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Stability of the sectored morphology of polymer crystallites
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When an entangled interpenetrating collection of long flexible polymer chains dispersed in a suitable solvent
is cooled to low enough temperatures, thin lamellar crystals form. Remarkably, these lamellae are sectored,
with several growth sectors that have differing melting temperatures and growth kinetics, eluding so far an
understanding of their origins. We present a theoretical model to explain this six-decade-old challenge by
addressing the elasticity of fold surfaces of finite-sized lamella in the presence of disclination-type topological
defects arising from anisotropic line tension. Entrapment of a disclination defect in a lamella results in sectors
separated by walls, which are soliton solutions of a two-dimensional elliptic sine-Gordon equation. For flat square
morphologies, exact results show that sectored squares are more stable than plain squares if the dimensionless
anisotropic line tension parameter α = γan/

√
h4Kφ (γan = anisotropic line tension, h4 = fold energy parameter,

Kφ = elastic constant for two-dimensional orientational deformation) is above a critical value, which depends
on the size of the square.
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I. INTRODUCTION

One of the outstanding phenomena in polymer systems is
the ability of a collection of interpenetrating and entangled
long flexible polymer chains to organize into crystals upon
cooling. The fact that the chains are intermingled among them-
selves with spatial and dynamical long-ranged correlations be-
fore crystallization begins is responsible for the crystallization
process being topologically frustrated. Remarkably, crystals
do indeed form in spite of such topological frustrations.
A rich phenomenology of polymer crystallization has been
cultivated over the past seven decades, with numerous sets
of experimental data posing challenges for full interpretation
[1–13]. As a prominent feature of the phenomenon of polymer
crystallization, polymer crystals form as thin lamellae with
thickness in the 10 nm range and lateral dimensions in μm
or larger. Even under the simplest situation of crystallization
from a solution containing sufficiently long and unentangled
flexible polymer molecules, single lamellar crystallites have
been observed to form spontaneously into a plethora of
morphologies [14–25]. The size, shape, and regularity of the
crystals depend on their growth conditions such as solvent,
temperature, concentration, and rate of growth. For example,
flat hexagonal lamellae form when polyoxymethylene is
crystallized from bromobenzene [17], whereas flat lozenge-
shaped lamellae form when polyethylene is crystallized from
a mixture of tetrachloroethylene and p-xylene [21]. These
single crystals have different numbers of sectors. As another
specific example, when polyethylene is crystallized from
p-xylene at 70 ◦C, a lamella with four sectors with [110]
growth planes forms; at 86 ◦C, a lamella with six sectors,
four with [110] planes and two with [100] planes, forms.
It is also known that {100} sectors have a lower melting
temperature than the {110} sectors. In addition to sectored
flat lamellae, other morphologies such as hollow tents, hollow
bowls, disks, onionlike, scrolls, and twisted lamellae are also
known to form [14–25]. Despite the availability of rich facts, an
understanding of polymer single-crystal morphology remains
as one of the major challenges.

In this paper, we focus on the phenomenon of sector-
ization in polymer lamellae. Although the sectorization has
been known for about six decades [1–8,14–21,24,25], the
problem of the structure and stability of sectors observed in
lamellar polymer crystallites has hitherto eluded a satisfactory
explanation. Why should flat structures with sectors and bent,
tent-shaped structures that are manifestly deformed be stable?
This paper primarily addresses the stability of the flat, sectored
morphology of polymer crystallites.

Let us, for concreteness, consider polyethylene crystallites
with base-centered orthorhombic symmetry. In the bulk, and
along the c axis of the crystal, the polymer is in all-trans
conformation, thus forming polymer stems (Fig. 1). The stems
are tilted with respect to the lamellar normal (by about 30◦
for polyethylene), and fold back into the lamella by switching
over from trans to gauche conformation at lamellar surfaces.
Folds have preferred orientations with respect to the underlying
crystal symmetry. Figure 2 shows two fold configurations for
polyethylene that have different free energies, schematically
representing the adjacent reentry and the random switchboard
models [26]. It has been argued that the adjacent reentry
configuration (the thick dashed fold denoted in Fig. 2) is
generally of lower free energy [26]. It is important to note
that depending upon the symmetry of the underlying crystal
lattice the lowest free-energy fold configuration can have
different orientations. In general, polymer crystallites have
different point group symmetries, preferred tilt and fold angles.
Moreover, in lamellae with a boundary (edge), symmetry
considerations allow for folds at the edges favoring a specific
orientation with respect to the edge normal, leading to
anisotropy in line tension [27,28]. Addressing the problem
of stability of sectored polymer crystallites is therefore a
formidable task. It must be noted that the lateral sizes of
the lamellar crystallites are four to five orders of magnitude
larger than the atomic dimensions, allowing a continuum
description for these crystallites without addressing specific
and nonuniversal features of the unit cell [14–25]. In this
paper we extract the essential, generic features of flat, lamellar
polymer crystallites, and construct a tractable, continuum,
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FIG. 1. Base-centered orthorhombic unit cell of a crystalline
polyethylene lamella. The lamellar normal is along the z axis. The c

axis of the unit cell is tilted with respect to the z axis. Shaded strips
represent oriented stems formed by all-trans configurations. Folds
are not shown.

phenomenological model for elucidating the structure and
stability of sectors.

The model and the mechanism of stability that we propose
is primarily based upon the fact that for a finite lamella
the ground-state fold orientation in the middle of the fold
surface cannot possibly be compatible with the most favored
orientation of folds throughout the entire boundary of the
lamella. This necessarily leads to deformation in the fold-
orientation field, and costs elastic free energy. For sufficiently
strong anisotropy of line tension, the finite lamella can trap a
vortex in the fold-orientation field (a topological defect, also
known as a disclination) [29]. Moreover, the fold-field lines

FIG. 2. Surface of a polyethylene lamella viewed along the c

axis (see Fig. 1). Stems, together with their orientation, are indicated
by solid lines centered on lattice points. The shaded central region
belongs to a unit cell. Two types of folds are represented by dashed
lines. The two folds differ in free energy. The thick, dashed fold has
the lowest free energy.

FIG. 3. Illustration of an idealized, lozenge-shaped, sectored
lamella bounded entirely by folds with the lowest free energy. The
lamella is divided into four sectors. Folds run along the edges of the
three rhombi shown.

of the disclination (vortex) can split up into sectors separated
by wall defects so as to further reduce the free-energy cost
from anisotropic line tension. In the context of domains of
Langmuir monolayers with tilt order, trapping of vortices
due to anisotropy of line tension has been studied [30]. A
five-armed star defect observed in thin hexatic films with tilt
order [31] has been discussed by Selinger and Nelson [32].
This defect has arms (wall defects) of finite, equal lengths
that emanate from a disclination. However, anisotropy of line
tension plays no role in the stability of the star defect. In
this paper we show that intersecting wall defects separate
sectors, with a disclination situated at the intersection of walls,
and discuss the stability of square-shaped, sectored, planar
lamellae in the parameter space.

The proposed two-dimensional, continuum, phenomeno-
logical model is described in Sec. II. In Sec. II A we discuss
the conventional elasticity of the lamella, which is treated as
a continuum. Section II B deals with the energetics of folds.
We model the preferred orientations of folds through a simple
potential, and the free-energy cost for deviations of the fold
field from the preferred orientation by an elastic free energy
for the continuum fold field. Symmetry-allowed couplings
between the displacement field and the fold field are discussed
in Sec. II C. In addition, there are contributions to the total
free energy from (i) surface tension of the lamella (either in
a solution, or in a melt), (ii) line tension from the edges of
the lamella, and (iii) anisotropic line tension due to folds at
the edges. These are considered in Sec. II D. The potential,
and elastic energies of Sec. II B, as well as the anisotropy of
line tension (Sec. II D) play a crucial role in stabilizing the
sectored morphology. As mentioned above, strong anisotropy
in line tension is capable of trapping a disclination in the
fold field within a lamella of finite extent. Section III has
a simple pedagogical discussion on disclinations and their
energetics. In Sec. IV we minimize the total bulk free energy
to obtain the equation of equilibrium, and solve it exactly.
Typical sketches of the sectored morphology (Fig. 3) in
the literature [22,23] are consistent with our solution to the
equation of equilibrium (Fig. 5) for the model presented in
Sec. II. The solution describes intersecting wall defects in

032506-2



STABILITY OF THE SECTORED MORPHOLOGY OF . . . PHYSICAL REVIEW E 94, 032506 (2016)

the fold field. Across the walls, the orientation of fold field
switches over from one minimum of the potential to the other.
Walls separate the lamella into sectors, with a disclination of
strength +1 in the fold field (rather than in the displacement
field) situated at the point of intersection. This configuration
is topologically stable—changing it to that of the ground state
involves altering the orientation of the fold field throughout
the lamella. However, since the lamella is of finite extent,
it is essential to establish that the sectored morphology is
energetically favored over that of the ground state. In Sec. V
we compare the free energy of a lamella in the ground state
with that of a sectored lamella, and present a diagram for the
region of stability of sectored morphology in parameter space.

II. MODEL

In this section we model the free-energy costs for defor-
mations in thin lamellar crystals with fold surfaces. We first
identify the variables in terms of which the free-energy cost for
deformations can be described within a continuum description.
Since the thickness of crystalline lamellae is much less than
their lateral extent they can be treated as two-dimensional
plates with appropriately modified elastic moduli, as in the
standard theory of thin plates [33]. In the proposed model
the lamellar crystal is treated as two dimensional, with a
one-dimensional boundary. Deformations in the plane of
the flat lattice are described in terms of a two-dimensional
displacement field u(x,y) = [ux(x,y),uy(x,y)], where the xy

plane is the lamellar plane, with lamellar unit normal n̂ parallel
to the z axis. The tilt of stems in the undeformed lamellae
picks out a special direction in the lamellae. In the lowest
free-energy undeformed state, folds at the two fold surfaces
are uniformly aligned. Thus, the ground state of a lamella has
up-down symmetry. The fold direction can be characterized by
a unit, apolar vector field n̂f ≡ −n̂f . Note that we have chosen
a unit director (apolar vector) field to describe the folds with
the understanding that the free-energy cost for stretching or
compression of folds is subsumed in the Hookian elasticity.

A. Hookian elastic free energy

Crystalline lamellae of polymers have a finite thickness and
have a specific point group symmetry. For example, polyethy-
lene crystallites have orthorhombic symmetry. The elasticity
theory of orthorhombic crystals involves nine independent
elastic constants. The tilt of stems picks out a special direction
in the ground state of the lamellae and complicates the situation
further by contributing to the anisotropy of the elastic tensor.
Moreover, changes in the tilt angle and bending of stems can
change the thickness of the lamella.

As mentioned in the introduction to this paper, the
phenomenon of sector formation is observed in polymer
crystallites having different point group symmetries and, con-
sequently, different numbers of independent elastic constants.
To simplify our analysis and to make it general we treat the
crystalline lamellae as homogeneous and isotropic and ignore
the complications that arise because of specific point group
symmetries, tilt orientations, and thickness variations. For flat,
homogeneous, isotropic lamellae, treated as thin plates, the

Hookian elastic free energy is given by [33]

Fu = E

2(1 + σ )

∫ [
σ

1 − σ
uiiujj + uijuij

]
dxdy, (1)

where E and σ are two-dimensional Young’s modulus and
Poisson’s ratio, respectively; the linearized strain tensor
uij = (1/2)[(∂ui/∂xj ) + (∂uj/∂xi)]; xi,xj run over x,y; and
repeated indices are summed over. Here, and in all the
equations below that involve integration over x as well as y,
the integrals are taken over the entire area of the lamella, with
appropriately chosen limits for x and y. In two dimensions,
E > 0 and −1 < σ < 1 for stability.

B. Free-energy contributions from the fold field

Given the crystal structure of the polymer, folds have
preferred orientations with respect to the crystal lattice. The
two most preferred orientations of folds for polyethylene are
shown in the schematic (Fig. 2). These orientations have
different free energies [1]. To simplify the problem at hand
we model the simplest possible case, wherein there are two
equally preferred, orthogonal fold orientations. The n̂f ≡ −n̂f

symmetry then implies that there are four equally preferred
orthogonal directions along which the folds have the least free
energy. We have thus chosen this symmetry so as to stabilize
a square-shaped lamella. A potential with four equally deep
minima;

Vf = h4

4

∫
cos[4φ(x,y)]dxdy, (2)

where φ(x,y) is the orientation of the fold director n̂f(x,y) =
[cos φ(x,y), sin φ(x,y)] in circular polar coordinates. As is ev-
ident from the form of the potential, in the undeformed, ground
state of the lamella, φ can have orientations given by pπ/4,
where p = 1,3,5,7, so that there are four equivalent ground
states, which is consistent with the stipulated symmetry.

Folds can misalign from the preferred orientation. Spatial
variations in φ cost elastic free energy. We model the elastic
free energy of deviations from the preferred orientation by
the standard isotropic squared gradient elasticity for a two-
dimensional deformation in the nematic director [28]

Eφ = Kφ

2

∫
(∇φ)2dxdy, (3)

where Kφ is an elastic constant.

C. Elastic coupling between u and φ fields

Couplings between two fields essentially describe the
response of one field to changes in the other. The couplings
have to be such that the free energy is invariant under
symmetry operations of both the fields. The fold field is apolar,
with the symmetry n̂f ≡ −n̂f . The lowest-order coupling
between the elastic strain uij and n̂f is of the form (uij −
(1/2)δijukk)nfinfj [34], where the factor within the brackets
represents pure shear deformation (the deviatoric strain, devoid
of any hydrostatic compression), the subscripts i,j run over
x,y, and repeated indices are summed over. This coupling
just means that the response to a shear deformation in the
lattice is a change in the orientation of the fold field (and
vice versa). However, this coupling is not harmonic. We have
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consistently restricted ourselves to harmonic terms in writing
the elastic free energies (1), (3), and we ignore the nonlinear
elastic coupling discussed above.

A harmonic coupling between u and φ fields is obtained by
appealing to rotational invariance. A rigid, in-plane rotation of
the undeformed lamella costs no elastic free energy. Rotation
of the crystal lattice is described by the antisymmetric form

δω = 1
2 (∂xuy − ∂yux) = 1

2εij ∂iuj (4)

that is just half the z component of the curl of u. In (4) above,
εij is the totally antisymmetric symbol with εxy = −εyx =
1, εxx = εyy = 0. For rigid rotations of the lamella, δω must
equal δφ—the crystal lattice, and the fold-director field n̂f must
rotate simultaneously by the same amount, so that δω = δφ.
The lowest-order term that describes the free-energy cost for
nonrigid, relative rotations is therefore

Fωφ[u,δφ] = Kωφ

∫
(δω − δφ)2dxdy, (5)

where Kωφ is the coupling constant. A coupling of this form
has been used in the context of nematic elastomers [35,36].
The free energy (5) is minimized for δφ � δω. In the model
we consider, we ignore the coupling (5) for reasons discussed
in Sec. III. These have to do with the high free-energy cost
of a disclination (see Sec. III) in the displacement field, and
are of special significance for the tent morphology of polymer
crystallites (see Sec. VI).

D. Surface- and line-tension energies

In a melt or in a solution, the crystallite has a nonzero
surface-tension free energy

Es = σ

∫
dxdy, (6)

where σ is the coefficient of surface tension; the lamellar
crystallite has two surfaces, the factor of 2 arising from this
has been absorbed in defining σ .

The lamella is decorated with folds; it has orientational
order. In this context, the line tension at the edges has two
contributions. The first contribution

Eis = γ

∮
dl, (7)

is isotropic, with a coefficient γ , and is the usual line tension
that is associated with a surface or a thin film bounded by a
curve. The second contribution is special to materials endowed
with orientational order, and plays a crucial role in the stability
of the sectored morphology. This is the anisotropic line tension
that prefers a particular angle between the outward normal to
the boundary and the field that describes the orientational order
(in this case, the fold director n̂f). This contribution to the line
tension has the Rapini-Papoular form [27,28]

Ean = γan

∮
sin2(φ − φ0)dl, (8)

where φ0 is the preferred angle of orientation of the fold field
at the boundary. Although nonlinear in form, (8) above is the
lowest-order contribution to the anisotropic line tension that is
consistent with the n̂f ≡ −n̂f symmetry.

III. DISCLINATIONS IN TWO-DIMENSIONS:
CRYSTALLINE AND ORIENTATIONAL ORDER

Before addressing the stability of sectored crystallites it is
essential to discuss the structure and energetics of disclinations
in two-dimensional crystals, and in fluid membranes with
orientational order (such as Langmuir monolayers with tilt
order). Let us imagine cutting away a wedge of angle � from
the center of a thin, homogeneous rubber disk. We then close
the angle deficit by sticking together the two newly opened
edges (while keeping the disk flat) and allowing the rubber disk
to relax. This is the Volterra construction of a disclination [29].
Adding up the incremental angle deficits around any closed
loop enclosing the center of the deformed disk yields the total
angle deficit �. The center of the disk is a singular point
(for a quasi-two-dimensional disk). An overall angle deficit
corresponds to a positive disclination. Inserting a wedge in
a straight cut from the center of the disk to its boundary
leads to an angle excess, which corresponds to a negative
disclination. It is important to note that the angle deficit or
excess cannot be arbitrary in crystals because of their discrete
rotational symmetries.

Disclinations are topological defects (point defects in two
dimensions) and are defined via∮

dϑ = 2πs = �, (9)

where the integral is taken around a closed curve that encloses
the singular disclination point, the angle ϑ = 1

2 (∇ × u) · n̂,
where n̂ is the unit normal to the flat crystal, gives the local
rotation of the elastic material. The index of the disclination is
given by s.

It is straightforward to estimate the free-energy cost for
a disclination in a crystal. As is evident from the Volterra
construction, the displacement field for a disclination is a linear
function of the distance from the singular point (at the origin);
u � sr . Suppressing tensorial indices, the elastic free energy
of a disclination in a crystal can be schematically written as

Eω ∝ kel

∫ R

0
(∇u)2rdr ∝ kels

2R2, (10)

where kel is a typical elastic constant, R is the system size, and
we have approximated the elastic free-energy density in (1)
by (∇u)2 = (∂iuj )2. The free energy scales as the area of the
system, and is clearly prohibitively costly.

We now move on to disclinations in fluid membranes
with orientational order. For concreteness, let us consider
the continuum xy model that has vectorial orientational order
described by an angle ψ [29]. For disclinations,

∮
dψ = 2πs

(Fig. 4). This topological condition is satisfied by ψ =
s arctan(y/x). Notice that arctan(y/x) is just the polar angle in
circular polar coordinates. To the harmonic order, the elastic
free-energy density of the xy model is proportional to (∇ψ)2.
Thus the free energy of a disclination is [29]

Eψ ∝ kxy

∫ R

ξ

(∇ψ)2dxdy (11)

∝ kxys
2
∫ R

ξ

1

r2
rdr ∝ kxys

2 ln(R/ξ ), (12)
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(a) (b)

FIG. 4. Elliptic (+1), and hyperbolic (−1) disclinations in the xy

model. Upon traversing an anticlockwise, closed circuit, the vector
field rotates in anticlockwise sense through 2π for a +1 disclination,
and in clockwise sense through 2π for a −1 disclination.

where kxy is the spin-wave stiffness, R is the system size, and
ξ is a cutoff of order intermolecular spacing. In contrast to
crystals, the free energy of a disclination in orientational order
grows logarithmically with system size.

IV. EQUATION OF EQUILIBRIUM FOR THE φ FIELD
AND ITS SOLUTION

To obtain the equation of equilibrium of the φ field,
we minimize the free-energy functional E [φ] = Eφ + Vf

[see (2), (3)]. The first variation of E [φ] gives

δE [φ]

δφ
= −Kφ∇2φ − h4 sin(4φ) = 0, (13)

where φ = φ(x,y), and ∇2 is the Laplacian operator in two
dimensions. This equation is a two-dimensional, nonlinear
partial differential equation, known as the elliptic sine-Gordon
equation [29,37]. It is well known that the one-dimensional
version of this equation admits kink solutions (also referred to
as wall or soliton solutions in condensed matter physics).

To solve this equation in the context of sectors, we first
notice that the potential Vf has four minima. Next, we observe
that setting the preferred angle φ0 for the line-tension term (8)
(i.e., the angle between n̂f and the outward normal n̂b to the
boundary) equal to π/2 simplifies the problem for a square-
shaped lamella. The folds then prefer to run along the edges
of the square. We note that the particular choice φ0 = π/2
is not essential, and the results of calculations that follow do
not depend on this choice. This is because the elastic free
energy (3) of the φ field is isotropic. Thus, we seek a solution
of the Euler-Lagrange equation (13) for a square lamella with
the following features: (i) two intersecting walls along the
diagonals that separate four sectors, and (ii) a +1 disclination
in the φ field situated at the wall intersection.

The equation of equilibrium (13) can be solved exactly
for the desired configuration discussed above. However, the
calculations involved are unwieldy. In what follows we first
give the solution and thereafter present heuristic arguments of
a geometric nature that lead to the solution. The solution is

φ = arctan

(
tanh(y/w)

tanh(x/w)

)
− π

2
, (14)

FIG. 5. Plot of the solution (14). Lines along rounded squares
represent the fold field. Shaded regions represent the two intersecting
walls, with a +1 disclination at the center. The outermost square is
the boundary of the lamella.

where the wall width w = √
Kφ/h4. Verification of this solu-

tion by direct substitution into the equation of equilibrium (13)
also involves complicated mathematical manipulations. Use
of symbolic manipulation software packages eases the task.
The inverse tangent form for solitonic solutions and several
exact solutions of this form, which are expressible in terms of
elementary functions, are well known [38,39]. However, (14)
is a special type of vortex solution to the elliptic sine-Gordon
equation, describing two intersecting solitons with a +1 vortex
(disclination) at their intersection. To our knowledge an exact
vortex solution of this form is not previously known. The
solution describes two orthogonal walls of width w that
intersect at the origin, and split the xy plane into four sectors.
We expect the width w to be of the order of a lattice spacing.
The plot of field lines (or integral curves) of the fold director
n̂f obtained from the solution above is shown in Fig. 5. The
origin is a singular point that is a +1 disclination in the φ

field. Except for a region of width w near the corners of the
square, the fold field is parallel to the boundary of the square
at sufficiently large distances from the origin.

We now turn to the heuristic argument behind the solu-
tion (14). Let us consider a hollow, right pyramid with its
square base in the xy plane, and apex on the z axis. Removal
of the base gives a surface with four faces. For such a pyramid,
it is easy to see that the projection of the unit normal to the
faces onto the xy plane is perpendicular to the square boundary
of the base. Rotating this projected vector field by π/2 makes it
parallel to the square boundary, divides the square into four sec-
tors, and has a +1 disclination at the center of the square. This
is close to the field configuration that we are seeking, except
that the walls separating the sectors are infinitely sharp; their
width is zero. The elliptic sine-Gordon equation (13) has the
length scale w = √

Kφ/h4 associated with it. Therefore, we
need to repeat the procedure described above (projection of the
surface normal followed by rotation by π/2) for a four-sided
surface with rounded edges. Such a surface can be modeled
by the height function h(x,y) = a ln[cosh(x/w) cosh(y/w)],
where a determines slopes of the four faces, and the
length scale w determines sharpness of the four edges
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FIG. 6. Schematic of the surface h(x,y) = a ln[cosh(x/w)
cosh(y/w)].

(Fig. 6). This surface is described by the position vector
R = [x,y,h(x,y)]. The tangent vectors to the surface are tx =
∂x R = (1,0,ã tanh x̃), and ty = ∂y R = (0,1,ã tanh ỹ), where
ã = a/w, x̃ = x/w, ỹ = y/w, with the unit surface normal
given by n̂s = (tx × ty)/|tx × ty |. The projection of n̂s in the
xy plane gives the unit vector with components v̂ = (vx,vy) =
(1/|v|)(−ã tanh x̃,−ã tanh ỹ), where the normalization factor
|v| = a(tanh2 x̃ + tanh2 ỹ)1/2. The angle that v̂ makes with the
x axis is given by φ̃ = arctan(vy/vx) = arctan(tanh ỹ/ tanh x̃).
However, v̂ points towards the origin, and is predominantly
along the normal to the square boundary of the projection,
whereas the fold field prefers to be along the edges of the
square. Compensating for this undesirable global rotation of v̂

by π/2, we obtain the expression (14), which turns out to be
an exact solution to the elliptic sine-Gordon equation.

V. COMPARATIVE ENERGETICS OF DISTORTION-FREE
AND SECTORED SQUARE LAMELLAE

A distortion-free square lamella of finite size does cost
free energy due to the anisotropic line-tension term, because
two opposite edges of the square do not satisfy the condition
φ0 = π/2. By comparing square lamellae of the same area, the
surface tension term as well as the isotropic line tension term
drop out of the problem. The stability of the sectored configu-
ration is clearly determined through the competition between
anisotropic line-tension, potential, and elastic energies. The
free energy of the sectored lamella is obtained by substituting
the solution for φ (14) in the potential energy (2), the gradient
squared elastic free energy (3), and the anisotropic line-tension
free energy (8).

The integrals involved in the calculation described above
cannot be evaluated analytically. Numerical evaluation of the
integrals leads to a morphology diagram delineating the rela-
tive stability of sectored lamella versus the planar, distortion-
free lamella. We identify the key parameter determining the
relative stability in terms of the wall width w, the anisotropic
line tension γan and the elastic constant Kφ . The dimensionless
parameter α = wγan/Kφ = γan/

√
h4Kφ is the measure of the

relative strength of the anisotropic line tension. For every given
size of the square there is a threshold value of α, denoted by
α∗, which separates the regions of stability of the ground state
and sectored configurations. We measure the dimensionless
length L of the side of the square in units of the wall width
w. The dependence α∗ on L is shown in Fig. 7. For any given
L an increase in γan or a decrease in the product Kφh4 leads
to stabilization of the sectored configuration. For small sizes

FIG. 7. Regions of stability of the undeformed square (below
the curve) and the sectored square (above the curve): α∗ is the
threshold value of α = wγan/Kφ that separates the regions of stability
of the ground state, and sectored configurations. These regions are
indicated by an ordinary shaded square, and a crossed, shaded square
respectively. L is in units of the wall width w, γan is the anisotropic
line tension, and Kφ is the elastic constant for two-dimensional
deformation in the nematic director.

of the square, α∗ decreases precipitously as the size of the
square increases. For large L, α∗ decreases weakly with L. We
find that the asymptotic value of α∗ for large L is about 1.68;
however large L may be, the crystallite cannot form sectors
unless α∗ exceeds this value.

VI. CONCLUSIONS

We have constructed a minimal, phenomenological model
to address the relative stability of flat, square-shaped, sectored
polymer crystallites against undeformed, planar crystallites of
the same size and shape. The model uses a combination of the
theories of elasticity and topological defects. Three important
factors determine the stability of the sectored morphology
of polymer crystallites: the orientational potential, the elastic
energy, and the anisotropy of line tension. Minimization of the
bulk free energy comprising elastic free energy and potential
energy of the fold field leads to the elliptic sine-Gordon
equation (13). We obtain an exact solution to this equation (14)
that describes the sectored morphology in terms of intersecting
wall defects, with a disclination situated at the point of
intersection. Wall defects split the crystallite into sectors across
which the fold field switches its orientation by π/2. We
point out that the symmetry-allowed anisotropic line-tension
term (8) is crucial for stabilizing the sectored morphology of
flat polymer crystallites.

An analysis of the solution to the elliptic sine-Gordon
equation leads to unique dimensionless parameter α =
γan/

√
h4Kφ , where γan is the coefficient of anisotropic line

tension, h4 is the strength of the fold-field potential, and Kφ

is the elastic coefficient for deformations in the fold field. For
values of α greater than a threshold value α∗, which in turn
depends on the edge size of the square L, sectored lamellae
are stabilized.

Returning to the comment made in Sec. II C regarding the
importance of the δφ-δω coupling we note the following.
If the coefficient Kωφ is large enough, the coupling free
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energy is minimized for δω � δφ, which in turn means that
the disclination index sφ of the φ field equals su, that of
the displacement field u. However, symmetry considerations
forbid sφ and su from taking arbitrary values. Within the
planar morphologies considered in this paper, the free-energy
cost for a disclination in the u field is proportional to the
lamellar area R2. It is known that buckling of a planar lamella
with a disclination into one that is cone shaped mitigates the
elastic stress in the lamella; dramatically alleviating the R2

divergence to a logarithmic divergence ln R [40]. In the context
of disclination-induced buckling of lamellae, and the tent
morphology of polymer crystallites, the heuristic argument
of Sec. IV for obtaining the solution to (13) gains special
significance.

Our model is well suited to account for the large length
scales pertinent to experimental observations of sectored

morphologies. It does not address the nonuniversal details
ensuing from the crystalline symmetry within ordered domains
of the semicrystalline, sectored morphology with intersecting
wall defects and the associated disclination.

Although we have restricted ourselves to square crystallites
for the sake of simplicity, our model can be extended to treat
other observed planar shapes such as rhombi and hexagons. It
is also of considerable interest to extend our approach to the
tent morphology of polymer crystallites—a tent is a faceted
cone with a disclination at its apex and wall defects along its
edges.
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