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The onset of irreversible deformation in low-temperature amorphous solids is due to the accumulation of
elementary events, consisting of spatially and temporally localized atomic rearrangements involving only a few
tens of atoms. Recently, numerical and experimental work addressed the issue of spatiotemporal correlations
between these plastic events. Here, we provide further insight into these correlations by investigating, via
molecular dynamics (MD) simulations, the plastic response of a two-dimensional amorphous solid to artificially
triggered local shear transformations. We show that while the plastic response is virtually absent in as-quenched
configurations, it becomes apparent if a shear strain was previously imposed on the system. Plastic response has
a fourfold symmetry, which is characteristic of the shear stress redistribution following the local transformation.
At high shear rate we report evidence for a fluctuation-dissipation relation, connecting plastic response and
correlation, which seems to break down if lower shear rates are considered.
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I. INTRODUCTION

Heterogeneity is a crucial aspect of the flow of amorphous
materials. If these materials are driven by an external shear,
one observes localized particle rearrangements, called shear
transformations (STs), taking place in a small region while
the rest of the system deforms elastically [1–3]. The effect
of a shear transformation, i.e., the stress redistribution in
the surrounding medium, is usually described via an elastic
propagator G, which is the solution of the Eshelby inclusion
problem in a uniform elastic medium [4]. In two dimensions, G
has a quadrupolar symmetry and it decays as r−2 in space. The
elastic propagator is the key ingredient of rheological models
for the flow of amorphous materials [5–10].

In a recent paper [11], we addressed via computer sim-
ulations of a model amorphous solid the question of the
elastic response of an amorphous solid to localized shear
transformations. We showed that the Eshelby description holds
on average while for individual plastic events the response is
blurred by strong fluctuations, presumably associated with the
elastic heterogeneity of the material. In order to capture these
fluctuations within coarse-grained rheological models, it is
necessary to go beyond the equilibrium-based description of
the elastic propagator [12].

Here, we extend our previous results and investigate plastic
effects due to STs in amorphous solids. The question we
want to address is to what extent a ST is able to induce
subsequent plastic events in the surrounding regions. This goes
back to the topic of plastic correlations, namely how a plastic
event is influenced by the position of the events that occurred
in the past. Plastic correlations have the strong potential
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to provide information about the dynamical organization of
the plastic flow. This possibility motivated recent work on
this topic. In athermal quasistatic simulations, Maloney and
Lemaı̂tre showed that elementary events tend to organize into
correlated avalanches [13]. Later, evidence for a correlation
in the nonaffine displacements of a colloidal glass was first
reported by Chikkadi and coworkers in experiments [14] and
then confirmed by Mandal and Varnik [15,16] in numerical
simulations. In Ref. [17], correlations of the local strain field
were found to emerge at the transition between the Newtonian
and shear-thinning regime in a flowing liquids. Similarly, in
Ref. [18], the authors reported correlated plastic events in
a simulation of a concentrated emulsion. Recently, some of
us showed how a simple coarse-grained model is able to
reproduce, with some small quantitative discrepancies, the
spatiotemporal correlations between plastic events in the flow
of a disordered athermal solid [19].

In this work, we will propose a detailed description
of the plastic response on the particle scale by inducing
artificial shear transformations in the system and observing
their response in time, and compare with previous results
for their correlations. Such a characterization is particularly
relevant in view of the development of realistic models for
the flow of amorphous solids, especially those belonging
to the family of so-called elastoplastic models [5–10]. The
very point of these models is to describe precisely non-
mean-field effects. Therefore, the study of plastic correlations
represents a powerful tool for comparison between different
models and between models and experiments in systems
in which the corresponding observables are experimentally
accessible.

The paper is organized as follows. Details about the model
and the procedure to simulate artificial shear transformations
are given in Sec. II. Results of the numerical simulations are
discussed in Sec. III, while Sec. IV provides a short summary
and discussion.
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II. MODEL AND DETAILS OF THE SIMULATION

We consider a generic two-dimensional (2D) model of a
glass, consisting of a mixture of A and B particles, with
NA = 32 500 and NB = 17 500, interacting via a Lennard-
Jones potential Vαβ(r) = 4εαβ[( σαβ

r
)
12 − ( σαβ

r
)
6
] with α,β =

A,B and r being the distance between two particles. The
parameters εAA, σAA, and mA define the units of energy, length,
and mass; the unit of time is given by τ0 = σAA

√
(mA/εAA).

We set εAA = 1.0, εAB = 1.5, εBB = 0.5, σAA = 1.0, σAB =
0.8, σBB = 0.88, and mA = mB = 1. With this choice, the
system is stable against crystallization in two dimensions [20].
A similar system was used by Falk and Langer [2] to study
plasticity in 2D metallic glasses. The potential is truncated
at r = rc = 2.5 for computational convenience. The simula-
tion box dimensions Lx = Ly = 205 are fixed and periodic
boundary conditions are used. The equations of motion are
integrated using the velocity Verlet algorithm with a time step
δt = 0.005. The athermal limit is achieved by thermostating
the system at zero temperature via a Langevin thermostat [21]
with a damping coefficient � = 1; the associated equations of
motion are

dri

dt
= pi

m
, (1)

dpi

dt
= −

∑

j �=i

∂V (rij )

∂rij

− �pi , (2)

where (pi ,ri) are the momentum and the position of particle i.
As T = 0, no fluctuating force appears in the equations.

Glassy states were prepared by quenching equilibrated
systems at T = 1 to zero temperature with a fast rate dT /dt =
2 × 10−3 while maintaining constant volume. Simple shear is
imposed at a rate γ̇ by deforming the box dimensions and
remapping the particles positions. For the present model the
yield strain, defined as the strain at the maximum stress in
the stress-strain curve, is approximately 8–9%. Local shear
transformations (STs) are generated by applying a pure shear
strain ε to a circular region of radius a = 2.5 centered at
(x0,y0), as discussed in Ref. [11]. Particles inside the region,
at the initial position (xi,yi), are displaced to (x ′

i ,y
′
i) according

to

xi → x ′
i = xi + ε(yi − y0),

yi → y ′
i = yi + ε(xi − x0). (3)

The transformation is instantaneous and sets the time origin
t = 0. The positions of the particles in the ST are frozen
and the behavior of the surrounding ones at later times is
observed. For as-quenched configurations, the response is
averaged over 10 independent realizations and for each of
those 50 positions for the ST center (x0,y0) are considered.
For presheared configurations, we average the response over
independent realizations (4 starting configurations), strain (16
strain values in the range 0.2 � γ � 1.0), and position of the
ST center (20 position), resulting in an average over 1280
trajectories.

Plastic activity is described by the D2
min quantity introduced

by Falk and Langer [2], which evaluates deviations from an
affine deformation on a local scale. For a given particle i, D2

min

is defined as the minimum over all possible linear deformation
tensors εloc of

D2(i,t0,t) =
∑

j

[rij (t0 + t) − (I + εloc)rij (t0)]2, (4)

where the index j runs over all the neighbors of the reference
particle i and I is the identity matrix.

III. RESULTS AND DISCUSSION

A. As-quenched configurations

In Ref. [11], the local strain ε was set to a few percent
(ε = 0.025) in order to probe the elastic reversible response
of the system to STs. Here, we investigate the effects of
a higher local strain in amorphous configurations at T = 0,
rapidly quenched from high temperature. We define the plastic
response function,

R2(r,�t) = D2
min(r,t0,t0 + �t)/(a2ε2), (5)

where D2
min is the coarse-grained D2

min-field obtained by
mapping particles into a grid with a spacing ξ = 1, t0 is the
time at which the ST is applied, and a and ε are the radius and
local strain of the ST, respectively. In Fig. 1 spatial maps of
R2(r,�t) for �t = 103, which corresponds to the long time
limit, are shown for larger values of the applied strain. We
observe that the plastic activity is very weak, being restricted
to a small region close to the ST center, and that it does not
depend on the specific value of the strain ε. Even for a strain
of 10%, the response is almost entirely elastic.

B. Sheared configurations

We now focus on the effects of external deformation on
the tendency of the system to undergo plastic rearrangements.
Simple shear is imposed on the system at a rate γ̇ before
applying the shear transformation protocol. Steady-state con-
figurations with a strain γ � 0.2 are considered as starting
configurations. Then the accumulated stress is not relaxed
and the strain γ is kept constant in the following temporal
evolution, specifically γ̇ is instantaneously set to zero. The
time evolution of the plastic response in sheared configurations
is shown in Fig. 2 for three distinct shear rates γ̇ = 10−6,
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FIG. 1. Plastic response field R2(r,�t), as defined in Eq. (5),
induced by a shear transformation (at the center of the cell) in the
long time limit �t = 103 for as-quenched configurations. Data for
two different values of the shear strain ε are shown: 0.05 (left) and
0.1 (right). A region of size 200 × 200 around the ST is shown and
the color corresponds to the amplitude of the plastic response field.
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FIG. 2. Plastic response field R2(r,�t), as defined in Eq. (5),
induced by a ST in sheared configurations for different time lags
�t . Data are shown for different shear rates γ̇ = 10−6 (top), γ̇ =
10−5 (middle), and γ̇ = 10−4 (bottom) and for different time lags
�t = 4 (left column), �t = 20 (central column) and �t = 100 (right
column). A region of size 200 × 200 around the ST is shown.

10−5, and 10−4. First, with respect to the case of as-quenched
systems, the effect of the preshearing is apparent in the
increased plastic activity even for short time lags. Looking at
long times, the pattern of the plastic activity clearly resembles
the elastic propagator G ∼ cos (4θ )/r2, which controls the
stress redistribution following the ST. High plastic intensity is
observed in the streamwise (θ = 0◦) and crosswise (θ = 90◦)
directions, which correspond to the directions of positive stress
release. On the other hand, the redistributed stress is negative
along the diagonal and this results in lower plastic activity.
It is straightforward to rationalize these observations: in the
presheared configurations, many regions have already been
loaded close to the yield point, and the stress redistribution
following the primary ST can trigger plastic events much more
easily than starting from as-quenched configurations.

This picture becomes clearer if one considers the angular
dependence of the plastic response, as denoted by the quantity
R2(θ,�t) = α

∫ L/2
2a

R2(r,θ,�t)dr , where L is the system size
and the prefactor α is chosen such that R2(θ,�t) has a
maximum of 1. The long time limit of R2(θ,�t) is shown
in Fig. 3(a) for different shear rates. We observe again the
quadrupolar modulation characteristic of the Eshelby response
function, which becomes more pronounced with decreasing
shear rate. Here we point out that no clear asymmetry is
observed between streamwise and crosswise lobes, in contrast
with previous results on plastic correlations [19], where
streamwise peaks appeared to be stronger than crosswise ones
at low shear rates. However, we cannot exclude that in our
case this effect is still hidden by the noise. Figures 2 and 3 also
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FIG. 3. (a) Angular dependence of the plastic response
R2(θ,�t) = α

∫ L/2
2a

R2(r,θ,�t)dr (see text). Data are shown for �t =
100 and for different shear rates γ̇ = 10−4 (triangles), γ̇ = 10−5

(squares), and γ̇ = 10−6 (crosses). (b) Plastic response along the
shear direction R

‖
2 in lin-lin (main panel) and lin-log (inset) plots.

Data are shown for different time lags �t = 4 (black), �t = 8 (red),
�t = 20 (green), and �t = 40 (blue), and for different shear rates
γ̇ = 10−4 (triangles) and γ̇ = 10−6 (crosses).

show that as γ̇ increases a plastic background emerges. This is
due to a cascade effect, with the primary ST triggering plastic
rearrangements, which themselves play the role of sources
for subsequent events. This phenomenon is more prevalent at
higher driving rates.

In Fig. 3(b) we show the spatial decay of the response
function along the shear direction R

‖
2 at different times and for

different shear rates. The response extends to larger distances
as the time interval increases, consistent with the propagation
of the strain field created by the ST, as discussed previously
[11]. The decay of R

‖
2 is approximately exponential (see the

inset of the figure). This observation agrees with previous
results for the correlations of plasticity in models of amorphous
systems [16,19,22]. In fact, in Ref. [16] the authors argue that
the spatial decay of the D2

min correlations is dependent on
the specific implementation of the dissipation scheme in the
equations of motion: friction based on the relative velocity of
a particle with respect to its neighbors results in a power-law
decay, whereas a “mean-field” dissipation scheme, such as
the one used in the present work, results in an exponential
decay. Further, the response seems to be independent on the
shear rate: at short times, data for the different shear rates are
indistinguishable, whereas deviations are observed at larger
times due to the emerging background plasticity mentioned
before.

In order to confirm the proposed scenario of a plastic
response controlled by the Eshelby elastic propagator, we
investigate the response to a ST whose principal axes are
rotated by an angle φ = 90◦ with respect of the shear direction.
This rotation of the local strain matrix is equivalent to a sign
change in ε. According to the quadrupolar symmetry of the
propagator, this should result in a rotation of the response
pattern by 45◦ with respect to the one observed for φ = 0◦
discussed above. In Fig. 4 we show the response to the rotated
ST. If we focus on the angular dependence Fig. 4(a), we
observe that the main peaks are shifted by 45◦, as expected.
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FIG. 4. Top: plastic response field R2(r,�t) at different time lags,
�t = 4 (left), �t = 4 (center), and �t = 100 (right), induced by a
ST whose main axis is rotated by an angle φ = 90◦ with respect
to the shear direction (γ̇ = 10−5). Bottom, panel (a), corresponding
angular dependence for �t = 100 (triangles); for comparison, data
for φ = 0◦ are also shown (squares). Bottom, panel (b), spatial decay
along a principal direction θ∗ at different time lags, �t = 4 (black),
�t = 8 (red), �t = 20 (green), and �t = 40 (blue), for φ = 90◦ with
θ∗ = 45◦ (triangles) and the reference φ = 0◦ with θ∗ = 0◦ (squares).

Further, as shown in Fig. 4(b), the spatial decay of the response
at different time lags along the principal direction θ∗ = 45◦ is
in very good agreement with that for the unrotated case where
the shear direction is θ∗ = 0◦.

C. Response and correlation

We now turn to a quantitative comparison between plastic
response and correlations. In Ref. [19], some of us presented
for the same model amorphous solid a detailed description of
the plastic events and their dynamical correlations, resolved
both in space and time, using the two-point, two-time plastic
correlator,

C2(r,�t) = α
(〈
D2

min(r0,t0)D2
min(r0 + r,t0 + �t)

〉

− 〈
D2

min(r0,t0)D2
min(r0,t0 + �t)

〉)
, (6)

where the brackets denote an average over time t0, the bars
represent an average over spatial coordinate r0, and the
prefactor α is chosen such that C2(r = 0,�t = 0) = 1. C2

measures the (enhanced or reduced) likelihood that a plastic
event occurs at r0 + r if a plastic event was active at position
r0 some prescribed time �t ago.

In the first instance, one could imagine comparing directly
the correlation C2 to the response function R2. In this case,
the two quantities show strongly different behavior with
the correlation extending to larger distances with respect
to response for equal time lags (not shown). However, we
argue that this is not the most significant comparison. Indeed,
assuming a linear response perspective, with the strain ε of
the ST acting as perturbation, the most appropriate quantity
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FIG. 5. Decay of the plastic response R1(r,�t) (symbols) and
correlation C1(r,�t) (lines) in the direction parallel and per-
pendicular to the shear direction. Data are shown for different
shear rates γ̇ = 10−4 (top panels), γ̇ = 10−5 (bottom panels), and
for different time lags �t = 4 (black), �t = 8 (red), �t = 20
(green), and �t = 40 (blue). Data are vertically rescaled in order
to have R1(r,�t) = C1(r,�t) = 1 at r = 4. The relative distance
between R1 and C1 can be defined as �1(�t) = ∫ L/4

2a
|R1(r,�t) −

βC1(r,�t)|dr/
∫ L/4

2a
|R1(r,�t)|dr , where the integral is calculated

along a given direction (parallel or perpendicular to the flow). We
note that �1 is smaller than 0.2 for all directions at large strain rate
γ̇ = 10−4 and larger for the small one γ̇ = 10−5.

to focus on seems to be (D2
min)1/2 rather than D2

min (D2
min is

a squared displacement, which depends quadratically on the
local strain tensor εloc). In this spirit, we define the response
function R1(r,�t),

R1(r,�t) = (
R2(r,�t) − R∞

2 (�t)
)1/2

, (7)

and the corresponding correlation function C1(r,�t),

C1(r,�t) = α
(〈(

D2
min(r0,t0)

)1/2(
D2

min(r0 + r,t0 + �t)
)1/2〉

− 〈(
D2

min(r0,t0)
)1/2(

D2
min(r0,t0 + �t)

)1/2〉)
, (8)

where in Eq. (7) the background response R∞
2 (�t) is sub-

tracted.
In Fig. 5, we compare the decay of the response and cor-

relation functions R1(r,�t) and C1(r,�t) along the directions
parallel and perpendicular to the shear direction. First, we
focus on the high shear rate γ̇ = 10−4. Here, we observe
that the decay of the response strongly resembles that of
the correlation showing an almost exponential decay with a
comparable extension. This applies both to the parallel and
perpendicular directions. By contrast, for the low shear rate
γ̇ = 10−5 differences become apparent, with the correlation
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FIG. 6. Time dependence of the decay length l for the plastic
response (open squares) and correlation (crosses). Data are shown
for the directions parallel and perpendicular to the shear direction
and for different shear rates.

extending to larger distances. Deviations are stronger in the
shear direction, especially for large time lags, whereas they
are weaker in the perpendicular direction.

Assuming purely exponential behavior x(r,�t) =
Ax(r,�t) exp(−r/ lx(�t)) with x = R1,C1, we can estimate
the decay length lx(�t). In Fig. 6 we show the time dependence
of the decay length for response and correlation in the two
directions and for different shear rates. For the highest shear
rate γ̇ = 10−4, lR1 and lC1 grow with time approximately
in the same way, lx(�t) ∼ tκ with an exponent κ ≈ 0.5,
suggesting diffusive spreading for both the response and the
correlation. Conversely, for the lower rate γ̇ = 10−5, whereas
for the response the growth is still sublinear, it is faster for the
correlation, with the effect being stronger along the parallel
direction, where an almost linear behavior is observed.

At this point, it is quite natural to interpret the results
concerning correlation and response in the framework of the
fluctuation-dissipation theorem. We briefly recall here that for
a system at equilibrium, a response function R(t) and the as-
sociated correlation function C(t) are related by a fluctuation-
dissipation relation (FDR) R(t) = −(kBT )−1∂tC(t). This re-
lation has to be generalized in out-of-equilibrium systems by
introducing an effective temperature Teff , which replaces the
bath temperature T [23,24]. Our results would suggest for the
high shear rate γ̇ = 10−4 the existence of a FDR of the form
R1(r,�t) = βC1(r,�t) with β carrying information about an
effective temperature, β ∼ 1/Teff . If we restrict ourselves to
short time lags �t � 20, we estimate β ∼ 2.8 for the parallel
direction and β � 2.0 for the perpendicular one. We note that,
since we have no further information about the appropriate
prefactors, we are unable to extract from β any absolute value
for the effective temperature. The scenario is different for the
lower rate γ̇ = 10−5 where response and correlation deviate
more strongly and no FDR seems to hold.

We note here that there is no theoretical justification in
our system for looking a priori for a response-correlation
proportionality, as the shear transformation is a strongly
nonlinear local perturbation, as is the response in the form
of a plastic activity. However, at a coarse-grained level, and
in the spirit of elasto plastic models, the shear transformation
can be considered as the elementary “dynamical event” that

governs the dynamics. As a result, it is natural to investigate
the similarity between the response to a triggered shear
transformation (response function) and the response to one
that is taking place spontaneously (correlation function).
In a system at thermal equilibrium responding to a small
perturbation, these two quantities are proportional, and the
system does not distinguish between the external perturbation
and spontaneous fluctuations. Observing a similar property
at the level of the local strain would imply that the driven
system is brought, at the level of this variable, into a state that
resembles thermodynamic equilibrium at a finite temperature.

IV. CONCLUSION

This work represents an extension of a previous study [11],
where we have investigated the response of a standard 2D
model glass to artificially triggered local shear transforma-
tions, which replicates elementary plastic events observed in
amorphous solids under deformation. No significant plastic
response is observed in as-quenched configurations, even for
very large strains applied to the ST. By contrast, presheared
configurations exhibit long-ranged response behavior with
quadrupolar symmetry.

We have also compared quantitatively the spatiotemporal
decay of the response functions to correlations between plastic
events measured in the same model system during steady
flow. At the highest rate considered here, correlations and
response appear to be proportional to each other, suggesting the
existence of a nonequilibrium generalization of the fluctuation-
dissipation theorem for plastic activity. Such generalizations
that imply the existence of an effective temperature have been
previously reported for other observables in driven systems
during steady state [25–27]. By contrast, our (limited) data at
lower shear rates suggest that this behavior does not hold in
general in the present system.

One could think of a few reasons for this difference. First,
we note that the correlation function also includes correlated
but not causally linked events that are the consequence of
earlier events. Let’s consider a slip line where a large event
triggers two other events: the correlation function will include
the correlation between these two last events, despite the fact
that one is not the cause of the other. This scenario is confirmed
by the observation of a nonzero correlation for a zero time
lag [19]. Clearly, for the response this effect is lost since
we trigger artificial events at random positions in the system.
One could imagine that this noncausal correlation plays a more
important role for low shear rates. In addition to this effect,
which we believe to be the dominant one, other second-order
issues are present. Indeed, we are looking at the strongly
nonlinear response of a system that is not undergoing external
driving (although the initial configuration has been prepared
by an external drive), whereas the correlation clearly refers to
a driven system in steady state. However, we find (not shown)
that keeping the external drive while triggering the zone does
not affect the system response. This is not surprising since we
are dealing with relatively short time lags. Moreover, any effect
due to stopping the driving would be present, and probably
stronger, also for the highest rate, but this seems not to be the
case.
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An additional possible source of discrepancy could lie
in the fact that the triggered STs are instantaneous, while
the spontaneous plastic events have a finite duration. From
previous simulation results [19], the typical timescale of a
plastic events is of the order of a few time units, which
is not very well separated from the time window of the
response. We expect that including a finite duration in the
triggering protocol would have the effect of slowing down the
response propagation, thus increasing the discrepancies with
the correlation.

Finally, the last possibility that comes to our mind is that
the system around a soft spot, at which the spontaneous shear
transformation is taking place, is somehow organized in a
rather different manner than around the random places we are
choosing to trigger the artificial transformations. This idea is
consistent with the fact that FDR-like behavior is emerging at
the highest driving rate, where correlations between plastic

events and soft spots are reduced [28] and would deserve
further attention in future work.
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