that should not be confused with the glassy
relaxation of liquids approaching a glass transition.

Quite differently, for some glass-forming systems such as
the KABLJ model, essentially all PTS correlation functions,
be they bond-orientational or positional, track the same length.
This PTS correlation length can thus be associated with grow-
ing generic amorphous order and the rarefaction of available
disordered metastable states, without any notable competition
from the extension of the specific local order. This length
increases modestly over the dynamical range accessible to
computer simulations but nonetheless does so more than other
structural lengths associated with pair positional correlations
or local order. The matching of (generic) bond-orientational
and positional PTS correlations and the parallel decoupling
between the latter and other structural lengths are characteristic
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of this type of system [13,16,23–25,36–47]. The relaxation
slowdown then appears to be compatible with the RFOT
scenario [3].

Additional information can be obtained from the fluctua-
tions of the cavity overlaps [36]. One can define an overlap
susceptibility χPTS from the variance of the overlap fluctua-
tions, averaged over a small region around the cavity center:
χPTS(R) ≡ [〈Q2〉 − 〈Q〉2](R). For glassy systems charac-
terized by rugged local free-energy landscapes, we expect
overlap susceptibilities to develop a peak at ξPTS (Fig. 3), as
observed numerically also in other types of constrained glassy
systems [48,49]. By contrast, for d = 2 hard disks, the overlap
susceptibility for � = 6 is devoid of such distinctive peak
structure and instead monotonically approaches the bulk value,
much like simple two-point functions (see Fig. 7 in Appendix
B). There also seems to be a difference in the cavity-size
dependence of the mean overlap, with the appearance of a
nonconvex dependence at the lowest accessible temperatures
for the KABLJ model, while no such structure is observed for
d = 2 hard disks (see also Ref. [13]).

Yet another striking difference between critical and glassy
slowdowns appears in sampling small cavities. For the KABLJ
model, barriers in the local free-energy landscape at the PTS
scale are so high that nonlocal Monte Carlo schemes (such
as parallel tempering) are needed to ensure equilibration
[25,36,48]. The small cavity sizes make the physical lifetime
of the metastable states extremely large. For monodisperse
hard disks, by contrast, barriers decrease for small cavities as
a result of the weakening influence of correlations. A local
Monte Carlo scheme suffices. The latter dynamical behavior
is consistent with the slowing down being due to the proximity
of a weakly first-order transition and inconsistent with typical
glass phenomenology.

This difference in dynamical behavior is further corrob-
orated by looking at the parametric evolution of the bulk
relaxation time against the dominant growing correlation
length in the system (Fig. 4). Whereas the slowing down in
the KABLJ model is qualitatively well described by the glassy
activated scaling in Eq. (1), that of the hard-disk model are
remarkably close to the critical power-law scaling in Eq. (2).

VI. POLYDISPERSE HARD DISKS, REVISITED

Armed with these observations, we finally take a look
at d = 2 systems with polydispersity 	 = 3%,6%,9%, and
11%. This last system was first investigated by Russo and
Tanaka [18], and we reproduce here all their results over the
range φ = 0.73–0.77 they studied. In addition, we compute the
bond-orientational PTS correlations and find that the � = 6
component perfectly tracks the growth of the hexatic order,
while the positional PTS length grows only slowly, just as
in the monodisperse (	 = 0%) case (see Appendix C). For
intermediate 	, we also know φhexatic(	) [50]. Interestingly,
when studied at appropriately rescaled φ, the various static
lengths grow similarly at all 	 (see Fig. 7 in Appendix
B). As far as static lengths go, 	 = 11% is thus smoothly
connected and qualitatively similar to the monodisperse
system, suggesting that the growth of structural correlations
is due to the approach of a weakly first-order transition and
not to glassiness. In addition, the PTS correlation functions
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FIG. 4. Growth of the structural relaxation time, τα , with the
dominant length, normalized with ξ0 ≡ ξPTS

pos (T0) at high temperature
T0 = 0.80 for the KABLJ model (blue triangles) and with ξ0 ≡
ξ�=6(φ0) at low packing fraction φ0 = 0.650 for monodisperse (orange
squares) and φ0 = 0.700 for 11% polydisperse hard disks (purple
stars). For the KABLJ model, τα increases exponentially while the
PTS length grows modestly. By contrast, for hard disks, τα;�=6 as
a function of ξ�=6 (see Appendix C) increases much more slowly,
compatible with the power-law scaling of Eq. (2) (see the inset for
the log-log plot).

are convex and the overlap susceptibilities display no peak
structure, which provide yet more evidence that this system is
not glassy. Finally, we encounter no high barrier to sampling
configurations in small cavities; a (semi-)local Monte Carlo
scheme suffices to equilibrate them. Barriers are in fact so
low that the hard disks even fail to develop a plateau in the
self-intermediate scattering function [18], which is usually
taken as a canonical feature of glassiness. Our results thus
indicate that the conclusions drawn by Russo and Tanaka
about the role of PTS correlations near the glass transition are
obtained from numerical observations performed in a model
that does not behave as canonical glass-forming liquids.

VII. CONCLUSION

Our study of PTS correlations in slowly relaxing liquids
shows that a full characterization of these correlations re-
quires, besides a proper imposition of constraining boundary
conditions, an account of all degrees of freedom relevant
to describing the configurations at a coarse-grained level.
For spherical particles, this should include positional and
bond-orientational degrees of freedom. When both are taken
into account, PTS correlations prove to be a powerful tool
to investigate two- and three-dimensional liquids. They can
track both the spatial extent of a specific local order—possibly
associated with an underlying ordering transition—and the
growth of some generic amorphous order associated with a
reduction in the number of available disordered metastable
states. Furthermore, in the case of molecular liquids, provided
orientational degrees of freedom are also included, PTS
correlations can provide a useful tool to detect a putative
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growing local order. Contrary to systems of spherical particles,
symmetry classifications of local arrangements are remarkably
difficult for these systems, and no systematic investigation
of locally preferred structures or motifs has so far been
undertaken.

Through the extended PTS correlations we have also been
able to disentangle conventional critical slowing down from
glass-forming behavior. The liquids studied in this work,
namely monodisperse and weakly polydisperse hard disks on
the one hand and the KABLJ model on the other, appear as
two extreme classes in a possible taxonomy of slowly relaxing
liquids: The formers display growing local order triggered
by an incipient critical ordering but virtually no glassiness,
while the latter shows growing amorphous order and glassiness
but with a strongly frustrated locally preferred order. One
can envisage intermediate classes for which weakly frustrated
local order and amorphous order compete to generate a glassy
slowdown of relaxation [16,33,51,52]. We propose that in
these more challenging cases the study of PTS correlations as
developed in the present work should allow a useful taxonomic
characterization with an assessment of the relative importance
of specific local order versus generic amorphous order in
the dynamical slowdown. For instance, existing work on a
liquid in the hyperbolic (i.e., negatively and uniformly curved)
plane provides evidence that for weak frustration, controlled
by a small curvature [51,53], the length associated with the
growing local sixfold order grows hand in hand with the
positional PTS length [16] (and much more than the two-point
positional correlation length) in the regime accessible to
computer simulations. We can therefore anticipate that in
this regime bond-orientational PTS correlations would grow
concomitantly. Hexatic and hexagonal ordering being strictly
suppressed due to the constant curvature [54], the system
is clearly a glass former, yet it also displays a significant
growth of the sixfold local order that saturates at a length
scale of the order of the radius of curvature. An open question
then concerns the behavior of PTS correlations beyond this
saturation. Although this regime may be hard to reach in
practice because of the large structural relaxation times, we
speculate that there may be a crossover to a regime where
PTS correlations decouple from the local order and track a
length describing the further reduction of metastable states.
It would be particularly interesting to know the shape of
the overlap susceptibilities in this case. Similar studies could
further be undertaken on d = 2 hard-disk models in flat space if
cranking up the polydispersity, 	 can indeed mimic the effect
of negative curvature in suppressing the hexatic order and
in weakly frustrated three-dimensional atomic and molecular
glass-forming models.

In any case, the proposed conceptual framework provides
a constructive approach to resolving the controversy on the
role of static correlations and associated length scales in the
slowdown of relaxation leading to glass formation.
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APPENDIX A: MODELS AND SIMULATIONS

In this Appendix, we describe the models simulated as
well as the simulation procedure employed to obtain the data
describe in the main text.

1. Two-dimensional monodisperse

Configurations with N = 10 000 monodisperse hard disks
of equal diameter σ = 1.0 in a periodic box of linear size L are
prepared at packing fractions φ = 0.600,0.650,0.680,0.690,

0.695, using a Monte Carlo (MC) sampling scheme
that includes only local displacements. Both equilibration-
and production-run lengths are 100Nτ Monte Carlo
sweeps, where Nτ (φ = 0.600,0.650,0.680,0.690,0.695) =
(2,2,5,10,30) × 103 MC sweeps. A total of 100 independent
configurations are generated.

In order to measure PTS correlations, for each of these
100 configurations, we randomly pick a position within the
simulation box as the cavity center. Phase space within a cavity
is again explored through simple MC sampling scheme. An
important change with respect to bulk equilibration is that
particles outside the cavity are fixed and we put a hard wall at
the edge of the cavity, i.e., all moves that take a mobile particle
outside the cavity are rejected.

In order to check for proper equilibration within the cavity,
we employ two initialization schemes [36,41]: (1) from the
original configuration and (2) from a randomized configura-
tion, obtained by shrinking the disk diameters from σ to 0.5σ ,
performing 104 MC sweeps to randomize their positions, and
regrowing the disks back to σ sufficiently slowly to avoid local
jamming. Positional and bond-orientational overlaps between
the original and the equilibrated configurations for the two
schemes are monitored. After Nτ MC sweeps, (disorder-
averaged) overlap values for the two schemes converge. For
both of these schemes, we run simulations for 100Nτ MC
sweeps, discarding configurations from the first 20Nτ sweeps
and sampling 200 cavity configurations, equally spaced in
time, from the remaining production runs.

In total, 100 cavities are attained for each R at each packing
fraction φ, and two sets of 200 configurations for each cavity
are obtained from the two schemes.

2. Two-dimensional polydisperse

The d = 2 polydisperse hard-disk system is akin to the
monodisperse system but with disk diameters {σi}i=1,...,N

that are drawn from a Gaussian distribution. Through
a simple affine transformation on {σi}i=1,...,N , we adjust

the mean diameter σ̄ ≡
∑N

i=1 σi

N
= 1.0 and polydispersity
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(green circle), φ3 (cyan square), φ4 (blue diamond), and φ5 (black
plus).

	 ≡
√∑N

i=1(σi−σ̄ )2

Nσ̄ 2 = 3%,6%,9%,11%. In addition to local
displacements, we employ particles identity swaps (20% of
the MC moves). We prepare samples at packing fractions
φ = φ1,...,φ5, where (Fig. 5)

(φ1,φ2,φ3,φ4,φ5)

= (0.600,0.650,0.680,0.690,0.695) for 	 = 3%

= (0.620,0.670,0.690,0.700,0.710) for 	 = 6%

= (0.640,0.680,0.705,0.720,0.735) for 	 = 9%

= (0.660,0.700,0.730,0.750,0.770) for 	 = 11% ,

and Nτ (φ = φ1,φ2,φ3,φ4,φ5) = (2,2,5,10,30) × 103, using
the same preparation protocol as for monodisperse disks.

3. Kob-Andersen binary Lennard-Jones

The d = 3 KABLJ mixture is a 80 : 20 mixture of A : B

atoms with interatomic pair potentials

vαβ(r) = 4εαβ

[(σαβ

r

)12
−

(σαβ

r

)6
]
, (A1)

where α,β = A or B; the potential is truncated at the
conventional cutoff of 2.5σαβ and is shifted so it vanishes
at the cutoff. Molecular dynamics simulations are performed
at a density ρ = 1.2. (Lengths and temperatures are given in
Lennard-Jones units of σAA and εAA/kB , respectively.) More
details are given in Ref. [36].

We emphasize here that, while for mono- and polydisperse
hard disks we attained good equilibration in all cavities without
resorting to parallel tempering, for the KABLJ model the
scheme was essential [36]. This difference provides additional
evidence of glassiness for this model.

APPENDIX B: PTS DEFINITIONS

In this section we define both positional and orientational
measures of PTS correlations.

1. Positional overlap

Denote a pair of configurations X = {xi} and Y = {yi}.
Here, X corresponds to the frozen initial configuration and Y
to re-equilibrated configurations. For hard disks, we thus have
2 × 200 such pairs for each cavity. For each particle xi , find
the nearest particle yinn (of the same species for the KABLJ
liquid; no such proviso for mono- and polydisperse systems).
Assign an overlap value QX;Y

pos (xi) ≡ w(|xi − yinn |), where

w(z) ≡ exp

[
−

( z

b

)2
]

(B1)

with b = 0.2. This choice defines overlap values QX;Y
pos (xi)

at scattered points {xi}. We then define QX;Y
pos (r) to be a

continuous function passing through these points. Specifically,
we first subdivide space with a Delaunay tessellation and
within each simplex associate linearly interpolated values.
Similarly, we obtain QY;X

pos (r) and finally define QXY
pos(r) ≡

1
2 {QX;Y

pos (r) + QY;X
pos (r)}.

The overlap around the core of the cavity,

QXY
pos ≡

∫
|r|<rc

dr QXY
pos(r)

2πd/2rd
c /�(d/2)

, (B2)

is evaluated through Monte Carlo integration, with 10 000
points within a ball of size rc = 0.5 for the d = 3 KABLJ
liquid and 1000 points with rc = 0.5 for d = 2 hard disks.
Here, r = 0 denotes the center of the cavity.

The positional PTS correlation function is

gPTS
pos (R) ≡ [〈Qpos〉J (R)] − 〈Qpos〉bulk , (B3)

where 〈...〉J (R) denotes the thermal average over re-equilibrated
configurations inside the cavity with quenched disorder J (R)
set by a pinned external configuration and [...] the average
over disorders (i.e., average over cavity centers). We have
subtracted the bulk value corresponding to R = ∞ such
that the PTS correlation function vanishes at infinity. The
bulk value is evaluated by taking 105 pairs of independent
configurations in bulk samples for the mono- and polydisperse
systems and 4000 pairs for the KABLJ model.

In this notation, the positional PTS susceptibility is

χPTS
pos (R) ≡ [〈

Q2
pos

〉
J (R) − 〈Qpos〉2

J (R)

]
. (B4)

2. Two-dimensional orientational overlap for mono- and
polydisperse systems

In d = 2, we define an �-orientational overlap field QXY
� (r)

by first associating an orientational value ψX
�,m(j ) to a par-

ticle located at xj , where m = ±1. From a radical Voronoi
tessellation, we find NX

j Delaunay neighbors k; for each
neighbor k, we define an angle between them θX

j,k by expressing
xk − xj ≡ rj,k(cosθX

j,k,sinθX
j,k); and to the particle at xj we
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FIG. 6. Radial decay of the bond-orientational PTS correlations for monodisperse hard disks, gPTS
� (R), for � = 1, . . . ,16 at φ = 0.600 (red

cross), 0.650 (green circle), 0.680 (cyan square), 0.690 (blue diamond), and 0.695 (black plus). Note that the vertical axes have the same range
for all � except for � = 6. Solid lines are exponential fits.

associate the average value

ψX
�,m(j ) ≡ 1

NX
j

∑
k/j

eim�θX
j,k . (B5)

Then, for each point in space r, we find the nearest particle
in X, j�, and associate its value to the point, ψX

�,m(r) =
ψX

�,m(j�). Similarly, we obtain ψY
�,m(r). We finally define the

�-orientational overlap field as

QXY
� (r) = N�

∑
m=±1

{
ψX

�,m(r)
}∗

ψY
�,m(r) (B6)

with N� ≡ 1/2. Note that this quantity is real and independent
of the choice of axis in defining angles.

The �-orientational PTS correlation functions have a
similar definition as the positional ones. Figure 6 shows

the bond-orientational overlap functions gPTS
� (R) ≡ [〈Q�〉](R)

(for bond-orientational correlation, the bulk value is zero
by symmetry) for � = 1 to 16 for monodisperse hard disks.
(We have also studied values of � from 17 to 24 but the
resulting curves are noisy. Furthermore, for high values of �,
small displacements originating from mere vibrations tend to
decorrelate the overlap over short distances no bigger than the
interatomic distance.) Note the growing length scale for � = 12
as the symmetry is compatible with sixfold order. The bond-
orientational correlations for � incompatible with the sixfold
order, in contrast, do not track its growth and instead their
spatial extents stay within the order of positional scale ξpos.

The �-orientational PTS susceptibilities can also be defined
similarly to the positional ones. Figure 7 compares positional
and � = 6 bond-orientational PTS susceptibilities, χPTS

pos and
χPTS

�=6 , for polydispersity 	 = 0%,3%,6%,9%,11% at various
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FIG. 7. Positional χPTS
pos (top row) and � = 6 bond-orientational χPTS

6 (middle row) PTS susceptibilities as a function of cavity radius R for
hard disks with polydispersity 	 = 0%,3%,6%,9%,11% (from left to right) at φ = φ1 (red cross), φ2 (green circle), φ3 (cyan square), φ4 (blue
diamond), and φ5 (black plus), where the values of φi at each polydispersity are the same as in Fig. 5. The bottom row, for the same range of
polydispersity, records the growth of positional (red square) and hexatic (blue diamond) PTS lengths extracted through the exponential fits to
PTS correlations. Dashed lines are positional and sixfold pair correlation lengths. Lengths are relative to the results for ξ0 ≡ ξ (φ0 = φ2).

packing fractions, where 0% corresponds to monodisperse
hard disks, along with the growth of associated PTS lengths.
We detect no qualitative changes as a function of poly-
dispersity. Note that there is no distinctive peak structure
in susceptibilities and the bulk value of the � = 6 bond-
orientational susceptibility has a strong density dependence
that tracks the growth of the local sixfold order. We expect the
same behavior to be seen in the simple ferromagnetic Ising
model on approaching its critical temperature from above.

3. Three-dimensional orientational overlap for Kob-Andersen

The d = 3 observables are essentially the same as in the
d = 2 case, except that we employ standard (rather than
radical) Voronoi tessellation; angle θ is replaced by (θ,ϕ); eim�θ

is replaced by spherical harmonics Yl,m(θ,ϕ); the summation
over m is replace by m = −�, . . . ,�; and the prefactor
N� ≡ 4π

2�+1 . This quantity is again real and independent of
the choice of axis in defining spherical harmonics. Figure 8
lists bond-orientational PTS correlations for � = 1 to 16 for
the KABLJ model. We see no qualitative differences among
different angular components.

APPENDIX C: COARSE-GRAINED TWO-POINT
FUNCTIONS

Coarse-grained bond-orientational two-point functions are
defined by first taking a point r1 in the bulk configuration and

another point r2, separated by distance R in a randomly chosen
direction and then defining orientational fields ψ I

�,m(r + r1)
around the first point as before and ψ II

�,m(r + r2) around the
second. The two-point function is given by

N�

∑
m{

2πd/2rd
c

/
�(d/2)

}
∫

|r|<rc

dr
{
ψ I

�,m(r + r1)
}∗

ψ II
�,m(r + r2)

(C1)

averaged over 200 different pairs of points for each of 100 bulk
configurations for hard-disk models and 100 pairs for 50 bulk
configurations for the KABLJ liquid.

Pair bond-orientational correlation lengths, ξ�, are extracted
through the exponential fit to these coarse-grained orienta-
tional two-point functions. Pair positional correlation length,
ξpos, is extracted through the exponential fit to the peak values
of the two-point radial correlation function g(r) for r � 4.

Finally, to assess the bulk relaxation time in the hard-disk
system, the coarse-grained bond-orientational autocorrelation
function, f�(t), is defined in the way similar to the corre-
sponding two-point functions defined above. One difference is
that, rather than comparing two points separated by distance
R, we consider two points separated in time t . Averages are
over 100 initial bulk configurations and 200 randomly chosen
points r1 within each of them. The relaxation time, τ�, is then
extracted through the exponential fit to the autocorrelation
function f�(t). We find τα;�=6 to be the most rapidly growing
time scale.
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FIG. 8. Radial decay of the bond-orientational PTS correlations for the KABLJ model, gPTS
� (R), for � = 1, . . . ,16 at T = 1.00 (red
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