
PHYSICAL REVIEW E 94, 032505 (2016)

Discontinuous bundling transition in semiflexible polymer networks
induced by Casimir interactions

Devin Kachan,1 Kei W. Müller,2 Wolfgang A. Wall,2 and Alex J. Levine1,3,4

1Department of Physics, UCLA, Los Angeles, California 90095-1596, USA
2Institute for Computational Mechanics, Technische Universität München, 85748 Garching, Germany

3Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095-1596, USA
4The California Nanosystems Institute, UCLA, Los Angeles, California 90095-1596, USA

(Received 15 October 2014; revised manuscript received 21 August 2016; published 19 September 2016)

Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. We
investigate the role of fluctuation-based or thermal Casimir interactions between cross linkers in a semiflexible
network. One finds that, by integrating out the polymer degrees of freedom, there is an attractive logarithmic
potential between nearest-neighbor cross linkers in a bundle, with a significantly weaker next-nearest-neighbor
interaction. Here we show that a one-dimensional gas of these strongly interacting linkers in equilibrium with a
source of unbound ones admits a discontinuous phase transition between a sparsely and a densely bound bundle.
This discontinuous transition induced by the long-ranged nature of the Casimir interaction allows for a similarly
abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase
and a higher cross link density bundle network. We support these calculations with the results of finite element
Brownian dynamics simulations of semiflexible filaments and transient cross linkers.
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I. INTRODUCTION

Semiflexible networks with transient cross linkers form
the main structural elements of the cytoskeleton of eukaryotic
cells and provide an intriguing arena in which to study
nonequilibrium physics. Due to the steric interactions
between the long filaments (e.g., F-actin) these systems are
typically frustrated, unable to reach more ordered ground
states [1]. In spite of this steric frustration, experiments [2–6]
have found that both the statistical properties of the network’s
structure and its mechanics (rheology) can be reproducibly
predicted as a function of the ratio of the concentrations of the
filaments and their cross linkers. In particular, one observes
an abrupt transition between networks composed of filaments
and networks composed of filament bundles as a function of
cross linker concentration and species. This seems surprising
as one might expect there to be continuous growth of bundles
with increasing cross linker density, which is cutoff in the high
cross linker limit only by the aforementioned steric frustration.

In this article we propose that one can understand the
abruptness of the bundling transition in semiflexible networks
by considering the Casimir or fluctuation-based interaction
between cross linkers bound to the same filament. The basic
physics of this Casimir interaction in semiflexible polymers
has been explored previously [7]. It produces a long-ranged
attractive interaction between neighboring cross linkers
owing to their modification of the small (tens of nanometers)
transverse undulations of the filaments. We present new
calculations showing that, due to the long-range nature of the
Casimir interaction, there is an abrupt condensation transition
in which a gas of free cross linkers abruptly lock nearly
parallel filaments into bundles as a function of cross linker
concentration. We also test the predictions of the fundamental
Casimir interaction between cross linkers and the condensation
transition based on this interaction using large-scale Brownian
dynamics finite-element simulations of the network.

This first order condensation transition appears in spite
of the one-dimensional nature of the problem due to the
long-range (logarithmic) nature of the fluctuation-induced
interaction between cross linkers (violating the van Hove con-
dition [8]). This allows for the abrupt condensation transition
in the line density of cross linkers on the filament at a critical
value of their chemical potential. In the condensed phase
one finds that the bound-linker line density is significantly
enhanced relative to that expected from a simple Langmuir
isotherm [9]. In fact, one rapidly reaches bound-linker satura-
tion, where their line density is limited only by their hardcore
repulsion. Below the condensation point, one finds large linker
density fluctuations, but a small mean concentration, implying
insignificant bundling. Thus, we find that Casimir interactions
between linkers produce a type of binary chemical switch
controlled by linker concentration between two states: (1)
free filaments and a solution of unbound cross linkers below
the transition and (2) bundles composed of filaments that are
maximally coated with cross linkers. We also show that the
existence of the first order bundling transition depends on
the type of cross linker. Specifically, only cross linkers of
the “bundling type,” i.e., those that constrain the local angle
between filaments at the cross link, are capable of inducing an
abrupt, first-order bundling transition.

The article is organized as follows: Sec. II briefly reviews
the pairwise Casimir interaction between cross linkers on
a semiflexible filament. Section III presents evidence from
Brownian dynamics finite element simulations for the exis-
tence of the interaction in physical systems. In Secs. IV and V
we introduce theoretical and simulation results, respectively,
showing that the interaction leads to a sharp condensation
transition in solutions of cross linkers that constrain the angle
between the two bound filaments. These “bundling” cross
linkers admit a first order bundling transition at a critical linker
concentration. That transition changes the character of the
network from a network of individual filaments to a network
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of their bundles. We briefly summarize and comment on the
broader biophysical implications of this result in Sec. VI.

II. CASIMIR INTERACTIONS

The deformations h(z) of a fluctuating semiflexible filament
of length L with bending modulus κ at temperature T can be
described in cases where the filament is much shorter than
its thermal persistence length, L � κ/T (setting Boltzmann’s
constant kB = 1) by the quadratic Hamiltonian

H = κ

2

∫ L

0
dz [∂zh(z)]2. (1)

We assume zero applied tension and that the undeformed
filament is directed along the z axis; see Fig. 1(c). If cross
linkers then bind to this filament such that they pin its position
(e.g., against an elastic background of other filaments [see
Fig. 1(a)], these cross linkers reduce the filament’s entropy.
This effect leads to a logarithmic Casimir [10] interaction
between consecutive cross linkers bound to the same filament
and separated by a distance x:

V (x) = d⊥αT log

(
x

λc

)
. (2)

Here d⊥ is the number of transverse fluctuation dimensions and
α counts the number of degrees of freedom pinned by a cross
linker. For example, if the cross linker exerts only constraint
forces to pin the filament’s position, α = 1 (e.g., “network”
cross linkers such as filamin [11]), but if the cross linkers also
produce constraint torques to control the angle between the
crossing filaments, α = 2 (e.g., “bundling” cross linkers such
as α-actinin or fascin [11]). Soft constraints, such as those
produced if the linkers were to introduce a harmonic potential
controlling these degrees of freedom, result in intermediate
values of α. The length λc represents the volume of phase

FIG. 1. (a) A typical realization of a semiflexible gel. The
fluctuations of a given filament (blue) are reduced by the cross linking
(orange linkers) between it and the network, which is itself a cross
linked gel (red linkers). (b) Finite element simulation of bundle
formation via the Casimir-induced linker condensation: doubly
(singly) bound linkers shown in red (blue). (c) Finite element-based
test of Casimir interactions between three linkers (triangles) on one
filament.

space of a single filament state and is related to �; see Ref. [7]
for details.

The logarithmic form of the Casimir interaction has a super-
ficial resemblance to the loop entropy of flexible polymers [12]
but has a different origin [7]. The Casimir interaction differs in
at least two specific ways from the loop entropy contribution
to the free energy of a flexible polymer loop. First, the Casimir
potential as calculated applies only to cases where the filament
is shorter than its own persistence length, where the standard
calculation of the logarithmic loop entropy is inapplicable.
Second and most importantly the dependence of the potential
on the (chemical) details of the cross linker through the
parameter α emerge only through the Casimir interaction on
semiflexible filaments. The loop entropy of flexible polymers
admits no such effect. By treating the polymer as flexible,
loop entropy cannot depend on the details of how the cross
linker constrains either the direction of the local tangent or,
in fact, higher derivatives. Such constraints affect the entropy
of only one persistence length of the flexible chain, which
constitutes a negligible correction in that case. The effect of
the Casimir interactions in cross linked stiff filaments will
be shown to depend critically upon the type of cross linker,
parameterized by the α in Eq. (2). Due to the fact that both the
filament and the distance between consecutive cross linkers
are small compared to the persistence length, the constraint on
the local filament tangent (and, in principle, higher derivatives
than the tangent) may propagate across the entire system and
thereby have substantial effects. We will see that the first-order
bundling transition occurs only above a critical value of α.

III. SIMULATION OF THE FUNDAMENTAL
CASIMIR INTERACTION

To test the effective potential induced between two cross
linkers by the Casimir interaction, we performed a Brownian
dynamics finite element simulation of a semiflexible filament
with fixed cross linkers. Our computational approach [13,14]
models single filaments with geometrically exact, nonlinear
Timoshenko beam elements [15–17], which account for axial,
torsional, bending, and shear deformation. Viscous drag forces
at the element level are modeled by

f visc = ct ẋ, mvisc = cr θ̇ , (3)

with translational and rotational damping tensors

ct =
⎡
⎣γ‖ 0 0

0 γ⊥ 0
0 0 γ⊥

⎤
⎦, cr =

⎡
⎣γa 0 0

0 0 0
0 0 0

⎤
⎦, (4)

which are given in local coordinates, and translational and
rotational velocities ẋ and θ̇ . Since the filament length L

is far below the persistence length, hydrodynamic damping
constants ζ(.)=γ(.)L for straight rigid cylinders can be taken
from the literature [18]. Stochastic forces and moments are de-
termined in accordance to the fluctuation-dissipation theorem

f stoch =
√

2T st

∂W2
t (s,t)

∂s∂t
,

(5)

mstoch =
√

2T sr

∂W2
r (s,t)

∂s∂t
,
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FIG. 2. Comparison of theoretical (�) Fourier displacement mode amplitudes for a filament hinged at both ends to those computed (�)
from finite element simulations for time discretizations �t = 10−2 s, 10−4 s, and 10−6 s, shown in (a), (b), and (c), respectively. Large (small)
time steps are necessary to sample slow (fast) modes, and collectively the chosen time steps allow one to accurately examine the first 30 modes.

where the damping tensors s{t,r} are chosen to satisfy
s{t,r}s{t,r}T = c{t,r}, and W denotes a standard Wiener process.

Time is discretized using an Implicit-Euler scheme, which,
due to better numerical stability, allows for larger step sizes and
therefore much greater simulated time intervals as compared
to explicit schemes. Full details on the mechanical model, the
numerical method, and the discretization in time are given in
Refs. [13,19,20].

The simulation studied a single filament of length
L= 10 μm and persistence length Lp ≈ 18.4 μm, discretized
with N = 4000 beam finite elements, constituting 24 000
degrees of freedom. Its circular cross section area was set to
A= 1.9×10−5 μm2 leading to a high axial stiffness compared
to its bending stiffness. The moment of inertia of area is set
to I = 2.85×10−11 μm4 and the polar moment of inertia to
Ip = 5.7×10−11 μm4. The initial, stress-free geometry was
chosen straight and parallel to the global z direction. Its
movement was constrained to two dimensions, allowing for
a single dimension of transverse deflections of the filament.
Temperature was set to T = 293 K and the dynamic viscosity
of the fluid to η = 10−3 Pa s.

Three different step sizes �t ∈ {10−2 s; 10−4 s; 10−6 s} of
the time integration scheme were chosen in order to access
a broad set of geometrical configurations of the filament:
A large �t allows for efficient sampling of low-frequency
modes, while a small �t is needed to sample the high-
frequency modes. Figure 2, which compares the observed
Fourier displacement mode amplitudes An for a filament with
hinged boundary conditions at the endpoints to the expected
result from equipartition, A2

n = T/κk4
n for modes with wave

number kn = nπ/L, shows that the three time steps chosen
collectively allow for accurate sampling of approximately
the first 30 harmonic modes. All cases were simulated for
>2 × 105 time steps.

A cross link along the filament was implemented by pinning
the displacement at that point while leaving the filament free
to rotate (α = 1). This is equivalent to assuming both the
cross linkers and background network, shown in Fig. 1(a), are
perfectly incompliant. Relaxing this requirement introduces
a local harmonic potential at the pinning site, but does not
qualitatively change the Casimir interaction [7]. The ends of
the filament were similarly fixed by the same hinged boundary
conditions; see Fig. 1(c). To maintain a tension-free filament,

the ends were allowed to move freely in the longitudinal (ẑ)
direction.

The potential Eq. (2) is difficult to directly measure because
it represents a free energy change ∼T between two differing
linker configurations, each of which has free energies on the
scale of NT , where N is the macroscopic number of filament
degrees of freedom. Fortunately, the Casimir interaction
generates a linear coupling between Fourier modes of the
filament’s deformation so that the linker’s effect on the free
energy may be directly observed from the covariance matrix
of these Fourier amplitudes An, n = 0,1,2, . . ., of filament
displacement. Specifically, we place one linker at z = D and
measure directly the changes in the amplitude correlation
functions 〈AnAm〉 that result. Based on the above model, these
correlations take the form

〈AiAj 〉 = T

κ

⎡
⎣δij

k4
i

−
sin kiD

k4
i

sin kj D

k4
j∑N

n=1
sin2 knD

k4
n

⎤
⎦, (6)

for modes with wave number kn = nπ/L. The first term gives
the standard equipartition result for the filament with hinged
ends only; the effect of the linker at 0 < D < L modifies this
result bringing in off-diagonal corrections. The numerically
obtained covariance matrices are well fitted by Eq. (6) as shown
in Fig. 3 for a representative example with α = 1. Errors are
generally on the order of 10% and decrease with additional
observations.

IV. DISCONTINUOUS BUNDLING TRANSITION

The extension of the two-particle Casimir interaction to a
large number of cross linkers in a network has two nontrivial
features: (i) Because cross linkers will interact only if they are
on the same filament, the full interaction energy of a network
configuration depends explicitly on the network topology, and
(ii) a single filament’s degrees of freedom on either side of the
cross linker are coupled by the condition of slope continuity,
leading to an interaction which is not strictly nearest neighbor.
For these reasons, a treatment of general networks is difficult,
but one particularly simple topology, the bundle, is amenable to
analytic calculations. Moreover bundling cross linkers, which
necessarily require the slope to vanish by quenching angular
fluctuations, generate a strictly nearest-neighbor interaction
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FIG. 3. The Fourier amplitude covariance matrix 〈AnAm〉 for the
first 10 displacement modes An from simulation of a filament pinned
at D = 0.4L. The area and shape of each element represents its log-
normalized magnitude and sign (square + vs circle -), respectively.
The color bar indicates the percent error relative to Eq. (6). The error
magnitude is consistent across different pinning locations.

since the fluctuations on either side of the cross linker are
decoupled.

The simplest bundle model, which we consider here,
consists of two parallel filaments sufficiently close together
so that linkers may join them. We assume that each bundling
linker quenches α local degrees of freedom on the filaments
(e.g., α = 2 implies that the linker pins both the position and
slope of the filaments) leading to a Casimir interaction [given
by Eq. (2)] between nearest neighbors only. The vanishing
of second- and higher-nearest-neighbor interactions is valid
for α � 2; we expect only a weak second nearest-neighbor
interaction for 1 � α < 2 [21]. The x = 0 singularity of the
potential is cut off by the hard-core repulsion of the linker with
radius a/2 so that the linker potential becomes

V (x) =
{∞ x < a

d⊥αT log
(

x
λc

)
x > a

. (7)

The equation of state of linkers in the grand canonical
ensemble interacting via the hard-core repulsion and loga-
rithmic Casimir attraction can be solved exactly in the ther-
modynamic limit of infinite length filaments using standard
techniques [22]. We begin with the partition sum of linkers
in the bundle interacting with nearest-neighbor potential V (x)
written as an integral over the positions xi , i = 1, . . . N of
the linkers. The contribution of the configurational degrees of
freedom for this one-dimensional system of size L is given by

ZN (L) =
∫

· · ·
∫

0<x1<x2<···<xN <L

dx1 · · · dxN exp

{
− 1

T
[V (x1)

+V (x2 − x1) + · · · + V (L − XN ]

}
, (8)

where we have assumed that the particle-wall interaction is
equivalent to the particle-particle interaction. The momentum
degrees of freedom, which are decoupled from the configu-
rational integrals and yield a product of thermal de Broglie

wavelengths, are presently neglected but will be reinstated at
the end of the calculation. Because Eq. (8) has the form of an
N -fold convolution of the function

�(R) = e− V (R)
T , (9)

the partition function may be written succinctly as

ZN (L) = � 
 � 
 · · · 
 �︸ ︷︷ ︸
N

. (10)

Using the fact that convolutions map onto multiplication in
Laplace space, the Laplace transform of the configurational
integral is given by

ZN (s) = [�(s)]N,

�(s) =
∫ ∞

0
e−sx− V (x)

T dx. (11)

Additionally, we have from the definition of ZN (s)

ZN (s) =
∫ ∞

0
dLZN (L) exp{−sL}

=
∫ ∞

0
dL exp

{
− 1

T
(F + sT L)

}
, (12)

where F is the configurational part of the Helmholtz free
energy, F = −T log Z. In the large N limit, the integral is
expected to be sharply peaked so we may safely replace the
integral by its largest value,

ZN (s) ≈ exp

{
− 1

T
(F + sT L)

}
. (13)

The extremal condition requires

d

dL
(F + sT L) = 0, (14)

implying that the quantity p ≡ sT = − dF
dL

, should be inter-
preted as the pressure of the system.

With this association, we recognize F + sT L = F + pL

as the configurational contribution to the Gibbs free energy
G. Furthermore, for an extensive system (appropriate for
strictly nearest neighbor interactions) G = μN , where μ is
the chemical potential. Comparing with the direct evaluation
of the partition function Eq. (11) one finds

ZN (s) = exp− μ

T
N =

[∫ ∞

0
e− px+V (x)

T dx

]N

. (15)

The result is an implicit relation between the pressure p(T ,μ),
which has units of force in one dimension, of the linkers
in the bundle, temperature, and their chemical potential μ.
Substituting the pairwise, hard-core, Casimir-linker potential
Eq. (7) for V (x), and including the contribution of the kinetic
degrees of freedom, one finds the equation of state

μ = −T log

[
T

λtp

(
λcp

T

)d⊥α

�

(
1 − d⊥α,

pa

T

)]
, (16)

where λt is the thermal de Broglie wavelength, and �(s,x) is
the upper incomplete gamma function.

The chemical potential of the linkers on the bundle may
be controlled by allowing them to come into chemical
equilibrium with a solution of free linkers at number density
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FIG. 4. The equation of state of the 1D Casimir gas for different
values of the interaction strength d⊥α. The dashed lines representing
solutions to Eq. (17) agree with Monte Carlo simulations (points).
At high densities, the hard-core repulsion dominates forcing the
equation of state to approach that of the Tonk’s gas. Inset: The Casimir
interaction dramatically reduces the pressure at low densities. For
d⊥α > 2 it vanishes for ρ < ρcrit.

c; treating the linker solution as an ideal gas, one finds
μ = T log cλd

t . Deviations from ideality in the solution phase
may be accounted via standard methods but are immaterial to
our discussion.

The line density ρ ≡ Na
L

, which is obtained by differen-
tiating Eq. (16) with respect to μ, defines the analog of the
Langmuir isotherm [9] for the system. It reads

ρ = a
∂p

∂μ
= pa

T

�
(
1 − d⊥α,

pa

T

)
�

(
2 − d⊥α,

pa

T

) , (17)

where the pressure is given implicitly through Eq. (16). The
α = 0 limit reproduces the Langmuir adsorption isotherms for
linkers treated as an ideal gas with finite hard-core volumes, a
Tonks gas [23]; see Fig. 6.

For α > 0 the long-range nature of the Casimir interaction
leads to a remarkable result in infinitely long bundles: for
sufficiently strong linker interactions d⊥α > 1, their density
in the bundle vanishes when the linker chemical potential
falls below the critical value μ � μcrit = T log[ λc

λt
(d⊥α − 1) ].

Moreover, for d⊥α > 2, upon increasing μ past μcrit, the line
density jumps discontinuously from 0 to ρ = ρcrit = d⊥α−2

d⊥α−1 .
Due to the Casimir interaction, this condensed linker phase is
actually a highly correlated fluid, even at low densities [24].

Both of these results persist in finite-length bundles, as
confirmed both analytically by introducing a long distance
cutoff to the interaction and computationally via Monte Carlo
simulations of N = 10 000 particles adsorbing onto a line at
fixed chemical potential with Metropolis-Hastings dynamics.
A comparison of the Monte Carlo results (points) and the
analytic calculations (lines) for infinite length filaments are
shown in Figs. 4 and 5. In Fig. 4, we observe that the
one-dimensional pressure of the linkers at fixed line density
actually vanishes below a critical concentration owing to the

FIG. 5. Langmuir isotherms of a Casimir gas in equilibrium with
an ideal gas of cross linkers at fixed chemical potential. The points
represent results from grand canonical Monte Carlo simulations of
N = 10 000 particles adsorbing onto a line and interacting with the
hard-core Casimir potential. For d⊥α > 2 the system undergoes a
condensation transition in the thermodynamic limit: The cross-linkers
spontaneously condense to the critical density ρcrit = d⊥α−2

d⊥α−1 at μcrit =
kBT log [ λc

λt
(d⊥α − 1)]. Note the softening of the transition for d⊥α =

4 due to finite size effects.

Casimir interaction canceling the entropic (essentially, ideal
gas) pressure of the hard-core linker fluid. When the linkers in
the filament bundle are in chemical equilibrium with a linker
reservoir at fixed chemical potential (e.g., solution of linkers),
we observe the expected jump in bound linker density at a
critical chemical potential: ccrit : μ(ccrit) = μcrit. This linker
condensation transition is somewhat rounded for finite-length
filaments but remains remarkably sharp in comparison to the
Langmuir isotherm of a simple Tonks gas, a system with
hard-core repulsion but no long-range Casimir interaction.

We note that a similar transition occurs for linkers that
restrict the torsional fluctuations of a bundle [25]. Furthermore,
we note that any generic logarithmic inter-linker potential will
induce a similar transition. For example, flexible polymer
bundles, which have an effective logarithmic interlinker
interaction due to the loop entropy of the polymers, have been
shown to display condensation behavior [26,27]. The Casimir
interaction, however, should be the dominant mechanism for
inducing bundling in biopolymer filaments, where the linker
spacing is always well below the persistence length of the
filaments.

At small chemical potential μ, the decrease in linker
density in the bundle with increasing α is surprising, given the
attractive nature of the Casimir interaction. At low density,
however, adding another linker to the bundle introduces
an entropic contribution to the free energy ∼ − T log L/N ,
but this can be more than offset by the loss in filament
entropy, which is the source of the Casimir interaction,
∼d⊥αT log L/N , leading to a net increase in free energy
due to the additional linker. This is possible because both the
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translational entropy of the linker and its Casimir interactions
are entropic and thus proportional to T .

V. SIMULATION OF THE BUNDLING TRANSITION

We turn to large-scale, finite-element, Brownian dynamics
simulations to explore the effect of Casimir interactions in
larger and more complex bundles, such as those expected
in cytoskeletal networks. The computational methods are the
same as those used in the numerical studies already discussed
in Sec. III. Here we used those methods to simulate a single
central filament surrounded by six outer filaments, all subject
to hinged boundary conditions at one end; see Fig. 1(b).
This configuration avoids the potential for frustrated dynamics
associated with bundle formation and is large enough to allow
for multiple filament interactions within the bundle, while
remaining computationally tractable. We expect that larger
bundles of filaments should behave in similar ways, but may
trap more filament twists, which then relax on very long time
scales. We discuss this point further in the summary.

The seven-filament bundle was immersed in a solution of
cross linkers that pin the slope of the filaments (α = 2) at
fixed concentration (therefore fixed chemical potential). The
filaments were allowed to move in three dimensions (d⊥ = 2)
(subject to their fixed boundary conditions at one end), so
the expected prefactor in the Casimir potential is d⊥α = 4.
Thus, we expect to observe a first-order bundling transition at
a critical chemical potential of the cross linkers.

The Langmuir isotherms for simulations of two different
length bundles are shown in Fig. 6 alongside a best theoretical
fit (dot-dashed, green line) with two free parameters: a trivial
horizontal shift representing a choice of reference chemical
potential, and a vertical scaling which effectively tunes the
strength of the hard-core repulsion. For comparison, we also

FIG. 6. Theoretical and simulated Langmuir isotherms of linkers
adsorbed onto a filament bundle. (�) Simulation data for a 5 μm
bundle with persistence length lp = 9.2 μm. (�) Both the system
size and the persistence length doubled to study finite size scaling
effects. The transition is noticeable sharper and is approaching the
expected thermodynamic limit.

plot the best fit Langmuir isotherm for a Tonks gas (dashed,
blue line), showing that, without the Casimir interaction,
one cannot account for the sharpness of the condensation
transition. As the bundles are made longer (filled triangles) the
transition is observed to become even sharper in the simulation,
suggesting that the observed rounding is a finite size effect.

The large error bars near the transition indicate significant
density fluctuations. These may be understood by inverting
Eq. (17) to give the pressure in terms of of density, as shown
in Fig. 4. Bound linker number fluctuations 〈(�N )2〉/N2 are

proportional to ( ∂p

∂L
)
−1 = −L2N−1( ∂p

∂ρ
)
−1

. For d⊥α > 1, the
derivative of the pressure with respect to density vanishes at
small densities, resulting in large density fluctuations.

VI. CONCLUSIONS

We have demonstrated the predicted Casimir interactions
between cross linkers in semiflexible filament networks in
large-scale numerical simulations. Using the previously ob-
tained effective Casimir potential between consecutive cross
linkers, now validated numerically, we predict a type of
first-order bundling transition in which at a critical linker
concentration, a network should transition from individual
filaments to bundles. This abrupt transition (which is actually
discontinuous in the thermodynamic limit) is quite distinct
from the naive Langmuir adsorption behavior of sticky
linkers binding to a filament network. The abruptness of this
transition suggests that, due to strong collective effects, the
chemical system of semiflexible filaments and bundling cross
linkers admits a type of binary switch between two different
morphologies, controlled by the concentration of the linkers.

Cells may take advantage of equilibrium Casimir inter-
actions to control cytoskeletal structure. They might exploit
this strongly interacting system to effect dramatic topological
rearrangements of the cytoskeleton via small changes in the
concentration of cross linking proteins, by tuning the linker
concentration to near the critical one. As such they might
capitalize on this high susceptibility point where small changes
in protein expression levels lead to large-scale network
rearrangements. The difference in the elastic response of
filament networks and bundle networks is stark [28] and
potentially amenable to precise chemical control, at least for
linker chemical potential near μcrit. Alternatively, cells may
tune linker concentrations far from this high susceptibility
point in order to effectively decouple linker concentration from
their cytoskeletal structure.

We also note from our simulations that upon the addition of
linkers to a previously oriented set of filaments, the resulting
bundle contains a number of quenched in twists. The bundle
takes the form of a random braid. An example of such a twist is
seen in Fig. 1(b), where a complex twist of multiple filaments
is seen in the middle of structure. Over the course of our
simulations we did not observe the subsequent relaxation of
these twisted structures. We expect that the expulsion of twist
from the bundle is quite likely to be a slow process in that many
linkers must be broken to eliminate a twist from the middle of
the bundle. As a result, we expect that twist relaxation results
from the slow process of twist diffusion to the ends of the
bundle.
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The broadest extension of the present work is addressing
the analog of this bundling transition in a complex filament
network. Since linkers interact only when bound to the same
filaments, their Casimir interactions are both long-ranged and
highly selective, acting over long distances in the network but
only along select pathways. As such, the Casimir interactions
both control and depend on the evolving network topology.
For example, one may ask whether the linker gas could drive
the alignment of parallel filaments in a bundle in order to
maximize the length over which doubly bound linkers could
move, at the cost of filament translational entropy. We suspect

that Casimir interactions may drive a such transition from
an aligned filament phase to a sliding phase as a function of
filament length.
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