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Multiscale approach to equilibrating model polymer melts
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We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts
of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale,
inside the tube and finally at the monomeric scale. We make use of models designed to be computationally
effective at each scale. Density fluctuations in the melt structure above the tube scale are minimized through a
Monte Carlo simulated annealing of a lattice polymer model. Subsequently the melt structure below the tube scale
is equilibrated via the Rouse dynamics of a force-capped Kremer-Grest model that allows chains to partially
interpenetrate. Finally the Kremer-Grest force field is introduced to freeze the topological state and enforce
correct monomer packing. We generate 15 melts of 500 chains of 10.000 beads for varying chain stiffness as well
as a number of melts with 1.000 chains of 15.000 monomers. To validate the equilibration process we study the
time evolution of bulk, collective, and single-chain observables at the monomeric, mesoscopic, and macroscopic
length scales. Extension of the present method to longer, branched, or polydisperse chains, and/or larger system
sizes is straightforward.
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I. INTRODUCTION

Computer simulations of polymer melts and networks allow
unprecedented insights into the relation between microscopic
molecular structure and macroscopic material properties such
as the viscoelastic response to deformation; see, e.g., [1–4].
Such simulation studies rely on very large model systems to
reliably estimate material properties, and an important obstacle
is the generation of large well equilibrated model systems for
long entangled polymer chains.

What do we mean by equilibrium in the case of a linear
homopolymer polymer melt? (1) Polymeric liquids have bulk
moduli comparable to that of water, and they are nearly
incompressible. Hence in equilibrium, we expect model melt
states without significant density fluctuations. (2) Single chains
in a melt adopt self-similar random walk statistics because
excluded volume interactions are screened at length scales
sufficiently large compared to monomeric scales. Hence in
equilibrium, we expect model states without significant devi-
ations from random walk statistics. (3) At mesoscopic scales,
many polymer chains pervade the same volume, such that
chains are strongly topologically entangled. This gives rise to
the well known plateau modulus [5]. Hence in equilibrium, we
also require model melts that achieve the correct entanglement
density. (4) Finally at the monomeric scale we require the
correct monomeric packing, such that we can expect to run
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long stable simulations where topology is preserved. Taken
together, these constraints couple the conformations on scales
that range from monomeric to macroscopic length scales.
This makes the problem of making equilibrated model melts
particularly difficult, and this problem is acerbated in the case
of heteropolymers or for branched polymers which are of
significant industrial interest.

Brute force equilibration of model polymer materials is
typically not feasible. Polymer materials display dynamics
over a huge range of time scales. Even for polymers of
moderate size, their largest conformational relaxation times
are many orders of magnitude beyond that which is currently
available via brute force simulation. Monomeric motion takes
place on picosecond time scales, whereas conformational
relaxation times can easily reach up to macroscopic time
scales. For a long linear polymer chain the dominant relaxation
mechanism is reptation [6–8] which gives rise to relaxation
times τ ∼ N3 where N is the number of monomers [7]. In
the case of star shaped polymers, reptation is not possible
and the dominant relaxation mechanism becomes contour
length fluctuations [9], in which case the relaxation times are
τ ∼ exp(Narm), where Narm is the number of monomers in an
arm [10].

To our knowledge, there are three major strategies for
equilibrating model polymer melts that address the challenges
raised above: (a) algorithms that attempt to construct equi-
librium model melts with the correct large-scale single chain
statistics; (b) algorithms that utilize unphysical Monte Carlo
(MC) moves to accelerate the dynamics compared to brute
force molecular dynamics (MD), which simulates the real
physical polymer dynamics; (c) algorithms using different
models, e.g., utilizing softer potentials and a push-off process
to allow chains to cross to accelerate the relaxation process.
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In the present approach we combine all these approaches, but
before presenting our approach we review examples of these
strategies found in the literature.

It is easy to generate single chain conformations with
the desired large scale chain statistics. Equilibration proce-
dures following this approach typically place the resulting
chains randomly into the simulation domain. However, when
monomer packing is introduced, the presence of density
fluctuations in the initial state cause significant local chain
stretching and compression. Brown et al. [11] were the first
to recognize the importance of such density fluctuations. This
was analyzed in detail by Auhl et al. [12], who made two
proposals of how to resolve the density fluctuations, either to
accelerate the relaxation utilizing double bridging moves, or
to prepack the chains in space to avoid density fluctuations.
This was done using Monte Carlo simulated annealing and
accepting only moves that reduce density fluctuations [12].

A completely different approach is has been proposed by
Gao [13]. The idea is to start by an equilibrated liquid of
monomers and then to create bonds between the monomers
corresponding to a melt of polymers. This completely sidesteps
the issue of density fluctuations, since the monomeric liquid
is also incompressible. However, the problem becomes how
to identify a set of potential bonds to that correspond to
a monodisperse melt of long linear or branched polymers.
To reach near complete conversion Gao had to increase the
search distance for the last bonds, and to remove the last
monomers that could not be bonded. Whereas Gao performed
instantaneous bonding on a frozen monomer liquid, Barrat
and co-workers [14] extended the method by allowing the
monomers to move during bonding. This has the effect of
enhancing the search distance for bonding. This method still
has issues with producing monodisperse melts, Barrat and co-
workers solved the problem by aborting the bonding procedure
when 80% of the monomers are linked into monodisperse
chains, and then removing the last 20% of monomers. The
resulting states were then compressed to the target pressure,
which globally deforms the chain statistics.

Monte Carlo (MC) techniques have the advantage that
unphysical moves can be used to accelerate the relaxation
dynamics compared to MD techniques, which follow the
physical dynamics. A key contribution to the equilibration
of polymer melts has been the complex MC moves developed
by Theodorou and co-workers [15,16]. End-bridging moves
work by identifying an end monomer of one chain and an
internal monomer of another chain where the two monomers
are in close proximity. The move is performed by cutting
the tail chain at the internal monomer and attaching it to
the end of the neighboring chain [16,17]. Double bridging
moves work by identifying two pairs of bonded monomers in
spatial proximity. The move is performed by replacing the two
intramolecular bonds by two intermolecular bonds to swap the
tails of the two polymers. The result of these moves is a melt
conformation with a new chemical connectivity. Compared
with end-bridging moves double-bridging preserves the chain
length when equivalent bead pairs along the polymer contours
are chosen.

The double bridging moves are the best way currently
known to accelerate the polymer dynamics in dense melts,
but the method suffers from two major problems: (1) as the

chain length is increased the density of potential sites for
double bridging drops, and (2) the new proposed connectivity
can have a high configurational energy, hence necessitating
further tricks to relax the conformation to ensure a reasonable
acceptance rate. For instance, it was proposed to reconnect
not just monomers, but to grow small bridge segments in
order to reduce the conformational energy of the proposed
new state [15]. These methods have been used to equilibrate
linear melts of polyethylene up to 1000 monomers [15,18], and
polydisperse polyethylene melts up to 5000 monomers [19].
They have also been applied to branched molecules [20–22]
and grafted polymers [23,24].

The first multiscale approach was introduced by
Subramanian [25,26], who applied it to linear and branched
melts. His idea was to start by equilibrating a coarse represen-
tation of the polymer, and successively rescale the simulation
domain by while doubling the number of beads in the polymer
model. In this way polymer conformations are successively
equilibrated on smaller and smaller length scales. A more
sophisticated version of hierarchical equilibration has been
studied by Zhang et al. [27], where a range of blob chain
models were successively fine grained with a force field that
depended on the scale of fine graining. The most recently
proposed equilibration method is that of Moreira et al. [28],
who develop the Auhl method further by applying a warm-up
procedure where pair interactions are slowly introduced via a
cap on the maximal force as well as the cutoff distance of the
pair interactions that is progressively raised using an elaborate
feedback control mechanism during the equilibration process.

Equilibrated melts of atomistic polymer models can be
obtained via fine-graining from a coarse-grained polymer
model. Theodorou and Suter [29,30] studied polymer melts
with atomistic models which they prepared by growing
atomistic polymer models bond-by-bond in the simulation
domain using a metropolis acceptance criterion while taking
nonbonded interactions into account when choosing bond
angles. The resulting states were then energy minimized.
Carbone et al. [31] produce atomistic polymer melts by gener-
ating continuous (nonpacked) random walks and fine-graining
them using an atomistic polymer models. For each continuous
random walk, a corresponding atomistic polymer chain is
created by confining the configuration to follow the continuous
random walk, and intrachain monomeric packing is slowly
introduced through a simulation with a soft push-off potential.
In a second step, the atomistic polymer chains are placed
in the simulation domain, and a second push-off procedure
is performed to introduce interchain monomeric packing. A
similar approach was used by Kotelyanskii et al. [32] but
using self-avoiding random walks on a cubic lattice for the
initial random walks, which resolves the packing problem.
Recently, Sliozberg et al. [33] equilibrated a one million atom
system of polyethylene using an united atom model. Similar to
Theodorou and Suter the polymers are grown in the simulation
domain, taking chemical structure into account to some extent.
The resulting melt conformations are then simulated with a soft
DPD inspired potential to gently introduce excluded volume
interactions, until they can be switched to the final united-atom
force field.

In the present paper, our aim is to present a general, simple,
and computationally effective method of rapidly generating
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FIG. 1. Visualization of a melt of 1000 chains of 15 000 beads
each during the equilibration process. All the polymers are shown on
the left hand side of the box, while the same ten randomly selected
polymers are shown on the right hand side of the box. Conformation
just after lattice annealing (a), after 0.1τe (b), and 1τe (c) of Rouse
dynamics simulation with the force-capped KG model, and final melt
configuration after KG warmup (d).

very large equilibrated melts of polymers. We illustrate the
method by creating equilibrated monodisperse linear Kremer-
Grest (KG) [34] polymer models. This polymer model is
the standard model for molecular dynamics simulations of
polymers. The KG model is generic and describes universal
polymer properties without attempting to model chemical
details of specific polymer species. Chemical details can be
introduced in the KG model by varying the effective chain
stiffness, which allows us to use this model for studying
universal properties of specific polymer types [35]. Here we
study how to produce equilibrated melts for a wide range of
chain stiffnesses. The typical size of the melts we generate in
this study comprise 5–15×106 beads for chains of 15 000 beads
per chain or 200 entanglements per chain. These numbers
are chosen be about a factor of 5 above the state of the art,
e.g., [27,28]. However, we are by no means pushing the limits
of the present equilibration approach.

We borrow ideas from many of the approaches described
above, but with a few twists and improvements, the most
important being that we use different polymer models and
methods at different scales just as Rosa et al. [36]. First we
equilibrate the melt above the tube length scale. We model
a polymer as a random walk of entanglement blobs on a
cubic lattice and minimize density fluctuations using Monte
Carlo simulated annealing [Fig. 1(a)]. The lattice melt con-
formation is transferred to a bead-spring melt conformation.
Subsequently we equilibrate the chain structure inside the
tube using a molecular dynamics simulation of a capped force
field inspired from dissipative-particle dynamics [37,38]. We

have designed this model to reproduce the chain statistics
of the desired target KG model. The force-capped model
produces Rouse dynamics, and after a short simulation we
achieve the equilibrium local chain structure and entanglement
density without reintroducing density fluctuations [Figs. 1(b)
and 1(c)]. Finally we transfer the force-capped melt state to the
KG force field and thermalize the conformations to produce
the correct local bead packing [Fig. 1(d)].

Each of these stages are fast because we are using computa-
tionally efficient models at each scale. For the lattice annealing,
we use a Hamiltonian that only depends on the local blob
density, and hence is fast to evaluate. Furthermore, one of the
moves we use is a double-bridge move. On a lattice candidate
moves are easy to identify and they are always accepted which
leads to fast equilibration dynamics. The lattice annealing is
the only part of the our procedure that depends on the specific
molecular structure. However, since the lattice melts are highly
coarse-grained and we use effective moves, the computational
effort required for the lattice annealing is trivial. In the second
stage, the force cap allows chains to partially pass through each
other, which accelerates the dynamics by reducing the effective
bead friction. By retaining a weakly repulsive pair interaction
we also ensure that density fluctuations continue to be annealed
further during this stage. The largest computational effort
goes into this stage, which is given by the entanglement time
of the force-capped model. This is independent of the large
scale molecular structure of the polymers, hence we can
equilibrate an arbitrarily branched polymer melt in the same
time as it takes to equilibrate a simple linear melt. The
final thermalization with the target KG model is required
to equilibrate the local bead structure and reduces density
fluctuations even further; this only requires a brief simulation
to allow beads to move a distance of the order of their own size.

The paper is structured as follows; In the short theory
section we introduce the basic concepts and quantities charac-
terizing polymer melts. In Sec. III, we define the three polymer
models that we use in the paper, and characterize them to the
extent required for transferring melt states between them. In
Sec. IV, we proceed to characterize the equilibration process
in terms of single-chain, collective, and bulk observables at
microscopic, mesoscopic, and macroscopic scales. Finally, we
conclude in Sec. V. In Appendix A we present the equilibration
process in the form of an easy to follow recipe, and in
Appendix B we derive some results for structure factors.

II. CHARACTERISTICS OF POLYMER MELTS

Below we introduce the characteristic spatial and temporal
scales associated with polymers conformations and their
dynamics. At the molecular scale, we can characterize the
single chain statistics in a polymer melt as a ideal random
walk, since excluded volume interactions are approximately
screened [39,40]. We can characterize chain statistics either
in terms of number of carbon atoms in the backbone or
number of monomers, however, since our target here is the
KG bead-spring model, we express conformations in terms of
the number of beads Nb per chain. The end-to-end distance of
a chain of Nb beads is then given by

〈R2(Nb)〉 = cbl
2
bNb = lKLK, (1)
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where lb is the average bond length, and cb = lK/ lb is
the chain stiffness due to bead packing and local chain
structure. For Nb � 1 the chain stiffness is given by cb =
[〈cos θ〉 + 1] / [〈cos θ〉 − 1], where θ denotes the angle be-
tween subsequent bonds. At the Kuhn scale (denoted by
subscript “K”) the chain statistics becomes particular simple.
It is described by a random walk with contour length LK =
lKNK = lbNb where the walk consists of NK Kuhn segments
that are statistically independent, i.e., cK = 1 at and above the
Kuhn scale.

The Kuhn length can be estimated using

lK = 〈R2(Nb)〉
LK

= 2
√〈

l2
b

〉 ∫ Nb

0

(
1 − n

Nb

)
C(n)dn, (2)

where we have expressed the mean-square end-to-end dis-
tance in terms of the bond correlation function C(n) =
〈b(m) · b(m + n)〉m. This correlation function characterizes
along how many bonds correlations between bond directions
persists. The bond correlation function is easy to sample from
simulations.

To define a mesoscopic length scale due to collective chain
effects, we can look at the most characteristic macroscopic
material property of a polymer melt—the plateau modulus.
Since polymers cannot move through each other, thermal
fluctuations are topologically constrained. This leads to a
localization of the thermal fluctuations inside a tubelike
shape of typical size dT [41]. Each topological entanglement
contributes a free energy of kBT , and the plateau modulus is
the corresponding free energy density

GN = 4

5

ρKkT

NeK

. (3)

Here ρK = ρb/cb is the number density of Kuhn segments,
ρb is the number density of beads, k is the Boltzmann
constant, and T is the temperature. The entanglement length
Nek is a measure of the contour length between topological
entanglements along the chain. Note that we specify it in terms
of Kuhn units and not beads between entanglements. In the
present paper, we generally report results in terms of Kuhn
units rather than numbers specific for the KG model. This is
to simplify comparisons with theory and experiment, since in
Kuhn units we would characterize a real chemical molecule
and one of our model molecules with exactly the same numbers
independent of the chosen polymer model. The 4/5 prefactor is
due to the entanglements lost as the stretched chains initially
retract into the tube to reestablish their equilibrium contour
length [5].

We can relate the length of a tube segment dT to the number
of Kuhn units it contains as d2

T = l2
KNeK and Z = NK/NeK

as the number of entanglements or tube segments per chain.
Since the tube is a coarse representation of the chain it contains,
the large scale tube and chain statistics must coincide, while
below the tube length scale, the tube is straight and the chain
performs a random walk. In particular, the chain end-to-end
distance matches the end-to-end distance of the tube 〈R2〉 =
d2

T Z = l2
KNK .

The dynamics of short unentangled polymer melts, is
described by the Rouse model [5,42], which also describes
the local dynamics of long entangled melts. In this model, a
chain is represented by a flexible string of noninteracting units

connected by harmonic springs, i.e., each unit represents one
Kuhn segment of the polymer. Besides the forces that arise
due to connectivity, each unit also receives a stochastic kick
and is affected by a friction force, i.e., the Rouse model is
endowed with Langevin dynamics. The combined effects of
these two forces are to model the presence of the other chains in
the melt. The Rouse model can be solved exactly analytically
by transforming it to a mode representation; see, e.g., [5]. In
particular, the Rouse model predicts the chain center-of-mass
diffusion coefficient Dcm and its relation to the Kuhn friction
ζK as

Dcm = kT

ζKNK

, (4)

which has the form of a fluctuation-dissipation theorem. This
relation can be inverted to derive the Kuhn friction from
a measured diffusion coefficient. The fastest dynamics is
that associated with the diffusive motion of individual Kuhn
segments one Kuhn length, i.e., τK ∼ l2

KD−1
K ∼ ζKl2

K/kT . A
more careful derivation provides the prefactor as

τK = ζKl2
K

3π2kT
. (5)

In the case of entangled melts, we can define the entangle-
ment time which is the characteristic time it takes an entangled
chain segment to diffuse the length of a tube segment τe ∼
d2

T (DK/Ne)−1 ∼ l2
KN2

e ζK/kT , and with the correct prefactor

τe = τKN2
e = ζK

3π2kT

d4
T

l2
K

, (6)

the entanglement time is typically much larger than the funda-
mental Kuhn time. The conformational relaxation times due to
reptation (linear polymers) or contour length fluctuations (star
polymers) is again typically much larger than the entanglement
time.

The Kuhn length is a microscopic single chain property,
and the tube diameter is a collective mesoscale property that
is typically associated with pairwise entanglements [43]. In
order to characterize bulk large scale melt properties and in
particular density fluctuations, we use the structure factor. The
structure factor is defined as

S(q) = (NbM)−1

˝∣∣∣∣∣∣
M∑

j=1

Nb∑
k=1

exp(iq · Rjk)

∣∣∣∣∣∣
2˛

, (7)

where q is the momentum transfer in the scattering process.
M denotes the number of polymers, and Rjk is the position
of the kth bead in the j th polymer. We assume for nota-
tional simplicity that all polymers have the same number of
beads. When performing simulations with periodic boundary
conditions, we are limited to momentum transfers on the
reciprocal lattice of the simulation box, i.e., q vectors of the
form q = (2πnx/L,2πny/L,2πnz/L), where L denote the
box size. Since the melts are isotropic, we average and bin
the structure factor based on the magnitude of the momentum
transfer vector denoted q = |q|. The structure factor for small
q values converges to limq→0 S(q) = χT ρkT where χT is the
isothermal compressibility of the melt. For a further discussion
on density fluctuations and compressibility, we refer to the
more detailed derivations in Appendix B.
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III. POLYMER MODELS

In the following, we define and characterize the three
polymer models employed in the present study: We begin with
the KG model (Sec. III A); we also introduce a force-capped
variant of the KG model (fcKG) (Sec. III B), and finally we
introduce a model where chains are modelled as a string
of entanglement blobs on a lattice (Sec. III C). We also
characterize the Kuhn length for both the KG and fcKG models
(Sec. III D), the tube diameter for the KG model (Sec. III E),
and finally the Kuhn friction of the fcKG model (Sec. III F).
These relations are required to transfer melt conformations
between the different polymer models, and to determine how
long a Rouse simulation is required for the equilibration
process.

A. Kremer-Grest polymer model

The end goal of the present equilibration procedure is to
produce an equilibrated KG model melt [34,44]. This is a
generic bead-spring polymer model, where all beads interact
via a Weeks-Chandler-Anderson (WCA) potential,

UWCA = 4ε

[(
σ

r

)−12

−
(

σ

r

)−6

+ 1

4

]
for r < 21/6σ,

(8)

while springs are modeled by finite-elastic-nonextensible
spring (FENE) potential,

UFENE = −kR2

2
ln

[
1 −

(
r

R

)2
]

, (9)

where we choose ε and σ as the units of energy and distance
respectively. The unit of time is τ = σ

√
mb/ε where mb

denotes the mass of a bead. We add an additional bending
interaction given by

Ubend(
) = κ (1 − cos 
) . (10)

The bending potential was introduced by Faller and Müller-
Plathe [45–47]. The KG models are simulated using Langevin
dynamics, which couples all beads to a thermostat, and allows
long simulations at constant temperature to be performed with
reasonable large time steps. The Langevin dynamics is given
by the conservative force due pair and bond interactions, as
well as a friction term and a stochastic force term:

m
∂2 Rn

∂t2
= −∇Rn

U − 
∂

∂t
Rn + ξn, (11)

where the stochastic force obeys 〈ξn〉 = 0 and 〈ξn(t) ·
ξm(t ′)〉 = 6kT δ(t − t ′)δnm. The standard choice of the FENE
bonds are R = 1.5σ and k = 30εσ−2, which produce a bond
length of lb = 0.965σ [25]. The number of beads per Kuhn unit
is given by cb = lK (κ)/lb. The standard value for the thermo-
stat coupling is  = 0.5mbτ

−1. KG model melts are typically
simulated with a bead density of ρb = 0.85σ−3. We use a time
step of �t = 0.01τ . For integrating the dynamics of of KG
model, we utilize the Grønbech-Jensen/Farago Langevin inte-
gration algorithm [48,49] implemented in the Large Atomic
Molecular Massively Parallel Simulator (LAMMPS) [50].

B. Force-capped KG model

The KG model preserves topological entanglements via
a kinetic barrier of about 75 kT for chain pairs to move
through each other [51]. This is due to the strong repulsive
pair interaction in combination with a strongly attractive bond
potential that diverges when bonds are stretched towards the
maximal distance R. Preserving topological entanglements is
essential for reproducing the plateau modulus. The lattice melt
configurations has the correct large scale chain statistics, but
as we will show later, the density of entanglements is much
too low, hence directly switching from a lattice configuration
to a topology preserving KG polymer model would produce
model melts with a wrong entanglement density. Hence we
need a computationally effective model to introduce the correct
random walk statistics inside the tube diameter, and hence
produce the correct entanglement density before switching to
the KG model.

The force-capped KG model (fcKG) should solve this
problem by (1) performing a Rouse like dynamics to introduce
local random walk chain statistics, (2) prevent the growth of
density fluctuations, (3) avoid the numerical instabilities due
to short pair distances or long bonds which can occur in the
lattice melt state or during the Rouse dynamics of the fcKG
model, and finally (4) approximate the ground state of the KG
force field such that we can transfer fcKG melt states to the
KG force field with a minimum of computational effort.

Inspired from dissipative particle dynamics [37,38] and a
previous equilibration method [27,28], we apply a force cap
to the WCA potential as follows:

U
cap
WCA(r) =

{
(r − rc) dUWCA

dr

∣∣
r=rc

+ UWCA(rc) r < rc

UWCA(r) otherwise
.

(12)
The inner cutoff distance rc determines the potential at

overlap. We choose U
cap
WCA(r = 0) = 5ε which corresponds to

an inner cutoff of rc = 0.9558×21/6σ . For the bond potential,
we choose a fourth degree Taylor expansion of the sum
of the original WCA and FENE bond potentials around
the equilibrium distance (r0 = 0.9609σ ). The resulting bond
potential is

Ubond(r) = 20.2026ε + 490.628εσ−2(r − r0)2

− 2256.76εσ−3(r − r0)3 + 9685.31εσ−4(r − r0)4.

(13)

Finally we retain the bending potential

Ubend(
) = κf c (1 − cos 
) , (14)

and simulate the fcKG model with exactly the same Langevin
dynamics as the full KG model.

Figure 2 shows a comparison between the pair and bonded
potentials of the KG and fcKG models. The figure also shows
the height of the energy barrier of chains passing through each
other as a function of the force cap expressed as a function of
the pair potential at overlap U

cap
WCA(r = 0). The transition state

is a planar configuration of two perpendicular chains, where
two perpendicular bonds open up to allow one chain to pass
through the other. Compared to the KG model, this force cap
reduces this energy barrier from 75ε down to 7.5ε.
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FIG. 2. The pair potential (a) and bond potential (b) for the full
KG model (green dashed lines) and for the fcKG model (red solid
lines). Shown is also the height of the energetic barrier for chains to
pass through each other as function of the force cap (c). The circle
denotes our choice of U

cap
WCA(r = 0) = 5ε.

We avoid numerical instabilities by using the Taylor
expansion in the fcKG model rather than FENE and WCA
potentials between bonded beads in the KG model. As a
result the numerical stability of the force-capped model is
considerably improved both for very short and very long
bonds. We can simulate the lattice melt states directly (after
simple energy minimization) without requiring any elaborate
push-off or warmup procedures to gradually change the force
field. Since the force-capped model also approximates the
ground state of the full KG model, we can also switch
force-capped melt configurations to the full KG force field
using simple energy minimization and also avoid designing
a delicate push-off or warmup procedure for this change of
force field. Furthermore, we expect an increased bead mobility
while local single chain structure remains mostly unaffected.
Note that in the KG model the WCA interaction is applied
between all bead pairs, however for the fcKG model the WCA
potential is already included in bond potential above, hence the
force-capped pair interaction is limited to nonbonded beads.

C. Lattice blob model

We coarse-grain space into a lattice on a length scale a

corresponding to the tube segment length dT . The polymers
become random walks on this lattice. Since multiple chains
pervade an entanglement volume, multiple blobs can occupy
the same lattice site. We regard the polymers as consisting
of Z entanglement blobs of Ne Kuhn segments each. The
number of chains within the volume associated with a blob
is ne = ρKN−1

e d3
T . For most flexible well-entangled polymers

ne ∼ 19 [52].
We utilize the recently published lattice polymer model of

Wang [53] which is based on a local term penalizing density
fluctuations. This model has the computational advantage that

the Hamiltonian does not include pair interactions, which
makes it computationally very effective. We have augmented
this Hamiltonian with an angle dependent term as follows:

H = 1

2χ〈n〉
∑

c

(nc − 〈n〉)2

+
∑

p

(ε0Np0 + ε90Np90 + ε180Np180). (15)

The first term is a sum over all sites, while the second is a sum
over all polymers. nc denotes the blob occupation number at
site c, while 〈n〉 ≈ ne is the average number of blobs per site.
The parameter χ plays the role of a compressibility [54,55]
and hence allows us to introduce incompressibility gradually
to remove large scale density fluctuations. In the angle term we
sum over bond angles in the chains. The three terms represents
antiparallel, orthogonal, and parallel successive bonds and
their respective energy penalties, respectively. The average
bond-bond angle is in this case given by

〈cos 
〉 = − exp(−βε0) + exp(−βε180)

exp(−βε0) + 4 exp(−βε90) + exp(−βε180)
; (16)

to obtain a nonreversible random walk of blobs we require
〈cos 
〉 = 0, such that cL = [〈cos θ〉 + 1] / [〈cos θ〉 − 1] = 1.
We choose the parameters ε0 = ε180 = 1 and ε90 = 0. We
furthermore choose χ = 1. Since we are doing simulated
annealing the exact values of these parameters are irrelevant.
Any state with density fluctuations or configurations with devi-
ations from nonreversible random walks will be exponentially
unlikely when the temperature is reduced sufficiently.

We have implemented double bridging, pivot, reptation,
and translate moves. Double bridge moves are performed
by identifying two pairs of connected blobs on neighboring
sites where “crossing over” the bond between the two pairs
of blobs does not change monodispersity of the melt. Since
double bridge moves alter neither angles nor blob positions,
the double bridge moves do not change the energy, and are
always accepted. Double bridge moves can be carried out both
inside a chain and between pairs of chains. Pivot moves pick a
random bond and randomly pivots the head or tail of the chain
around the the chosen bond [56]. Pivot moves only change one
angle at the pivot point, but cause major spatial reorganization
of the polymer. In densely packed systems, the acceptance
rate of pivot moves drops rapidly. Reptation moves delete a
number of blobs at either the head or the tail of a polymer
and regrows the same number of blobs at the other end of
the polymer. Reptation moves are very efficient at generating
new configurations in dense systems. Translate moves pick a
random bond and randomize it, and hence randomly translates
the head or the tail of the chain by one lattice step relative
to the bond. Of the moves discussed here, only the reptation
move is limited to linear chain connectivity. We implemented
the Metropolis Monte Carlo algorithm in C++ (2011 standard
version) making extensive use of standard-template library
containers and pointer structures choosing optimal data struc-
tures for implementing the infrastructure for generating new
moves, rejecting moves with a minimal overhead, and rapidly
estimating the energy change of a given trial move [57].

We note that our choice of lattice length scale is in fact
arbitrary, since the subsequent Rouse simulation with the fcKG
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model removes the lattice artifacts again. From Eq. (6), we
see that the Rouse simulation duration grows as the fourth
power of the lattice constant. On the other hand, the advantage
of enforcing the incompressibility constraint with a lattice
Hamiltonian requires a meaningful site occupation numbers
nc � 1. When this limit is approached, the incompressibility
constraint converges to an excluded volume constraint and
blobs to single monomers. Matching the lattice spacing and
the tube diameter produces 〈n〉 ∼ 19 which offers a reasonable
compromise.

D. Kuhn lengths of both KG models

In order to have the same chain statistics and in particular
a specific Kuhn length for the force-capped and full KG
models, we need to estimate how these change with stiffness.
Theoretically predicting the Kuhn length of a polymer model
with pair interactions is a highly nontrivial problem. While
excluded volume interactions are approximately screened in
melts (the Flory ideality hypothesis [39,40]), the melt deviates
from polymers in 
 solutions due to their incompressibility.
The incompressibility constraint creates a correlation hole,
which leads to a long range net repulsive interaction between
polymer blobs along the chain; this effectively causes a
renormalization of the bead-bead stiffness to make them
stiffer [58–62].

To circumvent this problem, we have brute force equi-
librated medium length entangled melts with M = 2000
chains of length Nb = 400 beads while systematically vary-
ing the stiffness parameter for both the KG and fcKG
models. Each initial melt conformation was simulated for
at least 2×105τ while performing double-bridging hybrid
MC-MD simulations [15,18,20,24] using the bond-swap fix
in LAMMPS [63]. Ten to 20 configurations from the last
5×104τ of the trajectory were used to estimate the Kuhn
length. We choose the chain length as a compromise between
having as many Kuhn segments as possible and on having
an acceptable double bridging acceptance rate. While double
bridging moves are very efficient at removing correlations
between the chain conformations, the acceptance rate drops
significantly with chain lengths since the potential crossover
points are progressively diluted when requiring that the melt
remains monodisperse. The Kuhn lengths were derived using
Eq. (2).

The resulting Kuhn lengths are shown in Fig. 3. As
expected, as the stiffness parameter is increased the Kuhn
length grows concomitantly. The stiffness of the fcKG and
the KG models varies slightly. This is due to the additional
stiffness introduced by the WCA pair interaction between
next nearest neighbors along the chain compared to the
force-capped model. Using the extrapolations shown in Fig. 3
we can numerically solve for the force-capped model stiffness
κf c required to reproduce equivalent KG model with stiffness
parameter κ . The result is shown in the inset of Fig. 3, and
is given by the following empirical relationship valid for
κ ∈ [−1ε: 2.5ε]:

κf c(κ) = 0.298ε + 0.722κ + 0.099
κ2

ε
− 0.012

κ3

ε2
. (17)
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FIG. 3. Kuhn length lK vs stiffness parameter for the KG
(green circles) and fcKG models (red boxes). The lines are poly-
nomial fits lK (κ)

σ
= 1.795 + 0.358 κ

ε
+ 0.172 κ2

ε2 + 0.019 κ3

ε3 (hashed

black line) and
l
f c
K

(κf c)
σ

= 1.666 + 0.389
κf c

ε
+ 0.192

κ2
f c

ε2 + 0.012
κ3
f c

ε3

(dotted black line). The inset shows the relation between κf c and κ

defined by Eq. (17) (solid black line).

E. Tube diameter of Kremer-Grest melts

In order to choose the spacing of the lattice model, we
need to estimate the length of a tube segment a(κ) as function
of stiffness κ for the KG model. We have generated 15
melt states with M = 500 chains of length Nb = 10.000 for
κ = −1,−0.75,−0.50, . . . ,2.25,2.50ε. We used the algorithm
of the present paper, but chose the lattice spacing a =
lK (κ)

√
NK (κ), with NK (κ) = 100c−1

b (κ). This corresponds to
using not entanglement blobs, but rather blobs with a fixed
number of beads (100) independently of chain stiffness.

We have performed primitive-path analysis (PPA) of the
melt states [4]. During the PPA a melt conformation is
converted into the topologically equivalent primitive-path
mesh work characterizing the tube structure. We have per-
formed a version of the PPA analysis which preserves self-
entanglements by only disabling pair interactions between
beads within a chemical distance of 2cbNeK bonds [51].
The minimization was performed using the steepest descent
algorithm implemented in LAMMPS followed by dampened
Langevin dynamics as described in Ref. [4]. The generated
melts range from Z(κ = −1ε) = 80 to Z(κ = 2.5ε) = 540
entanglements per chain. Hence, these melts are strongly
entangled, and we can neglect the effect of chain ends [64].

Since the large scale chain melt statistics and primitive-
path statistics agree, the PPA essentially consists of filtering
out the effects of thermal fluctuations on the chain con-
figurations. The chain mean-square end-to-end distance is
unchanged by the PPA, and hence the Kuhn length of the
tube (the tube diameter) is given by a = 〈R2〉/Lpp. Lpp is
the average primitive-path contour length, which we obtain
directly from the mesh work produced by the PPA. By
preforming the analysis on melts of varying κ we can obtain the
tube Kuhn length as function of chain stiffness a(κ). The result
is shown in Fig. 4, and as expected, when the chains becomes
stiffer they can pervade a large volume and hence become
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FIG. 4. Tube segmental length a(κ) vs stiffness parameter for the
KG model (green symbols); also shown is an interpolation given by
a(κ)
σ

= 11.32 − 2.096 κ

ε
− 0.0293 κ2

ε2 + 0.1465 κ3

ε3 (hashed line). The
inset shows Eq. (18) (red solid curve) compared to the simulation
data.

more entangled, which corresponds to the observed decrease
of the tube diameter. However in the limit of tightly packed
rigid rods, the chain and tube Kuhn lengths coincide, hence the
tube Kuhn length displays a minimum at the crossover from
random walk to rigid rod chain behavior.

Combining Eqs. (2), (6), and (7) of Ref. [65], the tube Kuhn
lengths dependence of the chain Kuhn length is predicted to
be

a(lK ) = lK

√
1 + (

c2
ξ l

6
Kρ2

K

)−1 + (
c2
ξ l

6
Kρ2

K

)−1/5
, (18)

where cξ = 0.06. This prediction is shown in the inset of
Fig. 4 and is observed to be in very good agreement with
our simulation data. The nonmonotonic behavior of a as a
function of lK is the expected signature of the crossover to the
tightly entangled regime where a = lK .

F. Time mapping of the force-capped KG model

In order to estimate how long a time we should run the
Rouse simulation to relax chain statistics up to the tube scale,
we need to know the entanglement time of the fcKG model.
The unit of time of the simulated force field is τ , however,
this unit has no direct relation to the time scales characterizing
the emergent polymer dynamics, which depends on the force
field as well as the thermostat parameters. To define a natural
time scale for the polymer dynamics, we obtain the effective
Kuhn friction ζ

f c

K . We have measured the center-of-mass (CM)
diffusion coefficient by performing a series of simulations
with varying stiffness parameter κf c. Each melt contains
2000 chains of length NK = 10,20,30,40. The melts were
equilibrated for a period of 104τ using double bridging hybrid
MC-MD [15,18,20,24]. The resulting equilibrium states were
run for up to 2 − 10 × 105τ and the center-of-mass diffusion
coefficient Dcm(κf c,NK ) was obtained from the plateau of
the measured mean-square displacements Dcm(κf c,NK ; t) =
〈[Rcm(t) − Rcm(0)]2〉/[6t] for t > 105τ by sampling plateau
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κfc / ε

0

10

20

ζ K
fc

(κ
fc

) /
 [m

b/τ
]

Nk=10
Nk=20
Nk=30
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FIG. 5. Kuhn friction for the fcKG model as function of stiffness

parameter κf c. The line through the data points is the fit
ζ

f c
K

(κf c)τ
mb

=
5.5657 + 1.4367

κf c

ε
+ 0.7564

κ2
f c

ε2 + 0.303 72
κ3
f c

ε3 .

values for log-equidistant times, and discarding simulations
where the standard deviation of the samples exceeded 2% of
their average value.

Figure 5 shows the Kuhn friction obtained from the analysis
of the simulations using Eq. (4). We observe that the friction
increases slowly with chain stiffness. The excellent collapse
of data from different chain lengths supports the validity of the
Rouse dynamics for the force-capped KG model.

Using Eq. (6) and the empirical relations shown in Figs. 3–5,
we obtain an empirical relation for the entanglement time of
the fcKG model as

τ
f c
e (κf c)

τ
= 935.5 − 710.8

κf c

ε
+ 226.6

κ2
f c

ε2
− 26.61

κ3
f c

ε3
,

(19)

valid within the range of κf c = −1, . . . ,2.5ε. The entangle-
ment time varies from 1900τ down to 160τ as chains get
stiffer.

Figure 6 shows the mean-square displacements MSD(t) =
〈[Ri(0) − Ri(t)]2〉 of beads for the fcKG and KG models. We
observe the expected subdiffusive Rouse power law MSD(t) ∼
t1/2 for all times, whereas for the KG model we see the
start of the crossover to a reptation dynamics MSD(t) ∼ t1/4

power law above the entanglement time. The entanglement
time depends on the entanglement length, and hence the
stiffest chains reach the crossover first. These observations are
consistent with our assumption that the fcKG model produces
Rouse dynamics because it allows chains to pass through each
other. Hence the entanglement Rouse time of the fcKG model
is the relevant time for establishing local random walk structure
inside the tube. The horizontal shift between the KG and fcKG
models that the dynamics of the KG model is 6–7 slower than
the fcKG model.

G. Transferring melt states between models

Using the relations derived above we can fine-grain melt
states from the lattice model to the fcKG model force field,
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FIG. 6. Mean-square displacements for the fcKG model (filled
symbols) and KG model (open symbols) for melts with M×Nb =
500 × 10.000 for κ,κf c = −1ε (black circle), 0ε (red box), 1ε (green
diamond), and 2ε (blue triangle up). The KG model data were scaled
with the Kuhn length and time of the corresponding force-capped KG
model to retain their relative positions.

and later transfer the fcKG melt states to the KG model force
field and retain all the desired melt properties through the
whole equilibration process. See Appendix A for the details.

IV. CHARACTERIZATION OF EQUILIBRATION PROCESS

Figure 1 shows the evolution of a melt state with during
the equilibration process. The melt comprises 1000 chains of
15 000 beads each, corresponding to Z = 200 entanglement
blobs. Initially the lattice melt is density fluctuation annealed
on a 23×23×23 lattice. After lattice annealing of large scale
density fluctuations, the final lattice polymer melt state is
transferred to an off-lattice bead-spring model representation
[Fig. 1(a)], that can be used as input for the subsequent molec-
ular dynamics simulations. The subsequent Rouse simulation
should introduce random chain structure at progressively larger
and larger scales. After 0.1τ

f c
e Rouse simulation [Fig. 1(b)] the

lattice structure is still visible. However, after 1τ
f c
e of Rouse

simulation the polymers appears to have adopted a random
walk conformation on the tube scale, and no signs of the
lattice structure remain [Fig. 1(c)]. Transferring the resulting
equilibrated fcKG melt state to the KG force field [Fig. 1(d)]
does not affect the chain statistics. This final equilibrated melt
state can then be used for further simulation studies.

Above, we characterized the KG and fcKG mod-
els using results for 15 melt states of M×Nb =
500×10 000, i.e., Z = 80, . . . ,540 entanglements for κ =
−1,−0.75,−0.50, . . . ,2.25,2.50ε. We have also equilibrated
a number of large melts with M×Nb = 1000×15 000, i.e.,
Z = 200 but only in the case of κ = 0. In comparison, the
largest melts produced in Refs. [28,66] were 1000 chains of
length 2000 beads. We produced eight melts using the full
lattice Hamiltonian described above, five melts without the
incompressibility term, and three melts without the configu-
ration term. With these variations of the annealing procedure,
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FIG. 7. Characterization of simulated annealing process showing
(a) total acceptance probability and (b) the angle (blue crosses) and
incompressibility (circles) energy contributions. The inset shows the
temperature profile during annealing.

we can illustrate why both the incompressibility and angle
terms are required. The lattice states were simulated with the
same Rouse simulation, but we have also performed the KG
warm up at different times during the Rouse simulation to
study how this impacts the resulting KG melts. Below we will
characterize the 1000×15 000 melts states unless specifying a
chain stiffness κ , in which case the observables are calculated
for the 500×10 000 melt states.

Figure 7 shows a characterization of the simulated an-
nealing process. After some experimentation, we chose an
annealing protocol where the temperature is reduced in 20
annealing stages from T = 102 to 10−3. At each annealing
stage, we attempt 50 Monte Carlo (MC) moves per blob in the
melt, where we use both global and local Monte Carlo moves.
Above the transition temperature T ∗ ∼ 0.1, the system rapidly
equilibrates and the acceptance probability shows a clear step
structure. Below the transition temperature, the equilibration
slows down considerably and the steplike structure of the
acceptance probability is lost. The acceptance rate remains
clearly above 20% even below the transition temperature.
This is primarily due to the end-bridging moves, which are
attempted with 20% probability. The local chain dynamics
becomes frozen while the global chain state remains dynamic,
since double bridge moves are still accepted even below
the transition temperature. Figure 7 also shows the decrease
of the energy contributions from the incompressibility and
angular terms in the lattice Hamiltonian. The angular energy
contribution drops by about four orders of magnitude while the
incompressibility energy drops by about two orders of magni-
tude. Both contributions level out after 10–12 annealing stages.
After this time, the melt has reached its energy minimum.

Figure 8 shows the evolution of the chain conformations
during the annealing process. We describe the large scale
properties with the ratio of the end-to-end distance and the
radius of gyration which for a random walk should be about
6 [40]. We observe that at large scales the melt conformations
remain random walk like during the whole annealing process.
Furthermore the scatter of the curves below the transition
temperature again shows that the MC moves keeps generating
new conformations searching for a better minimum.

The chain stiffness cL characterizes blob chain angle
statistics at the tube scale. This should be unity for random
walks where subsequent steps are statistically uncorrelated.
For melts with the angular term, this is seen to be the case after
some transients around the transition temperature, however, we
see a slight but systematic increase in the chain stiffness for
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FIG. 8. Melt characterization during simulated annealing show-
ing (a) 〈R2〉/〈R2

g〉 ≈ 6 ratio and (b) chain stiffness cL for a lattice
melt with (black circles) and without the angular energy contribution
in the Hamiltonian (blue crosses).

melts without the angular term. This could be either due to the
incompressibility constraint acting as a weak excluded volume
even at occupation numbers of 〈n〉 ≈ 19, and hence leading to
a small degree of swelling. Alternatively, it is also known that
the Flory ideality hypothesis is only approximately true even
for dense melts. The incompressibility constraint leads to a
correlation hole of density fluctuations, which has been shown
to give rise to an effective weakly repulsive intramolecular
interaction [58–62]. Both these effects lead to swelling, and
the severity of the swelling is likely to depend on the rate
at which the simulated annealing process is quenched. We
have opted for adding the additional angular term to the
lattice Hamiltonian, to ensure that the lattice conformations
show the desired random walk statistics.

Figure 9 shows the impact of incompressibility on the lattice
melt conformations. At the lowest q values, the structure factor
characterizes density fluctuations on the scale of the whole
simulation domain, whereas the highest q values reflect density
fluctuations on the scale of individual blobs. The structure
factors were calculated for MD bead-spring melt states and
include effects due to random shifts of chains and beads
described above.
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104
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q)

q-2

q0

FIG. 9. Structure factor for initial lattice configurations with
density fluctuations (red boxes), and after simulated annealing with
the incompressibility term (black circles) averaged over several
melt states. Also shown are the power laws expected from the
density fluctuations and from incompressibility (red hashed and black
dash-dotted lines, respectively).
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FIG. 10. Evolution of mean-square internal distances during
equilibration for the initial lattice configuration (black circle), and
after 0.1, 0.2,0.5,1, 2, 5, and 10τ f c

e (red box, green diamond, blue
triangle up, red triangle left, brown triangle down, orange triangle
right, purple plus, respectively) of Rouse simulation for κ = 0.

For the lattice simulations without the incompressibility
term, very large scale density fluctuations can be seen at large
scales, which follows the predicted power law behavior S(q) ∼
2Nb(qRg)−2, Eq. (B9). This power law reflects the density
fluctuations created by randomly inserting the polymer chains
on the lattice. After annealing, with the incompressibility term
in the Hamiltonian the large scale density fluctuations are
reduced by about two orders of magnitude, and the resulting
structure factor is flat indicating constant density on all scales
as expected for an incompressible melt. A large peak is seen
in both the lattice configurations; this peak reflects the lattice
structure and the position is given by qlattice = 2π/a.

Figure 10 shows the evolution of single chain confor-
mations characterized by their mean-square internal dis-
tances (MSID), which are defined by MSID(Lij ) = 〈(Ri −
Rj )2〉/Lij where Ri is the position of the ith bead on a
chain, and Lij = lb|i − j | denotes the chemical contour length
between the two beads. For large chemical distances the
MSID converges to the Kuhn length, whereas for neighboring
monomers it is identical to the bond length lb. Between
these limits it characterizes the local effects of the chain
stiffness.

The evolution of the chain statistics during the Rouse
simulation is shown in Fig. 10. The final state from the
lattice simulation matches the large scale chain statistics by
construction, but shows strong compression at all length scales
below the tube diameter, which is an expected lattice artifact.
After energy minimization and a brief simulation, the bond
distance agrees with the KG model, but chains are stretched at
very short scales, and compressed at scales all the way to the
tube scale. During the Rouse simulation, the chain statistics is
progressively equilibrated at intermediate scales such that the
desired chain statistics is established on all length scales. In
the initial lattice configuration all the beads are compressed
to a straight line and hence we approach the equilibrium
chain statistics from below, whereas in the approach of Auhl
et al. [12], their push off produced a peak in the MSID that is
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FIG. 11. Topological evolution of the melt during the Rouse
simulation. The entanglement lengths of the force-capped KG model
melts for κ = −1ε, 0ε, 1.5ε, and 2.5ε (denoted by red box, black
circle, green diamond, and blue triangle up, respectively). Also shown
are the entanglement length of melts after the KG warm up for
three different times along the Rouse simulation for κ = 0ε (magenta
crosses).

due to local chain stretching due to density fluctuations, which
was mitigated by the introduction of a prepacking procedure.
Here our fcKG model has been designed to perform this
prepacking on scales below the tube diameter during the Rouse
simulation. The same behavior is observed for the other chain
stiffness (data not shown).

The MSID is a single chain observable; we can also take
melt configurations at various times along the Rouse dynamics
simulation and submit them to PPA analysis to estimate the
topological evolution of the melt. The entanglement length has
been shown to be quite sensitive to the equilibration procedure,
since chain stretching during equilibration of badly prepared
samples artificially increases the entanglement density [67].
The result is shown in Fig. 11. The entanglement length
is seen to systematically decrease towards the equilibrium
entanglement length after about one entanglement time of
Rouse dynamics independently of chain stiffness. During
the Rouse simulation chains can pass through each other,
however, during the PPA the topological structure is frozen.
Hence the figure shows the growth of the entanglement
density due to the random chain structure that is gradually
introduced by the Rouse dynamics of the fcKG model. The
figure also shows that the initial lattice states produce a
completely wrong entanglement density, hence any attempt
to equilibrate it with a topology preserving chain model would
fail. Also shown are the entanglement lengths of the three
melt conformations after the KG warm, which are seen to be
in excellent agreement with the fcKG melt conformations. As
expected the KG warm up does not change the topological melt
structure.

The structure factor during the Rouse simulation and after
the KG warm up is shown in Fig. 12. The structure factor
measures density fluctuations and when constant allows us to
estimate the compressibility of the melt (for the derivation
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FIG. 12. Evolution of structure factor during equilibration pro-
cess. Structure factor for the annealed lattice (black circle), after
0.1, 1, and 10τ f c

e (denoted by green box, red diamond, and magenta
triangle up, respectively) of Rouse simulation, and for the final melt
state after KG warm (blue cross).

see Appendix B). We see that the melt compressibility rapidly
decreases by about three orders of magnitude when lattice melt
states are equilibrated with the fcKG model. Residual density
fluctuations are still observable at 0.1τ

f c
e at large scales, but

after 1τ
f c
e density fluctuations are absent on all scales. After

the KG warmup, the compressibility is further reduced by
about one order of magnitude on all scales. The peak at 2π/a

is gone, and a new peak is visible at 2π/σ which is due to
local liquid like bead packing. The structure factors for melts
with varying stiffness show similar behavior (data not shown).

Figure 13 compares the MSID for different stiffness of
rapidly equilibrated long melts and brute force equilibrated
shorter melts used to estimate the Kuhn lengths. The Rouse
simulations were performed for 10τ

f c
e when κ < 1.5ε, 20τ

f c
e

for κ = 1.5ε, 30τ
f c
e for κ = 2.0ε, and 40τ

f c
e for κ = 2.5ε.

The entanglement time drops rapidly with increasing chain
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FIG. 13. Mean-square internal distances of equilibrated melts
(colored symbols) compared to brute force equilibrated melts (dashed
black lines) and Kuhn length (dotted black line) for varying stiffness.
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stiffness, hence the highest computational effort is actually
expended in equilibrating the most flexible melt with κ = −1ε,
which requires about a factor of 3 longer simulation time than
the stiffest melts despite these running for five entanglement
times longer.

The chain statistics shown in Fig. 13 are in good agreement
with the brute force equilibrated melts at short scales;
furthermore all the melts levels off to the expected plateau
given by the Kuhn length at large scales. A small dip is seen
for the two stiffest melts shown in the figure for an intermediate
length scale Lij ≈ 100. Perhaps the stiffest melts are locally
nematically ordered, in which case the energy barrier for
chain interpenetration could be larger than expected and hence
explain why we apparently need to run the simulation for
longer than expected from Rouse dynamics. Clearly, the MSID
is the measure that is the slowest to converge to the equilibrium
since the bulk properties and collective mesoscopic properties
measured by the structure factor and melt entanglement
length have already reached their equilibrium values after
about 1τe. Hence we suggest to use this observable as the
main diagnostic for testing whether equilibrium has been
achieved.

V. CONCLUSIONS

We have shown how to equilibrate huge model polymer
melts in three simple stages for Kremer-Grest polymer
melts [34] of varying chain stiffness. First, density fluctuations
are annealed on scales above the tube scale using Monte Carlo
simulated annealing with a lattice polymer model. Second,
with a molecular dynamics simulation of a force-capped KG
(fcKG) polymer model, we simulate the Rouse dynamics [42]
and introduce the desired chain structure on scales below that
of the tube while preventing the growth of density fluctuations.
Finally, we perform a fast warmup to the KG force field to
establish the correct local bead packing. We have characterized
the involved models for varying chain stiffnesses in order to
transfer melt states between them. By measuring the Rouse
friction of the fcKG model, we have also estimated the
simulation time required for the equilibration of chain structure
inside the tube, which was shown to be strongly dependent on
chain stiffness.

We have also characterized and validated the equilibration
process in terms of (1) single chain observables such as
mean-square internal distances, (2) collective mesoscopic melt
properties such as the evolution of the entanglement length
during the Rouse dynamics, and (3) bulk melt density fluctu-
ations in terms of structure factors. We have demonstrated the
convergence of these observables to their equilibrium values
for varying chain stiffnesses.

The main requirement of an equilibration process is
computational performance. Here we have equilibrated 15
melts of 500 chains with 10 000 beads each for varying
stiffness, and several melts of 1000 chains of 15 000 beads
each for varying lattice annealing parameters. For the latter
melts, the lattice annealing of density fluctuations takes about
3 days computer time using a single core on a standard laptop
(72 core hours). Rouse simulation with the fcKG model for
10τe takes about 2 days on 4 ABACUS2 nodes [68], i.e., 4600
core hours of compute time. Finally introducing the full KG

model, requires about 2 h on four nodes, i.e., 200 core hours.
Moreira [28] equilibrated 1000×2000 melts using 3500 core
hours for prepacking (equivalent to our lattice annealing), and
3800 core hours for subsequent warmup. Zhang et al. [27]
equilibrated similar sized melts but using a multiscale method
that required 1600 core hours. Scaling these numbers to a
standard melt of one million beads, the method of Moreira
et al. would require 3600 core hours, the method of Zhang
et al. would requires 800 core hours, while our method would
require 600 core hours. This could be further optimized; e.g.,
the choice of the force cap is entirely serendipitous, and we
use the standard values of the KG polymer model, which could
be optimized further.

The present method is essentially independent of, e.g., chain
length and the large scale polymer structure such as branching.
These only impact the lattice annealing stage of the equilibra-
tion procedure, which due to the high level of coarse-graining
is the fastest part of the equilibration process. The Rouse
simulation and KG warmup are completely independent of the
chain structure and composition. Hence the present method
can directly be used to equilibrate, e.g., polymer melts of stars
or mixtures of different polymer structures. Furthermore, the
equilibrated KG melt configurations produced by the present
approach can be fine-grained further to act as starting points
for atomistic simulations of polymer melts.

With simple and computationally efficient equilibration
approaches such as the one presented here, access to well
equilibrated melts for studies of material properties is no longer
a computational limitation, rather the computational limitation
becomes the effort required to perform scientific studies using
such huge systems.
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APPENDIX A: EQUILIBRATION PROCESS

Below we summarize the equilibration process in the form
of an easy to follow recipe. Assume we should generate a
melt M chain of Nk Kuhn units each for chain stiffness κ .
Alternatively if we should make chains of Nb beads then
Nk = Nb/cb. Here cb = lK/ lb beads per Kuhn length using
the expression from Fig. 3. Here and below we suppress
the dependency of cb,lk,a,NeK on stiffness for the sake of
brevity.

First we set up the lattice melt. The lattice constant a

is determined using the interpolation Fig. 4. The number
of entanglement blobs is Z = round(Nk/NeK ) with Kuhn
entanglement number NeK = a2/l2

K . The total number of
beads in the melt is N tot

b = cbNeKZM and the volume of
the cubic lattice is V = N tot

b /ρb = (aNs)3 where N3
s is the

total number of lattice cells. The number of lattice sites N3
s is

determined by Ns = round([N tot
b /ρb]1/3/a).

Since the KG model is sensitive to deviations from the
standard bead density, we correct for the round off errors due
to integer Z and Ns values by self-consistently determining

032502-12



MULTISCALE APPROACH TO EQUILIBRATING MODEL . . . PHYSICAL REVIEW E 94, 032502 (2016)

the number of molecules as M = round(ρba
3N3

s /[cbNeKZ])
that produce the standard bead density. The resulting
lattice melt is generated and annealed as described in
Sec. III C to ensure a homogeneous melt of entanglement
blobs.

The next step is to transfer the lattice melt state to a
MD melt conformation. Let the configuration of a single
chain be described by integer coordinate vectors Ri for
i = 1, . . . ,Z. The corresponding off-lattice chain is given
by the scaled coordinates a(Ri + ξ ) where ξ is a uniformly
distributed random vector in [−0.5 : 0.5]3. This chain defines
a piecewise linear curve with contour length aZ. To obtain a
MD chain configuration the curve is decorated with cbNeZ

beads corresponding to a bead contour length density of
cbNe/a. A small random shift from a randomly sampled vector
in [−a/200,a/200]3 are furthermore added to each bead to
facilitate energy minimization.

To perform the Rouse dynamics with the force-capped KG
model, we first obtain the fcKG model stiffness κf c using
Eq. (17) with the specified target κ . The lattice configuration
is then energy minimized with respect to the fcKG force field,
and is then run with this force field for 10–40τ

f c
e depending

on the stiffness. The fcKG model entanglement time τ
f c
e is

obtained using Eq. (19).
During the Rouse dynamics simulation the structure factor,

mean-square internal distances, and entanglement length of the
melt conformations is monitored to ensure that they converge
to an equilibrium. The resulting fcKG melt conformation
has the correct chain statistics, entanglement density, and no
density fluctuations

The final step is to transfer the fcKG melt state to the KG
force field and thermalize it. This is done by first replacing the
force-capped pair interaction with the full WCA interaction
and minimizing the energy while keeping the fcKG bond
potential; subsequently this bond potential is replaced by the
WCA + FENE potential of the KG model and again energy
minimized. Finally the resulting melt state is thermalized to
introduce the correct local bead packing by a short simulation
of 5×104 MD steps at T = 1ε with the full KG force field.
The result is an equilibrated KG melt state that can be used for
subsequent scientific studies.

APPENDIX B: STRUCTURE FACTORS

Below we derive predictions for the structure factor due
to the density fluctuations created by randomly inserting
polymers in the simulation box, and the structure factor after
equilibration of density fluctuations and its relation to the
compressibility.

We define the microscopic density field ρ(R) =∑M
j=1

∑N
k=1 δ(R − Rjk), where δ denotes the Dirac-δ func-

tion. The Fourier transform of the density field is ρ(q) =∑M
j=1

∑Nb

k=1 exp(iq · Rjk), such that the structure factor be-
comes

S(q) = (NbM)−1 〈ρ(−q)ρ(q)〉. (B1)

To derive the structure factor after equilibration of density
fluctuation, we start by expressing the structure factor in terms

of spatially varying densities. From the right hand side of
Eq. (B1) we get

S(q) =
〈∫

d R1d R2ρ(R1)ρ(R2) exp[iq · (R1 − R2)]

〉

=
∫

d R1d R2 exp[iq · (R1 − R2)] 〈δρ(R1)δρ(R2)〉

=
∫

d R exp(iq · R) 〈δρ(0)δρ(R)〉 , (B2)

where in the second equation we have replaced ρ(R) →
δρ(R) = ρ(R) − 〈ρ〉. The constant average density gives rise
to a contribution proportional to a Dirac-δ function, which
can be neglected for q > 0. In the third equation, we have
furthermore assumed translational invariance.

Let us assume a local Hamiltonian for density fluctuations
H (δρ) = 1

2χ〈ρ〉δρ
2 for a particular position analogous to a

site in the lattice model. The Boltzmann probability of a
given density fluctuation is given by P (δρ) ∝ exp(−H/kT ),
and hence

〈
δρ2

〉 = χ〈ρ〉kT by the equipartition theorem.
Assuming that the density fluctuations at different sites
are statistically independent, which in practice is valid for
sufficiently large distances, i.e., small values of q. The
density fluctuation correlation function is then given by
〈δρ(0)δρ(R)〉 = χ〈ρ〉kT δ(R). Inserting this in Eq. (B2), we
obtain the prediction that the structure factor is independent of
q and proportional to the compressibility

S(q) = χ〈ρ〉kT . (B3)

We can also predict the structure factor for polymers
randomly inserted into the simulation domain using the
approach in Refs. [69,70]. By introducing an origin of the
coordinate system for each polymer Ro

j , e.g., one of its ends,
we can rewrite Eq. (7) as

S(q) = (NbM)−1
Nb∑

k1=1

Nb∑
k2=1

⎡
⎣ M∑

j=1

〈
exp

[
iq · (

Rjk1 − Rjk2

)]〉

+
M∑

j1,j2 = 1
j1 �= j2

〈
exp

{
iq · [(

Rj1k1 − Ro
j1

) − (
Rj2k2 − Ro

j2

)

+ (
Ro

j1
− Ro

j2

)]}〉⎤⎦ ; (B4)

here the first term describes the single polymer scattering
due to pairs of scattering sites on the same polymer, while
the second term is the interference contribution between
scattering sites on different polymers. Configurations of
different polymers are generated independently of each other,
and the starting points of the polymers are chosen randomly.
Hence the three terms in parentheses in the second exponen-
tial are sampled from statistically independent distributions.
Having noted this, the average of the interference contribution
factorize exactly into a product of three averages, where the
first and third only depend on single chain statistics, while the
second term only depends on the distance distribution between
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randomly chosen points:〈
exp

[
iq · (

Rj1k1 − Ro
j1

) ]〉
j1,k

× 〈
exp

[
iq · (

Ro
j1

− Ro
j2

) ]〉
j1,j2

× 〈
exp

[−iq · (
Rj2k2 − Ro

j2

) ]〉
j2,k2

. (B5)

For notational simplicity, we can identify the aver-
age form factor as F (q) = 〈

exp
[
iq · (

Rjk1 − Rjk2

) ]〉
j,k1,k2

with the average single polymer scattering, A(q) =〈
exp

[
iq · (

Rjk1 − Ro
j

) ]〉
j,k1

with the average form factor am-
plitude relative to an end, and the average phase factor between
different ends �(q) = 〈

exp
{
iq · [(

Ro
j1

− Ro
j2

)] }〉
j1 �=j2

. Note
that all these factors are normalized as F (q) = A(q) =
�(q) → 1 for q → 0. With these simplifications, the structure
factor reduces to the much shorter expression

S(q) = NbF (q) + (M − 1)NbA(q)�(q)A(−q). (B6)

This expression is exact and was derived without any
assumptions as to the detailed structure of the objects inserted
in the simulation domain and only results from the assumption
of statistical independence of internal conformations and

positions of the objects [69]. For polymers modeled as ideal
random walks, the expressions for the form factor and form
factor amplitude are well known [71,72]:

F (q) = 2
[
exp

(−q2R2
g

) − 1 + q2R2
g

]
q4R4

g

∼ 2

q2R2
g

, (B7)

A(q) = 1 − exp
(−q2R2

g

)
q2R2

g

∼ 1

q2R2
g

; (B8)

since random walks on average are isotropic, these functions
only depend on the magnitude of the scattering vector q = |q|.
The asymptotic behavior is realized for qRg � 1, where
Rg = l2

KNK/6 is the radius of gyration of the polymer.
Furthermore, because polymers pairs are placed randomly in
the box their starting positions are statistically independent,
hence �(q) = 1. Hence for randomly inserted polymers, the
asymptotic behavior of the structure factor describing the
resulting density fluctuation correlations is

S(q) ∼ 2Nb

q2R2
g

. (B9)
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