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Glassy dynamics of Brownian particles with velocity-dependent friction
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2Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany
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We consider a two-dimensional model system of Brownian particles in which slow particles are accelerated
while fast particles are damped. The motion of the individual particles is described by a Langevin equation
with Rayleigh-Helmholtz velocity-dependent friction. In the case of noninteracting particles, the time evolution
equations lead to a non-Gaussian velocity distribution. The velocity-dependent friction allows negative values of
the friction or energy intakes by slow particles, which we consider active motion, and also causes breaking of the
fluctuation dissipation relation. Defining the effective temperature proportional to the second moment of velocity,
it is shown that for a constant effective temperature the higher the noise strength, the lower the number of active
particles in the system. Using the Mori-Zwanzig formalism and the mode-coupling approximation, the equations
of motion for the density autocorrelation function are derived. The equations are solved using the equilibrium
structure factors. The integration-through-transients approach is used to derive a relation between the structure fac-
tor in the stationary state considering the interacting forces, and the conventional equilibrium static structure factor.

DOI: 10.1103/PhysRevE.94.032602

I. INTRODUCTION

An active particle is defined as a particle which has the
ability to absorb energy from its environment or an internal
source of energy and dissipate the energy to undertake an
out-of-equilibrium motion [1,2]. Different collections of active
particles, e.g., biological microswimmers [3,4] or artificial
self-propelled particles [5,6], are considered active systems.
It has been shown by simulation and experiment that active
systems can reach a frozen steady state where single particle
fluctuations are arrested [7]. The possibility that an active
system undergoes a glass transition is investigated and shown
theoretically [8].

Nonequilibrium systems such as sheared colloidal suspen-
sions [9,10] and granular matter [11,12] can undergo a glass
transition or melt out of the glassy state. Active microrheology
[13,14] is applied to near glass transition colloidal systems to
probe the nonequilibrium regimes. For exploring the dynamics
of each of the three aforementioned systems, mode-coupling
theory [15] has been extended to the far-from-equilibrium situ-
ations. In Refs. [9,10], the integration-through-transients (ITT)
method is developed and used to obtain the relevant correlation
functions from solving the Smoluchowski equation. Farage
et al. [16] used ITT to calculate the structure factor of an
active system using the Smoluchowski operator. Recently an
extended mode-coupling scheme was derived by Szamel et al.
[17] to describe the glassy dynamics of athermal self-propelled
particles. Nonequilibrium motion of active particles near the
glass transition has been studied using different modeling
methods, e.g., considering self-propulsion of a constant speed
in the direction of the orientations of the particles and body
forces generated by external shear flows [16], assuming an
internal driving force [17] or a colored driving and dissipation
mechanism [8].

In many cases the motion of biological active particles is
confined to a plane [18,19] and numbers of experiments and
simulated systems of artificial active particles are prepared
in two dimensions [20–22]. It has been shown that charged
particles (grains) in plasma can undertake Brownian motion
[23]. Dunkel et al. [24] studied a two-dimensional layer of

charged particles in plasma which is trapped in an external
field, numerically. They modeled the charged particles by
a Langevin equation with velocity-dependent friction. They
suggest that negative (active) friction can be helpful in
explaining some effects arising in experiment, such as the
higher apparent temperature of the grains in comparison
to the surrounding plasma. One of the simple ways to
account for an internal propulsion mechanism is introducing
a velocity-dependent friction in the Langevin equation [2,25].
The Rayleigh-Helmholtz [26] model of friction considers a
nonlinear velocity-dependent friction force −γ (v)v = αv −
βv3. The coefficient γ (v) = −α + βv2 = α(−1 + v2/v0

2) is
similar to the damping coefficient which was used by van
der Pol [27] to describe the oscillations in self-sustained
oscillators. A self-oscillator transfers a nonperiodic source of
energy to a periodic process, which is the functionality various
motors have [28]. Badoual et al. [29] used the Rayleigh-
Helmholtz model to describe the motion of molecular motors.
In many other cases the Rayleigh-Helmholtz force has been
used to model self-propulsion as a nonequilibrium Brownian
motion [2,25,30].

In this paper, we consider a two-dimensional system of
N Brownian particles. We model the motion of each particle
by the Langevin equation with a Rayleigh-Helmholtz friction.
We choose this friction because of its ability to model the
pumping of energy to the slow particles, without any rotational
or directional dependence. We develop the time evolution op-
erators and, from the corresponding Fokker-Planck equation,
we estimate the steady state distributions. The mode-coupling
equations for the density correlation functions are then derived
to study the dynamical behavior of the system near a glass
transition point [31]. To find out about the possible structural
changes emerging from the nonequilibrium conditions, we use
the ITT formalism.

II. NONLINEAR LANGEVIN EQUATION

To describe the motion of Brownian particles with addi-
tional energy input or so-called activity we use the Langevin
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equation with a velocity-dependent friction [2]:

dpi

dt
= Fi − γ (vi)pi + ξRi(t). (1)

The rapidly fluctuating force ξRi(t), with an ensemble average
equal to zero, represents the interaction of the Brownian
particle with the solvent molecules. The fluctuation force is a
Gaussian white noise [32], which conveys that the fluctuation
force values are normally distributed but are uncorrelated in
time:

〈Ri(t)〉 = 0,
(2)

〈ξRi(t)ξRj (t ′)〉 = ξ 2δij δ(t − t ′).

In some regions in the phase space, the velocity-dependent
friction γ (vi) allows for negative friction values. When friction
is negative, the −γ (vi)pi force pumps additional mechanical
energy into the particle rather than dissipating the energy.

III. TIME EVOLUTION OPERATORS

The Liouville equations for a phase variable A(�) =
A(r1,r2, . . . ,rN,p1,p2, . . . ,pN ) and for a nonequilibrium dis-
tribution f are defined as [33]

dA(�)

dt
= iLA(�) (3)

and

∂f (�,t)

∂t
= −iL†f (�,t). (4)

In these two equations, iL and iL† are the time evolution
operators for phase variables and the distribution function,
respectively. Using Eq. (1) we can derive the time evolution
operators

iL = �̇ · ∂

∂�
=

∑
i

(
pi

m
· ∂

∂ri

+ Fi · ∂

∂pi

)

+
∑

i

(
ξRi(t) · ∂

∂pi

− γ (vi)

m
pi · ∂

∂pi

)
(5)

and

− iL† = −�̇ · ∂

∂�
−

(
∂

∂�
· �̇

)

=
∑

i

(
−pi

m
· ∂

∂ri

− Fi · ∂

∂pi

)

+
∑

i

(
−ξRi(t) · ∂

∂pi

+ γ (vi)

m
pi · ∂

∂pi

)

+
∑

i

(
1

m

∂γ (vi)

∂pi

· pi + γ (vi)

m

)
. (6)

The term ξRi(t) · ∂
∂pi

appears in both time evolution operators

iL and iL†. Since ξRi(t) is a stochastic force, for every
realization the time evolution will be different. Thus the
variables the operators will operate on do not have a direct
time dependence; we take an average over the noise here. We

follow the averaging procedure in Ref. [34] (see Appendix A)
and assume m = 1 for simplicity; therefore,

iL =
∑

i

(
vi · ∂

∂ri

+ Fi · ∂

∂vi

)

+
∑

i

(
−1

2
ξ 2 ∂2

∂vi
2 − γ (vi)vi · ∂

∂vi

)
, (7)

and

− iL† =
∑

i

(
−vi · ∂

∂ri

− Fi · ∂

∂vi

)

+
∑

i

(
1

2
ξ 2 ∂2

∂vi
2 + γ (vi)vi · ∂

∂vi

)

+
∑

i

(
∂γ (vi)

∂vi

· vi + γ (vi)

)
. (8)

IV. DISTRIBUTION FUNCTION

Using the time evolution operator −iL† in Eq. (8), one can
write the time evolution equation (4) for the distribution of one
particle,

∂f

∂t
+ vi · ∂f

∂ri

+ Fi · ∂f

∂vi

= ∂

∂vi

(
γ (vi)vif + 1

2
ξ 2 ∂f

∂vi

)
,

(9)

which is a Fokker-Planck equation. When friction is velocity
dependent, the stationary solution of Eq. (9) is only trivial
when neglecting the interaction forces, Fi = 0 [2]:

fs(v) = C exp

(
− 2

ξ 2

∫ v

dv′γ (v′)v′
)

. (10)

When γ (vi) = γ0 = const, ξ 2 = 2kBT γ0 according to the
fluctuation-dissipation theorem [35]. In the case of velocity-
dependent friction, the fluctuation-dissipation relation does not
hold, which is consistent with the nonequilibrium situation. We
consider a Rayleigh-Helmholtz model of friction,

γ (v) = −α + βv2 = α

(
−1 + v2

v0
2

)
= β(v2 − v0

2), (11)

where α/β = v0
2 and β takes only positive values. When v <

vo, the friction is negative and the particles receive energy.
On the other hand, when v > v0 the particles are damped due to
the positive friction. For simplicity of analytically calculating
the distributions, we consider β = 1, so that α = v0

2 and

γ (v) = −α + v2. (12)

We show in Fig. 1 the regions in the α,v = |v| plane which
leads to Brownian particles being active [energy intake, γ (v) <

0] or passive [energy dissipation, γ (v) > 0].
Considering that γ (v) = −α + v2, the stationary velocity

distribution in Eq. (10), in terms of Dv = ξ 2/2, can be written
as

fSR(v) = C exp

[
− 1

Dv

(
v4

4
− α

v2

2

)]
. (13)
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FIG. 1. Distinct regions in the α-v plane which are associated
with Brownian particles being active (energy intake) or passive
(energy dissipation). The curve γ (v) = −α + v2 = 0 specifies the
boundary of the active region.

In two dimensions where dv = 2πv dv [25],

1

C
= 2π

∫ ∞

0
exp

[
− 1

Dv

(
v4

4
− α

v2

2

)]
v dv

= π
√

πDv exp

(
α2

4Dv

)[
1 + erf

(
α

2
√

Dv

)]
. (14)

Figure 2 shows the two-dimensional (2D) normalized
distribution fSR(v) for α = 1 and different values of Dv .

The second, fourth, and sixth moment of the velocity in two
dimensions can be written as

〈v2〉 = 2π

∫ ∞

0
fSR(v)v2v dv

= α + 2

√
Dv

π
exp

(
− α2

4Dv

)[
1 + erf

(
α

2
√

Dv

)]−1

,

(15)

〈v4〉 = 2Dv + α〈v2〉, (16)

-4 -2 0 2 4
0

0.1

0.2

0.3

f
SR

(v)

D
v
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D
v
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D
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D
v
 = 100

|v|-|v|

EQ

FIG. 2. Stationary velocity distribution for noninteracting Brow-
nian particles shown in Eq. (13) for α = 1 and different values of
Dv = ξ 2/2. The solid black line labeled EQ shows the normalized
equilibrium Gaussian distribution exp(αv2/2Dv)/2πDv for α = −1
and Dv = kBT = 1.

and

〈v6〉 = 2αDv + (α2 + 4Dv)〈v2〉. (17)

These equations are derived in Appendix B where we have also
explained the slight difference between 〈v2〉, 〈v4〉 and what was
shown in Ref. [25]. Since the velocity distribution is an even
function, the odd moments of the velocity are zero in any
dimension. The velocity distribution function only contains
v2 terms, thus in two dimensions: 〈v2

x〉 = 〈v2
y〉 = 〈v2〉/2. We

define the effective temperature of the system as

kBTeff = 〈
v2

x

〉 = 〈
v2

y

〉 = 〈v2〉
2

. (18)

In the case of the normal Langevin equation with constant
friction γ0, the fluctuation-dissipation relation holds and
ξ 2/2γ0 = kBT = 〈v2〉/2, so that there is a linear relation
between 〈v2〉 and ξ 2/2. But as we can see in Eq. (15), 〈v2〉
and Dv = ξ 2/2 have a nonlinear relation. This nonlinearity
originates from the velocity-dependent friction.

We assume that we can model the distribution of the
particles with separating the position and velocity-dependence
part. For the Rayleigh-Helmholtz model of friction this leads
to

f ({ri},{vi}) = C exp

(
−2

U ({ri})
〈v2〉

)

× exp

[
− 1

Dv

∑
i

(
vi

4

4
− α

vi
2

2

)]
. (19)

Using this distribution function in the Fokker-Planck equation
and Dv = ξ 2/2 we have

∂f

∂t
=

∑
i

(
− 2

〈v2〉 Fi · vi − α

Dv

Fi · vi + 1

Dv

v2
i Fi · vi

)
f.

(20)

Multiplying the nonlinear Langevin equation (1) by vi results
in

vi · dvi

dt
− Fi · vi = −γ (vi)v2

i + ξRi(t) · vi , (21)

which represents the mechanical energy loss or gain of one
particle in the system. For having the same equation in a more
general form we use Eqs. (3) and (7) to evaluate the time

evolution of the variable
∑

i

v2
i

2 :

d

dt

∑
i

v2
i

2
=

∑
i

vi · dvi

dt
= iL

∑
i

v2
i

2

=
∑

i

Fi · vi −
∑

i

γ (vi)v2
i +

∑
i

Dv. (22)

In an overdamped motion where dvi/dt = 0 we have∑
i

Fi · vi =
∑

i

γ (vi)v2
i −

∑
i

Dv

= −
∑

i

αv2
i +

∑
i

v4
i −

∑
i

Dv. (23)

We bring up that in case we did not have the nonlinear friction
and instead we had the Langevin equation with the constant
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friction γ0 which models the normal Brownian motion;
∑

i Fi ·
vi = ∑

i γ0v2
i − ∑

i ξ
2/2 would be equal to zero, according

to the fluctuation-dissipation relation ξ 2 = 2kBT γ0. But here
because of the nonlinear friction the fluctuation-dissipation
relation does not hold.

Replacing Eq. (23) in Eq. (20) leads to

∂f

∂t
= 	f, (24)

where

	 =
(

αN + 2NDv

〈v2〉
)

+
(

α2

Dv

+ 2α

〈v2〉 − 1

)∑
i

v2
i

+
(

− 2α

Dv

− 2

〈v2〉
)∑

i

v4
i + 1

Dv

∑
i

v6
i . (25)

With help of the ITT formalism, we use 	 in Sec. VIII to write
a structural relation between the stationary state at t → ∞ and
the equilibrium state.

A. Probability of finding particles with negative friction
(active particles)

For every system having a distribution function with a
specific value of α and Dv , which follows Eq. (13), the
probability of finding particles which have a velocity less than√

α is equal to

Pactive =
∫ √

α

0
2πfSR(v)v dv. (26)

The integral can be solved as

Pactive = 2πC

∫ √
α

0
exp

[
− 1

Dv

(
v4

4
− α

v2

2

)]
v dv

=
erf

(
α

2
√

Dv

)
1 + erf

(
α

2
√

Dv

) . (27)

Therefore, to compare two systems which have different
values of α and Dv , we can use Eq. (27). The larger the

0 2 4 6 8 10
D

v

0

1

2

3

4

<v
2
>

α = 2
 α = 1
 α = 0.1

FIG. 3. Second moment of the velocity vs Dv for three different
values of α according to Eq. (15). With the α values chosen, 〈v2〉 =
2kBTeff = 3 leads to three different pairs of (α,Dv) = (0.1,6.897),
(1,5.315), and (2,3.415).

0 1 2 3 4 5 6
|v|

0

0.2

0.4

0.6

2π
  f

S
R
(v

) 
|v

|

α = 2, D
v
 = 3.415

α = 1, D
v
 = 5.315

α = 0.1, D
v
 = 6.897

FIG. 4. Stationary velocity distributions for noninteracting Brow-
nian particles shown in Eq. (13), multiplied by 2πv, for different
pairs of α and Dv . The (α,Dv) pairs are chosen as in Fig. 3. The
value

√
α is shown with vertical lines having identical line style with

every curve. The probability of finding particles with the velocity
between zero and

√
α is equal to the area under the curves in that

interval. This area is 0.021, 0.288, and 0.357 for the dotted curve
(α = 0.1, Dv = 6.897), the dashed curve (α = 1, Dv = 5.315), and
the solid curve (α = 2, Dv = 3.415), respectively. When temperature
is constant, with increasing the α, the probability of finding the
particles which show activity increases.

Pactive, the larger the percentage of particles in the system
with negative friction. As represented in Fig. 3, for a constant
temperature 〈v〉 = 2kBTeff = 3, we choose three pairs of
(α,Dv). Using Eq. (27), we can obtain the probability of
finding active particles in the systems which are determined
by these three pairs. The Pactive is equal to 0.021, 0.288,
and 0.357 for (α = 0.1,Dv = 6.897), (α = 1,Dv = 5.315),
and (α = 2,Dv = 3.415), respectively. The probability that a
particle is active is equal to the area under the corresponding
2πfSR(v)v curve between zero and v = √

α; see Fig. 4. For
a constant effective temperature, the larger the α is (or the
smaller the Dv is), the higher the percentage of active particles
in the system.

B. Definition of the averages

It is useful for later sections to have a consistent definition
of the ensemble averages of the product of the phase variables
A and iLB:

〈A∗|iLB〉 =
∫

f A∗iLB d� (28)

and

〈−iL†A∗|B〉 = −
∫

(iL†f A∗)B d�. (29)

The effect of iL† on f A∗ can be evaluated as [33]

iL†f A∗ = �̇ · ∂

∂�
(f A∗) +

(
∂

∂�
· �̇

)
f A∗

= f �̇ · ∂A∗

∂�
+ A∗�̇ · ∂f

∂�
+ A∗

(
∂

∂�
· �̇

)
f

= f iLA∗ + A∗iL†f. (30)

032602-4



GLASSY DYNAMICS OF BROWNIAN PARTICLES WITH . . . PHYSICAL REVIEW E 94, 032602 (2016)

The distribution function noted in Eq. (19) is not the stationary
solution of the Fokker-Planck equation. Therefore, iL†f is
nonzero. In that case,

iL†f A∗ = f iLA∗ + A∗iL†f = f iLA∗ + A∗	f, (31)

where 	 is noted in Eq. (25). Consequently,

〈−iL†A∗|B〉 = −
∫

f BiLA∗d� −
∫

A∗B	f d�. (32)

V. MORI-ZWANZIG FORMALISM

We consider two dynamical variables

ρq(t) =
∑

k

exp(iq · rk(t)) (33)

and

jL
q (t) =

∑
k

vL
k exp(iq · rk(t)), (34)

where q = (0,0,q) and L is the longitudinal direction parallel
to q. The inner product of ρq(t = 0) with itself is 〈ρ∗

q |ρq〉 =
NSq . For jL

q (t = 0), knowing that the odd moments of velocity
are zero,

〈
jL

q
∗∣∣jL

q

〉 = N
〈
vL

i

2〉 = N

2
〈v2〉, (35)

where 〈v2〉 follows Eq. (15). Here we have used the fact that the
velocity distribution, Eq. (13), depends on the velocity merely
through |v|. So the average of the longitudinal component of
the velocity is equal to the average of the transverse component
and in two dimensions〈

vL2〉 = 〈
vT 2〉 = 1

2 〈v2〉. (36)

In the following we use the Mori-Zwanzig formalism [36],
using the following projection operators,

P = A1〈A∗
1| · · · 〉 + A2〈A∗

2| · · · 〉

= 1

NSq

ρq〈ρ∗
q | · · · 〉 + 2

N〈v2〉j
L
q

〈
jL

q
∗∣∣ · · · 〉

, (37)

and Q = 1 − P , where 〈A∗
1|A1〉 and 〈A∗

2|A2〉 = 1. Then the
equation of motion for the correlation function can be written
as [15]

(zI + � − M)Y(z) = −I, (38)

where

Ynm(z) = 〈A∗
n|Ãm(z)〉, (39)

�nm = 〈A∗
n|LAm〉, (40)

and

Mnm = 〈A∗
n|LQ(z + QLQ)−1QLAm〉. (41)

The Ãm(z) = i
∫ ∞

0 dt exp(izt)A(t) is a Laplace transform
of Am(t). With use of Eq. (7), since 〈vL〉 = 0, �11 =

1
NSq

〈ρ∗
q |Lρq〉 = 0. From Eqs. (28) and (7) we have

�21 = 1

iN
√

Sq〈v2〉/2

〈
jL

q
∗∣∣iLρq

〉

=
√

2

iN
√

Sq〈v2〉

∫
d�f

∑
k

vL
k exp (−iq · rk)

×
∑

i

vi · ∂

∂ri

(∑
k′

exp (iq · rk′)

)
= q

√
〈v2〉
2Sq

. (42)

To evaluate �12 we note

�12 = 1

iN

√
2

Sq〈v2〉
〈
ρ∗

q

∣∣iLjL
q

〉

= 1

iN

√
2

Sq〈v2〉

[〈
ρ∗

q

∣∣∣∣∣
∑

i

vi · ∂

∂ri

jL
q

〉

+
〈
ρ∗

q

∣∣∣∣∣
∑

i

Fi · ∂

∂vi

jL
q

〉

−
〈
ρ∗

q

∣∣∣∣∣
∑

i

( − α + v2
i

)
vi · ∂

∂vi

jL
q

〉]
. (43)

The third term inside the brackets contains odd moments of
velocity which are zero and〈
ρ∗

q

∣∣∣∣∣
∑

i

vi · ∂

∂ri

jL
q

〉
= iq

∫
d�f

∑
i,k

vL
i

2
exp [iq · (ri − rk)]

= iqN
〈v2〉Sq

2
. (44)

Also,〈
ρ∗

q

∣∣∣∣∣
∑

i

Fi · ∂

∂vi

jL
q

〉
=

∫
d�f

∑
k

exp (−iq · rk)

×
(∑

i

Fi · ∂

∂vi

)∑
k′

vL
k′ exp (iq · rk′)

=
∫

d�f
∑

k

exp (−iq · rk)

×
∑

i

F L
i exp (iq · ri). (45)

We use the method applied in Ref. [14] for a related case, to
obtain the average in Eq. (45). According to Eq. (19),

∂f

∂ri

= − 2

〈v2〉
∂U

∂ri

f = 2

〈v2〉Fif, (46)

and also by means of partial integration∫
B

∂f

∂ri

d� = −
∫

f
∂B

∂ri

d�. (47)
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Therefore,∫
d�f

∑
k

exp (−iq · rk)
∑

i

F L
i exp (iq · ri)

= −〈v2〉
2

∑
i

∫
d�f

∂

∂rL
i

(
exp (iq · ri)

∑
k

exp (−iq · rk)

)

= −iqN
〈v2〉

2

(
Sq − 1

)
. (48)

Substituting Eq. (48) and (44) into Eq. (43) leads to

�12 = �21 = q

√
〈v2〉
2Sq

. (49)

This result is equivalent to the case of usual Brownian motion
with constant friction where 〈v2〉 = 2kBT . �22 describes
sound damping and can be evaluated as

�22 = 2

iN〈v2〉
〈
jL

q
∗∣∣iLjL

q

〉
= 2

iN〈v2〉
∫

d�f
∑

k

vL
k exp (−iq · rk)

×
(

−
∑

i

( − α + v2
i

)
vi · ∂

∂vi

+
∑

i

Fi · ∂

∂vi

)

×
∑
k′

vL
k′ exp (iq · rk′)

= 1

i〈v2〉 (α〈v2〉 − 〈v4〉) + 2

iN〈v2〉
∫

d�f
∑

k

vL
k FL

k .

(50)

Recalling from Eq. (16), α〈v2〉 − 〈v4〉 = −2Dv = −ξ 2.
Knowing that

∑
k vL

k FL
k = 1

2

∑
k vk · Fk , from Eq. (23) we

obtain∫
d�f

∑
k

vL
k FL

k = N

2

(
−α〈v2〉 + 〈v4〉 − ξ 2

2

)
. (51)

Therefore,

�22 = iDv

〈v2〉 = iξ 2

2〈v2〉 . (52)

Consequently, the existence of a velocity-dependent friction
term in the Langevin equation leads to 〈jL

q
∗|iLjL

q 〉 = iNDv/2,
where the Dv is related to the second and fourth moment of
velocity through Eq. (15). However, 〈ρq

∗|iLρq〉 is zero, similar
to normal Brownian motion, since the odd moments of velocity
are zero. The elements of the � matrix can be written as

� =
⎛
⎝ 0 q

√
〈v2〉
2Sq

q
√

〈v2〉
2Sq

iξ 2

2〈v2〉

⎞
⎠. (53)

In the case of normal Brownian motion (equilibrium case)
[37],

∑
i Fi · vi = 0 and �22 = iγ0.

VI. MODE-COUPLING APPROXIMATION

For writing the complete equation of motion, Eq. (38), we
still need to know the elements of the memory kernel Mnm.

We recall from Eq. (42) that LA1 = q
√

〈v2〉
2Sq

A2 so QLA1 = 0

and M11 = M21 = 0. M22 can be written as

M22 = 〈A∗
2|LQ(z + QLQ)−1QLA2〉

= 〈A∗
2|LQ exp (itQLQ)QLA2〉. (54)

For separating the remaining fast decaying fluctuations from
the slow memory kernel we use the projection operator PM =∑

k<p ρkρp
〈ρ∗

kρ∗
p |··· 〉

〈ρ∗
kρ∗

p |ρkρp〉 . By projecting the kernel onto the pair

modes of density, the slowly decaying parts of the memory
kernel remain which have the longest relaxation times [38].
We also use the first mode-coupling approximation [15] and
replace exp (itQLQ) with PM exp (iLt)PM :

M22 ≈ 〈
A∗

2|LQP1
M exp (iLt)P1

MQLA2
〉

= 2

N〈v2〉
∑

k<p,k′<p′

1

〈ρ∗
kρ∗

p |ρkρp〉〈ρ∗
k′ρ

∗
p′ |ρk′ρp′ 〉

×〈
jL

q
∗∣∣LQρk′ρp′

〉〈ρ∗
k′ρ

∗
p′ | exp (iLt)ρkρp〉

×〈
ρ∗

kρ∗
p |QLjL

q

〉
. (55)

Also according to the factorization ansatz 〈ρ∗
kρ∗

p |ρkρp〉
≈ 〈ρ∗

k |ρk〉〈ρ∗
p |ρp〉 and 〈ρ∗

k′ρ
∗
p′ | exp (iLt)ρkρp〉 ≈ δk,k′δp,p′

N2SkSpφk(t)φp(t), where φk(t) = 〈ρ∗
k | exp (iLt)ρk〉/NSk . We

need to calculate two terms. The first one is

〈
jL

q
∗∣∣LQρkρp

〉 = 〈
jL

q
∗∣∣(Lρk)ρp

〉 + 〈
jL

q
∗∣∣ρk(Lρp)

〉
−q〈v2〉

2Sq

〈ρ∗
q |ρkρp〉

= 〈v2〉
2

k〈ρ∗
q−k|ρp〉 + 〈v2〉

2
p〈ρ∗

q−p|ρk〉

−q〈v2〉
2Sq

〈ρ∗
q |ρkρp〉

= N
〈v2〉

2
δq,k+p(kSp + pSk − qSkSp),

(56)

where we used the convolution approximation 〈ρ∗
q |ρkρp〉 ≈

Nδq,k+pSqSkSp. Above and in the following equations, k and
p are the longitudinal components of k and p, respectively.
The second term to calculate is

〈
ρ∗

kρ∗
p |QLjL

q

〉 = 1

i

〈
ρ∗

kρ∗
p|iLjL

q

〉
−〈ρ∗

kρ∗
p|ρq〉 1

NSq

〈
ρ∗

q

∣∣LjL
q

〉
. (57)

In equilibrium, 〈ρ∗
kρ∗

p |iLjL
q 〉 = 〈(−iL†ρ∗

k)ρ∗
p|jL

q 〉 +
〈ρ∗

k(−iL†ρ∗
p)|jL

q 〉. However, here we need to let the
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operator L act on the variable jL
q :

1

i

〈
ρ∗

kρ∗
p

∣∣iLjL
q

〉 = 1

i

〈
ρ∗

kρ∗
p

∣∣∣∣∣
∑

i

vi · ∂

∂ri

jL
q

〉

+1

i

〈
ρ∗

kρ∗
p

∣∣∣∣∣
∑

i

Fi · ∂

∂vi

jL
q

〉

−1

i

〈
ρ∗

kρ∗
p

∣∣∣∣∣
∑

i

( − α + v2
i

)
vi · ∂

∂vi

jL
q

〉
.

(58)

The third term is zero since the odd moments of velocity are
zero. The first term can be written as

1

i

〈
ρ∗

kρ∗
p

∣∣∣∣∣
∑

i

vi · ∂

∂ri

jL
q

〉
= 1

i

〈
ρ∗

kρ∗
p

∣∣∣∣∣
∑

i

(
vi · ∂

∂ri

)

×
∑
m

vL
m exp (iq · rm)

〉

= q〈v2〉
2

〈ρ∗
kρ∗

p |ρq〉. (59)

With the help of Eqs. (46) and (47) the second term of Eq. (58)
can be evaluated as

1

i

〈
ρ∗

kρ∗
p

∣∣∣∣∣
∑

i

Fi · ∂

∂vi

jL
q

〉
= 1

i

〈
ρ∗

kρ∗
p

∣∣∣∣∣
∑

i

F L
i exp (iq · ri)

〉
= −〈v2〉

2i

∑
i

∫
d�f

∂

∂rL
i

[exp (iq · ri)ρ
∗
kρ∗

p]

= −〈v2〉
2i

∑
i

∫
d�f {iq exp (iq · ri)ρ

∗
kρ∗

p − ik exp [i(q − k) · ri]ρ
∗
p − ip exp [i(q − p) · ri]ρ

∗
k}

= −〈v2〉
2

(q〈ρ∗
kρ∗

p |ρq〉 − δq,k+pNkSp − δq,k+pNpSk). (60)

By adding up Eq. (60) and Eq. (59) we have

1

i

〈
ρ∗

kρ∗
p

∣∣iLjL
q

〉 = N
〈v2〉

2
δq,k+p(kSp + pSk), (61)

so

〈
ρ∗

kρ∗
p

∣∣QLjL
q

〉 = N
〈v2〉

2
δq,k+p(kSp + pSk − qSkSp). (62)

Placing Eqs. (56) and (62) in Eq. (55) leads to

M22 = 〈v2〉
2N

∑
k<p

δq,k+p

(
kSp + pSk − qSkSp

SkSp

)2

×SkSpφk(t)φp(t). (63)

Therefore, the expression for the kernel is the same as the
mode-coupling theory (MCT) kernel for conventional liquids
[15] considering 〈v2〉/2 = kBTeff. The effective temperature
will drop out by defining

mmc
q = 1

�2
12

M1
22 (64)

and mmc
q can be written in integral form; in two dimensions

[39],

mMCT
q =

∫
d2k

(2π )2

ρSqSpSk

2q4

(
q · kck + p · qcp

)2
φk(t)φp(t),

(65)

where p = q − k, ρck = 1 − 1/Sk , and ρ is the average
density for N particles in an area L2.

VII. EQUATION OF MOTION FOR THE DENSITY
AUTOCORRELATION FUNCTION

The equation of motion following Eqs. (38), (53), and (65)
can be written as

∂2
t φq(t) + Dv

〈v2〉∂tφq(t) + �2
qφq(t)

+ �2
q

∫ t

0
∂t ′φq(t)mMCT

q (t − t ′) dt ′ = 0, (66)

where φq(t) = φ11(t) and �2
q = �2

12 = q2〈v2〉/(2Sq). For the
overdamped case, the equation of motion can be written as

Dv

〈v2〉�2
q

∂tφq(t) + φq(t) +
∫ t

0
∂t ′φq(t)mMCT

q (t − t ′) dt ′ = 0.

(67)

The equation of motion presented as Eq. (66) contains one
more approximation in comparison to the overdamped case
in Eq. (67). Seeing that, we have used the property of an
overdamped motion conveyed in Eq. (23) to calculate �22.

As the kernel mMCT
q obtained here is the same as in the

case of normal Brownian motion, the glass transition packing
fraction will also not change. But the damping coefficient in
both Eq. (66) and Eq. (67) is different from the equilibrium
case. The input to the equations of motion is the static structure
factor Sq . In the next section, we use the ITT formalism
to investigate the possible changes in the structure factor as
a result of the nonequilibrium situation. For now, we use
the Baus-Colot [39,40] analytical expression for the structure
factor of the hard-sphere system in two dimensions (hard disks)
to solve the equations of motion. The glass transition happens
at the critical packing fraction ϕc = 0.72464. We have used
500 grid points in the range qmin = 0.04 to qmax = 39.96 with
�q = 0.08 to solve the integral equations.
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FIG. 5. Density correlation function φq (t) following Eq. (66) for
q = 4.2 and packing fraction ϕ = 0.72449 equivalent to ε = (ϕ −
ϕc)/ϕc 
 0.0002, when 〈v2〉 = 2kBTeff = 1010; α values presented
in the legend and from Eq. (15) D1

v = 88385.66, D2
v = 501096.48,

and D3
v = 800608.13. The higher the activity of the system (larger α

and smaller Dv) the sooner the correlation function decays.

We choose the temperature 〈v2〉 = 2kBTeff = 1010
and we consider three pairs of parameters (α,Dv) =
(1000,88385.66),(500,501096.48),(1,800608.13) with the
mentioned temperature. We use Eq. (27) to obtain the proba-
bility of finding active particles in the system for these three
different pairs of parameters. The resulting values are Pactive =
0.0006, 0.2767, and 0.4956 for (α,D) = (1,800608.13),
(500,501096.48), and (1000,88385.66), respectively. In Fig. 5,
the solution of Eq. (66) for φq(t) with the packing fraction
ϕ = 0.72449 in the liquid state and close to transition is
presented for the three aforementioned pairs of (α,Dv). The
higher the probability of finding active particles in the system,
the smaller the time that the correlation function decays to
zero. The same behavior is observed for the overdamped case.
The solution of Eq. (67), considering the same input, is shown
in Fig. 6.
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FIG. 6. Density correlation function φq (t) following Eq. (67) for
overdamped motion for q = 4.2 and packing fraction ϕ = 0.72449
equivalent to ε = (ϕ − ϕc)/ϕc 
 0.0002, when 〈v2〉 = 2kBTeff =
1010; α values presented in the legend and from Eq. (15) D1

v =
88385.66, D2

v = 501096.48, and D3
v = 800608.13. The higher the

activity of the system (larger α and smaller Dv) the sooner the
correlation function decays.
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FIG. 7. Scaled density correlation function φq (t̃) according
to Eq. (68) for q = 4.2 and packing fraction ϕ = 0.72449
equivalent to ε = (ϕ − ϕc)/ϕc 
 0.0002, when 〈v2〉 = 2kBTeff =
1010. τ (Dv) = 1 for (α,D3

v ) = (1,800608.13), τ (D2
v ) = 0.681

for (α,D2
v ) = (500,501096.48), and τ (D1

v ) = 0.283 for (α,D1
v ) =

(1000,88385.66).

Since introducing the velocity-dependent friction does not
cause any change in the memory kernel, the activity in the
presented model does not affect directly the glass transition
packing fraction, which indicates that activity does not melt
the glass. However, it can shift the correlation function in a way
that, for a constant temperature and below the glass transition
packing fraction, the higher the percentage of active particles in
the system, the smaller is the time that the correlation function
decays to zero. For a better comparison we use the second
scaling law (α scaling) [15]. We scale the time in the correlation
functions shown in Fig. 5 in a way that all three correlations
fall on top of each other in the long time regime. The scaling
follows

φq(t̃) = φq

(
t

τ (Dv)

)
, (68)

where τ (Dv) is the scaling time depending on Dv .
For the correlation function corresponding to (α,Dv)
= (1000,88385.66), we find τ (Dv) = 0.283; for (α,Dv)
= (500,501096.48), τ (Dv) = 0.681; and for (α,Dv) =
(1,800608.13), the time scale is τ (Dv) = 1. The scaled
correlation functions are shown in Fig. 7. Except for the
short time dynamics, the correlation functions fall on top of
each other. One should have in mind that the scaling time
τ (Dv) will not diverge as a function of Dv , since the glass
transition packing fraction is not dependent on activity, and
for packing fractions below ϕc, the correlation function will
always decay to zero. Since the structure factor is the static
input to the equations, small changes in structure factors
can change the mode-coupling predictions about the glass
transition drastically. In the next section, we study the possible
changes in the structure factor.

VIII. INTEGRATION THROUGH TRANSIENTS

If the distribution function f in Eq. (19) was a stationary
solution of the Fokker-Planck equation (9), substituting f

inside the Fokker-Planck equation would result in ∂f/∂t = 0.
But, as mentioned before, f is not a general solution of
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the Fokker-Planck equation and is only an estimate of the
stationary distribution. Replacing f in the Fokker-Planck
equation yields ∂f/∂t = 	f , where 	 follows Eq. (25). From
Eq. (20) it is seen that f will be a solution of the Fokker-Planck
equation under the condition that Fi = 0. In the situation
Fi �= 0 with normal friction, the equilibrium structure factor
Sq is justified. We use this fact here and assume when t < 0
the interaction forces Fi are switched off, and at t = 0 we
switch on the interaction forces. Therefore, we can refer to f

as the stationary distribution function when t < 0. Using the
ITT formalism we are able to evaluate the time dependence of
the distribution function as

f (�,t) =
{
f (�), t � 0
e	tf (�), t > 0.

(69)

Here f follows Eq. (19) and f (�,t) is the time-dependent
distribution function. One can write [10]

e	t = 1 +
∫ t

0
dt ′e	t ′	; (70)

therefore, when t → ∞ according to the ITT formalism [10]∫
d�f (�,t)ρ∗

qρq =
∫

d�f (�)ρ∗
qρq

+
∫

d�

∫ ∞

0
dtρ∗

qρqe
	t	f (�) (71)

or

NSs
q = NSq +

∫ ∞

0
dt

∫
d�	f (�)e−	tρ∗

qρq. (72)

Here, Ss
q is the structure factor in the stationary state which is

reached for t → ∞. We assume that we can replace −	 with
iL:

e−	tρ∗
qρq = eiLt ρ∗

qρq. (73)

Using the projection operator Q = 1 − ∑
q ρq〈ρ∗

q | · · · 〉/NSq ,
from Eqs. (72) and (73) we arrive at

NSs
q = NSq +

∫ ∞

0
dt〈	QeiQLQtQρ∗

qρq〉. (74)

Using the mode-coupling approximation

〈	QPeiLtPQρ∗
qρq〉

=
∑
k<p

〈	Q|ρkρp〉〈ρ∗
kρ∗

p| exp (iLt)ρkρp〉〈ρ∗
kρ∗

p |Qρ∗
qρq〉

〈ρ∗
kρ∗

p |ρkρp〉2
.

(75)

From Eq. (25)

〈	〉 =
∫

d�f (�)	 =
(

3〈v2〉 − ξ 2

〈v2〉 − α

)

=
(

3〈v2〉 − 2Dv

〈v2〉 − α

)
, (76)

where f (�) follows Eq. (19). Also,

〈	Q|ρkρp〉 = Nδ−k,p〈	〉Sk, (77)

and

〈ρ∗
kρ∗

p |Qρ∗
qρq〉 = 〈ρ∗

kρ∗
p |ρ∗

qρq〉 −
∑

q

〈ρ∗
kρ∗

p|ρq〉〈ρ∗
q |ρ∗

qρq〉
〈ρq|ρ∗

q〉
= δ−k,pδq,k+pN

2SkSq

−
∑

q

N2δq,k+pδq,q+qSkSpSqS
3
q

NSq

= δ−k,pδq,k+pN
2Sk(1 − Sk). (78)

Substitution of Eqs. (77) and (78) into Eq. (75) results in

〈	QPeiLtPQρ∗
qρq〉 = 1

2 〈	〉N (1 − Sk)φ2
k (t). (79)

Therefore,

Ss
q = Sq + 1

2
〈	〉(1 − Sq)

∫ ∞

0
φ2

q(t)dt, (80)

or finally,

Ss
q = Sq + 1

2

(
3〈v2〉 − 2Dv

〈v2〉 − α

)
(1 − Sq)

∫ ∞

0
φ2

q(t)dt.

(81)

This equation is very similar to what Farage et al. [16]
obtained.

We obtain the correlation function φq(t) from Eq. (67)
and substitute it into Eq. (81) to calculate Ss

q . The integral∫ ∞
0 φ2

q(t)dt becomes infinitely large at the glass transition;
therefore, we are able to calculate Ss

q only when we are
sufficiently away from the glass transition and inside the liquid
state. The other necessity for Eq. (81) to result in a reasonable
Ss

q is that the effective temperature should be sufficiently low.
In other words, solving Eq. (81) requires that the perturbations
are adequately small.

For ε = (ϕc − ϕ)/ϕc 
 0.0215 and 〈v2〉 = 2kBTeff = 0.1
we have solved Eq. (67) for three pairs of (α,Dv) =
(0.08,0.00284), (0.05,0.004881), and (0.02,0.006697). As
we discussed in Sec. IV A, the higher the α (the smaller
the Dv), the higher is the percentage of active particles
in the system. Therefore, these three pairs correspond to
monotonically decreasing fractions of active particles, with all
three pairs at the same effective temperature. For having a good
comparison we also introduce a fourth pair (α′,D′

v) at a smaller
effective temperature than the aforementioned three pairs, but
the same fraction of active particles as in (0.05,0.004881).
We chose the effective temperature for the fourth term to
be 2kBTeff = 0.08. According to Eq. (27), for the (α′,D′

v) to
have the same Pactive as (0.05,0.004881) has, α′/

√
D′

v must
be equal to 0.05/

√
0.004881. This together with the condition

that 2kBTeff = 0.08 results in (α′,D′
v) = (0.04,0.003124). For

solving Eq. (67) we use the Baus-Colot analytical expression
for the structure factor Sq of the hard-sphere system in two
dimensions [39,40]. For every q value, replacing φq(t) in
Eq. (81) and calculating the integral

∫ ∞
0 φ2

q(t)dt results in
the Ss

q . We show the Ss
q values around the first peak, in

Fig. 8. For the three pairs with the same effective temperature,
one can observe that with decreasing α, the peak value of
the Ss

q decreases too. This is different from Ref. [16]. Here,
we model the activity with velocity-dependent friction which
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FIG. 8. Structure factor Ss
q for values around the first peak, calcu-

lated via Eq. (81), for three pairs of (α,Dv) as indicated in the legends
when 〈v2〉 = 2kBTeff = 0.1 and also for (α′,D′

v) = (0.04,0.003124)
when 〈v2〉 = 2kBTeff = 0.08 shown with solid upward triangles. The
Baus-Colot equilibrium structure factor Sq is shown with squares.
ε = (ϕc − ϕ)/ϕc 
 0.0215.

is isotropic and does not have any rotational or directional
dependence. But we are adding an additional constraint to
the system. This additional constraint is Dv related to the
percentage of active particles in the system. The higher is that
percentage (the smaller is the Dv), the more ordered the system
becomes and the higher is the peak value of the structure
factor. A comparison between the structure factor peak of
(0.05,0.004881) and (α′,D′

v) = (0.04,0.003124) shows that,
as we may expect, although these two curves correspond
to the same percentage of activity in the system, since the
temperature is lower when (α′,D′

v) = (0.04,0.003124) the
structure factor peak has larger peak value.

In general, the structure factors Ss
q are less pronounced than

the equilibrium Baus-Colot structure factor. In other systems,
e.g., colloidal suspensions with short-ranged attractive inter-
actions [41], it has been shown that a decrease in the structure
factor peak value yields an increase of the packing fraction for
the glass transition according to MCT equations. Therefore,
we conclude that the less pronounced peak in the structure
factors Ss

q would result in higher transition packing fractions.
The change in the structure factor first peak due to activity
has been reported before. Ni et al. [42] showed by simulation
that the structure factor peak value of an active system of
self-propelled hard spheres will reduce by increasing activity
and the glass transition shifts to higher packing fractions. The
same result for the structure factor was obtained earlier in a

simulated system of motorized particles [43]. Szamel et al.
[17] also showed the changes in structure factor and transition
point in response to increasing activity although those changes
are not monotonic.

IX. CONCLUSION

We analyzed the glassy dynamics of a system in which
slow particles are accelerated and fast particles are damped, by
means of extending mode-coupling theory to nonequilibrium
situations. We have approximated the distribution function by
the solution of the Fokker-Planck equation for a noninteracting
system. In that case, the activity does not affect the glass
transition directly in the memory kernel as in the case for
granular matter [11,12]. However, in the present system
activity leads to a modification of the static structure factor
as shown above by employing the ITT formalism together
with a factorization approximation; cf. Fig. 8. In general the
structure factor peak values for the considered active systems
are smaller than the equilibrium Baus-Colot structure factor
peak value. Hence, one expects a shift of the glass transition
packing fractions in the active systems towards higher values in
comparison to the equilibrium case. Such a trend was observed
in the numerical simulation results [42] for a related active
system for both the glass transition density as well as the
variation of the static structure factor with activity, lending
support to the a priori uncontrolled approximations used in
the MCT and ITT calculations.
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APPENDIX A: NOISE TERMS

As mentioned in Sec. III, both time evolution operators
iL and iL† contain the term ξRi(t) · ∂

∂pi
. Since ξRi(t) is a

stochastic force, the time evolution would be different for
every realization. Therefore, we take an average over the noise.
Here we review the calculation of these averages in detail
following Ref. [34]. We assume dB(�(t))

dt
= iL1B(�(t)) =

−ξRi(t) · ∂
∂pi

B(�(t)); therefore,

B(t + �t) − B(t) =
∫ t+�t

t

iL1B(t1)dt1. (A1)

We substitute B from Eq. (A1) into itself and drop B from
both sides of the equation; −ξRi(t) · ∂

∂pi
is equal to

lim
�t→0

1

�t

[∫ t+�t

t

−ξRi(t1) · ∂

∂pi

dt1 +
∫ t+�t

t

∫ t1

t

(
ξRi(t1) · ∂

∂pi

)(
ξRi(t2) · ∂

∂pi

)
dt1dt2

]
. (A2)

Since the time scale of Ri(t) is much shorter than the phase variables, we can choose �t long enough that we can replace the
terms inside the integrals by their averages:

− ξRi(t) · ∂

∂pi

= lim
�t→0

1

�t

[∫ t+�t

t

−〈ξRi(t1) · ∂

∂pi

〉dt1 +
∫ t+�t

t

∫ t1

t

〈(
ξRi(t1) · ∂

∂pi

)(
ξRi(t2) · ∂

∂pi

)〉
dt1dt2

]
. (A3)
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According to Eq. (2) the first part of the right-hand side of Eq. (A3) is zero and

− ξRi(t) · ∂

∂pi

= lim
�t→0

ξ 2

�t

∫ t+�t

t

∫ t1

t

〈Ri(t1)Ri(t2)〉 ∂2

∂pi
2 dt1dt2 = lim

�t→0

ξ 2

2�t

∫ t+�t

t

∂2

∂pi
2 dt1 = 1

2
ξ 2 ∂2

∂pi
2 , (A4)

where we have used the property of the Dirac delta
∫ t1
t

δ(t1 − t2)dt2 = 1/2 where t < t2 < t1.

APPENDIX B: VELOCITY INTEGRALS

Here we calculate the integrals in Eqs. (14)–(17) as

1

C
= 2π

∫ ∞

0
e−( v4

4Dv
− αv2

2Dv
)vdv = 2π

√
Dve

α2

4Dv

∫ ∞

−α

2
√

Dv

e−U 2
dU, (B1)

where U = v2

2
√

Dv
− α

2
√

Dv
. Therefore,

1

C
= 2π

√
Dve

α2

4Dv

(∫ 0

−α

2
√

Dv

e−U 2
dU +

∫ ∞

0
e−U 2

dU

)
= π

√
πDv exp

(
α2

4Dv

)[
1 + erf

(
α

2
√

Dv

)]
, (B2)

where we used the definition of the error function erf(x) = ∫ x

0 e−t2
dt and the integral

∫ ∞
0 e−t2

dt = √
π/2. Also

〈v2〉 = 2πCe
α2

4Dv

∫ ∞

0
e
−( v2

2
√

Dv
− α

2
√

Dv
)2

v2vdv = 2π
√

Dve
α2

4Dv

∫ ∞

−α

2
√

Dv

e−U 2
2
√

Dv

(
U + α

2
√

Dv

)
dU

= 4πDve
α2

4Dv

(∫ ∞

−α

2
√

Dv

α

2
√

Dv

e−U 2
dU +

∫ ∞

−α

2
√

Dv

Ue−U 2
dU

)
. (B3)

The first integral is proportional to 1/C and the second integral can be calculated easily:∫ ∞

−α

2
√

Dv

Ue−U 2
dU = 1

2
e

−α2

4Dv . (B4)

Therefore,

〈v2〉 = α + 2

√
Dv

π
exp

(
− α2

4Dv

)[
1 + erf

(
α

2
√

Dv

)]−1

. (B5)

This is different from the expression in Ref. [25] by a minus sign in the exponent of exp (− α2

4Dv
). We go ahead and use the same

method as Refs. [25,44] to obtain 〈v4〉 and also 〈v6〉,

〈v4〉 = 4D2
v

C−1

∂2

∂α2
(C−1), (B6)

where C−1 follows Eq. (B2). And

〈v6〉 = 8D3
v

C−1

∂3

∂α3
(C−1). (B7)

So

〈v4〉 = 2Dv + α〈v2〉, (B8)

and

〈v6〉 = 2αDv + (α2 + 4Dv)〈v2〉. (B9)
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