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Unified model of brain tissue microstructure dynamically binds diffusion and
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We present a universal model of brain tissue microstructure that dynamically links osmosis and diffusion
with geometrical parameters of brain extracellular space (ECS). Our model robustly describes and predicts the
nonlinear time dependency of tortuosity (λ = √

D/D∗) changes with very high precision in various media with
uniform and nonuniform osmolarity distribution, as demonstrated by previously published experimental data
(D = free diffusion coefficient, D∗ = effective diffusion coefficient). To construct this model, we first developed
a multiscale technique for computationally effective modeling of osmolarity in the brain tissue. Osmolarity
differences across cell membranes lead to changes in the ECS dynamics. The evolution of the underlying
dynamics is then captured by a level set method. Subsequently, using a homogenization technique, we derived a
coarse-grained model with parameters that are explicitly related to the geometry of cells and their associated ECS.
Our modeling results in very accurate analytical approximation of tortuosity based on time, space, osmolarity
differences across cell membranes, and water permeability of cell membranes. Our model provides a unique
platform for studying ECS dynamics not only in physiologic conditions such as sleep-wake cycles and aging
but also in pathologic conditions such as stroke, seizure, and neoplasia, as well as in predictive pharmacokinetic
modeling such as predicting medication biodistribution and efficacy and novel biomolecule development and
testing.
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I. INTRODUCTION

Recent advances in the understanding of a variety of
brain diseases has led to the identification of molecular,
genetic, and epigenetic mechanisms underlying physiological
and pathological processes at microscopic and macroscopic
levels. Many of these disorders in the brain are accompanied
by a disruption in water and solute balance in the central
nervous system (CNS). This imbalance leads to changes
in both intra- and extracellular compartments of the tissue.
Almost 80% of the brain tissue is within the intracellular
space (ICS) and approximately 20% in the extracellular space
(ECS). The ICS is interconnected only through synapses and
gap junctions, which are mainly involved in neuronal signal
transmission, which is outside the scope of this paper. The
ECS, on the other hand, is a globally interconnected space
throughout the brain, which forms a microenvironment for
cells in which water and biomolecules diffuse, distribute, and
produce effects. Therefore, variation in the size and geometry
of the ECS can be important for the local modulation of
molecular transport and water and solute homeostasis in the
brain.

Molecular diffusion in the brain ECS plays a critical role
in fundamental biological processes such as the movement
of metabolic substrates and volume transmission [1]. Volume
transmission is also known as extrasynaptic or nonsynaptic
transmission and has been proposed to be another mechanism
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for intercellular communication via substance diffusion in the
ECS [2–4]. Understanding the basics of ECS has already found
important clinical applications such as diffusion-weighted
magnetic resonance imaging [5,6] and drug delivery [7,8].
Any change in the parameters that influence the diffusion
process within the ECS can substantially affect neuronal
signal transmission. Two major structural parameters that
characterize the diffusion properties of the ECS are tortuosity
(λ) and volume fraction (α) [9–12]. Tortuosity quantifies the
hindrance imposed on the diffusion process by the tissue, as
compared with water. Tortuosity is defined as λ = √

D/D∗,
where D is the free diffusion coefficient and D∗ is the effective
diffusion coefficient in the brain [9–12]. Volume fraction
is simply the proportion of the tissue volume occupied by
the ECS. It is calculated as α = VECS/VTissue, where VECS

and VTissue are the volumes of ECS and the whole tissue,
respectively. To increase our understanding of the cellular
response to physiological and pathological conditions, such as
the prediction and early detection of acute cerebral ischemia,
these parameters have been extensively studied and quantified
in the brain tissue. There have been many attempts to compute
tortuosity from models representing the brain’s geometrical
structure [13–16].

Brain ECS diffusion parameters are not constant. Through
extrasynaptic transmission, almost all pathologic and physio-
logic changes of the CNS state lead to considerable changes
in the ECS diffusion properties. The nature of the evoking
stimulus determines not only the way in which the ECS size
and tortuosity change but also how rapidly these changes
occur. Acute pathological states such as ischemia and CNS
injury are accompanied by dramatic cell swelling leading to
ECS shrinkage of about 60–75% (α reducing to 0.05) [17].
Diffusion in the ECS is affected by cell (especially glial)

2470-0045/2016/94(3)/032411(16) 032411-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.032411


YOUSEFNEZHAD, FOTOUHI, VEJDANI, AND KAMALI-ZARE PHYSICAL REVIEW E 94, 032411 (2016)

swelling, resulting from water shifts between intra- and
extracellular compartments [17–19].

Water transport across cellular membranes in the brain
is thought to be mainly regulated by astrocytic end-feet
aquaporin (AQP4) channels [20,21]. Aquaporins are water-
selective channels ubiquitous in the living world [22,23]. Since
their discovery in 1992, members of the AQP family have
been described in all living organisms [24,25] and efforts to
further understand their regulation has given rise to a wide
range of discoveries [26,27]. Water movement in the brain is
likely to involve AQP4 channels, which are widely expressed
in astrocytes and other glial cells [20] and possess the highest
water permeability among all members of the AQP family.
Interestingly, the brain is the only major organ other than
the lungs and kidneys where AQP4 is abundantly expressed.
As such, AQP4 and its regulators could be potential targets
for the treatment of brain disorders involving disturbances
in water homeostasis [25]. Inhibition of AQP4 may provide
therapeutic options for preventing cerebral edema in stroke
and water intoxication [28–30]. We have implemented the
high-permeability characteristic of AQP4 in our model, as will
be described further below.

The mechanistic link between diffusion parameters in the
brain ECS, osmosis, and membrane water permeability has
been unclear in the literature. In recent years, mathematical
models and computational methods have been increasingly
used to support or disprove various proposed scenarios of
nonlinear dynamic changes of ECS geometry under various
physiological and pathological conditions, as well as to provide
a context for the interpretation of experimental findings. In the
process, new models have been designed and new paradigms
for interpreting model predictions have been formulated. To
our knowledge, none of these models successfully links ECS
size and tortuosity with osmosis and membrane permeability to
accurately describe or predict the nonlinear time dependency
of ECS dynamics under various conditions.

The present study provides a detailed understanding of the
major parameters that determine water balance and solute
diffusion in the brain. We show how the time course of
changes in these parameters is affected by cell membrane
permeability and osmolarity gradients between ECS and ICS.
Since the motion of solute particles in the ECS takes place in a
multiscale environment [9], we have constructed a multiscale
mathematical model which describes the dynamic relation
between osmotic gradient, cell membrane water permeability,
ECS volume fraction, and ECS tortuosity. A unique aspect and
technical challenge of our model was the modeling of diffusion
for a nonstationary ICS-ECS interface in the brain tissue with
the assumption that the cell membrane is highly permeable to
water. This assumption is supported by the known abundance
of AQP4 channels in glial cell membranes. A strength of our
model is that it formulates osmolarity-driven diffusion in ECS
and ICS with minimal parameters.

In the sections that follow, we first provide a detailed
description of the presented mathematical model. This starts
with a description of a scalable representative tissue geometry.
A level set equation is then used to describe the membrane
interface as a moving boundary and to describe the dynamics of
ECS changes driven by osmolarity gradients. A homogeniza-
tion technique is then used in the framework of this level set

method to derive a spatially averaged diffusion model. This in-
volves asymptotic expansion of the spatial gradient functions,
followed by solutions to the lowest-order problems, reference
cell problems, and homogenized problems. Afterwards, the
dynamics of the ECS and ICS osmolarities are scaled up to
provide a macroscopic description of transport processes. An
explicit derivation of the tortuosity factor as a function of the
relevant parameters—time, space, ECS diffusivity, osmolarity
difference across the cell membrane, and cell membrane water
permeability—completes the presented mathematical model.

Second, we present multiple realistic examples, with
numerical schemes for simulation of the theoretical results to
demonstrate how ECS tortuosity is related to the dynamic size
of the ECS, time, space, membrane water permeability, and
osmolarity gradient across cell membranes. These examples
start with a representation of tortuosity as a function of
ECS volume fraction. Afterwards, we demonstrate the time
evolution of tortuosity and volume fraction for multiple values
of osmolarity difference across cell membrane and separately
again for multiple values of membrane water permeability.
Next, the case of nonuniform osmolarity distribution is studied,
and simulated results of the time evolution of tortuosity
are presented for four discrete points in space. A thorough
demonstration of time-concentration profiles for microscale
(nonhomogenized) and homogenized models in both uniform
and nonuniform osmolarity distribution cases completes the
set of simulated examples. Finally, a detailed discussion and
brief conclusion are presented in the last section.

II. MATHEMATICAL MODEL

In this section, we provide a two-dimensional (2D) multi-
scale mathematical model of osmolarity evolutions in brain
ECS and ICS. The mathematical model presented here is
designed for brain tissue experiencing dynamic ECS changes.
In this study, the ICS and ECS are modelled as perfectly mixed
phases separated by an ideal semipermeable membrane with
a vanishingly small elastic modulus. ECS changes are caused
by osmotic effects that lead to water transport through cellular
membranes. In our problem layout we assume that at time zero
the osmolarity of the ECS is less than the osmolarity of the ICS,
resulting in water transport from outside of the cells to inside
the cells. This leads to swelling of the cells and shrinkage of
the ECS. The correlation between ECS volume fraction (α)
and tortuosity (λ) with osmotic challenge has been the subject
of several theoretical studies in two dimensions [13] and some
experimental studies [31].

The current model is described as a moving boundary
problem in which two phases containing diffusive osmolytes
are separated by a weakly elastic and ideally semipermeable
membrane. The water flux across the cell membrane is linearly
dependent on the osmolarity difference across the membrane.

A. Setting

Diffusion in the ECS is controlled by its geometry and con-
tent and is analogous to diffusion in porous media with several
scales [9,32]. The system is characterized by a clear separation
of length scales: The size of a single cell including the narrow
gap between cells is several microns, whereas the dimension
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FIG. 1. Schematic illustration of the geometrical setting used in
the multiscale mathematical model under homogenization procedure.

of the brain tissue block is in the order of hundreds of microns.
We introduce the small scale parameter ε as the ratio of the
size of the pore (l) to the size of our selected tissue (L):

ε = l

L
.

First, for the geometry of a selected tissue, we consider
a rectangular region � with boundary �, as a selected
region in the brain tissue with a periodic repetition of an
ε-scaled reference cell (εY ), where Y is the reference element
and contains a single cell (Y i) together with its associated
extracellular region (Y e), where, Ȳi ∪ Ȳe = Ȳ (Ȳ is the closure
Y ), Ȳi ∩ Ȳe =: �, Yi ∩ Ye = ∅ and ε is a small, dimensionless
length scale. In this periodic geometry �ε

i represents ICS,
�ε is the membrane of the cells, and �ε

e is the associated
ECS (Fig. 1). Such periodic distribution of cells, although
not realistic, is sufficient to show significant effects of water
transport on molecular diffusion in the brain, as demonstrated
below.

B. Membrane interface

In order to describe the evolution of the underlying
microstructure induced by cell swelling, we define the level
set function G at time (t) and space (x) variable by:

G(x,t)

⎧⎨
⎩

< 0 extracellular space
= 0 membrane
> 0 intracellular space

.

A level set function is an appropriate tool for studying
moving interfaces and has inspired new ways of numerically
solving moving boundary problems [33,34]. Here we assume
that there is no tangential movement of the membrane.
Fulfilling the following partial differential equation:

Gt + vn|∇G| = 0 t ∈ (0,T ),x ∈ �,

G(x,0) = S0,
(1)

where vn is the normal velocity of the membrane interface
(will be determined later). Also, the evolving membrane
is defined by �(t) = {x : G(x,t) = 0}, the ECS is given
by �e(t) = {x : G(x,t) < 0}, and the ICS is given by
�i(t) = {x : G(x,t) > 0}.

C. Mathematical formulation

In this study, we assume that there is no advective
component in the basic equation for osmolyte diffusion. In
other words, there is no global fluid movement in the model.
The only motion considered in the model is cell membrane
translation in a medium of zero net velocity. This constitutes
a moving boundary problem.

Substances that are released into the ECS move predomi-
nantly by diffusion [10,11]. Thus, the evolution of osmolarity
concentration due to diffusion in the porous extracellular space
is given by the following set of partial differential equations:

∂tψ − ∇.(De∇ψ) = 0 t ∈ (0,T ),x ∈ �e(t), (2)

with homogeneous diffusivity De and osmolarity of ECS, ψ .
Similarly, the evolution of osmolarity due to diffusion in

the intracellular space is given by the following set of partial
differential equations:

∂tφ − ∇.(Di∇φ) = 0 t ∈ (0,T ),x ∈ �i(t), (3)

with homogeneous diffusivity Di and osmolarity of ICS, φ.
A crucial point in this formulation is the derivation of

appropriate boundary conditions at the ECS-ICS interface.
Now we derive boundary conditions at the moving interface for
concentrations. The plasma membrane separates the intracel-
lular and extracellular compartments. In the time scale of water
flux in most cells, solute fluxes between these compartments
are slow relative to water fluxes [35]. Thus, if a change is
made to the extracellular solute concentration, water will
redistribute quickly, maintaining equal osmolarities in both
compartments [35]. So, for simplicity, we consider that the
membrane interface is impermeable to solutes.

Despite the semipermeable nature of cell membranes, the
cell membrane in our model is assumed to be permeable
to water only, because this provides a case where we can
study the effect of water transport (in extreme cases) on
the geometrical characteristics of the ECS (e.g., tortuosity)
without the influence of any other parameter associated with
membrane transport.

The starting condition in our model is an initial osmotic
imbalance that is assumed to be dissipated only by water
transport and not solute transport through the membrane. In
order to derive physically meaningful boundary conditions,
a conservation law at the evolving interface is required. In
fact, the Rankine-Hugoniot condition guarantees conservation
of quantities across a moving boundary [36]. The Rankine-
Hugoniot condition for conserving ECS osmolarity across the
moving interface is as follows:

Di∇φ(x,t) · n + vn(x,t)φ(x,t) = 0, (4)

where n is unit normal pointing into the ICS and vn is the
normal velocity of the membrane. This condition gives us a
relationship between the preserved concentrations and their
fluxes across the moving boundary, hence giving boundary
conditions that are useful for our purpose.

The ICS swelling and ECS shrinkage leads to the membrane
interface moving from ICS to ECS. One crucial physical factor
related to the ECS geometry is the ECS size, which is relatively
small compared to the ICS compartment. As a result of such a
big volume difference, the ECS experiences a higher change in
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its initial osmolarity during the course of water transport from
the ECS to ICS in response to the osmotic challenge. This is
reflected in our boundary condition.

Details of the derivation of the boundary condition are given
in the Appendix.

The relative velocity of the membrane with respect to fluid
is directly proportional to the difference between the ICS and
ECS osmolarities [37,38]:

vn(x,t) = pf vw(ψ − φ), (5)

where pf is the cell membrane water permeability and vw

is partial molar volume of water. In this study, we assume
that water permeability is constant across all parts of the cell
membrane.

D. Homogenization

Our model belongs to the class of spatially periodic hetero-
geneous materials that can be studied by a technique called
homogenization. The formal approach of homogenization
theory, namely the method of asymptotic expansions, has
been widely used to study a variety of processes in physics,
engineering, and biology [39–44]. The main theoretical issue
is that if one draws a line through a selected brain tissue (Fig. 2)
and measures the extracellular concentration of molecules
along that line, the concentrations are spatially heterogeneous.

By using some types of averaging that, on an appropriate
length scale, smooth out the heterogeneities, we can simplify
the problem and make it solvable with numerical techniques.
The main goal of homogenization is to do such averaging
over the substructural variations in materials that are spatially
heterogeneous (Fig. 2). Homogenization theory relies on
the assumption that the medium is composed of the spatial
repetition of much smaller reference cells [40].

FIG. 2. Geometric model of the brain tissue. Depictive example
showing that the method of homogenization effectively smooths
substructure variations caused by brain spatial heterogeneties. A
cross section in the medium alternately intersects the two phases
(a). A cross section of the solution at a given time in ECS (b) is
compared to the solution of the homogenized equation (c).

Here, first, a microscopic description of the phenomenon
is established in the reference cell. The asymptotic expansion
technique is then employed to derive a simplified macroscopic
problem for the entire domain, with coefficients that are depen-
dent on the microscopic properties. In this study, to describe the
ECS volume changes due to osmosis, we use homogenization
technique in the framework of the level set method. Separation
of length scales is the basis of homogenization technique. We
introduce the small scale parameter ε as the ratio of the size of
the pore (l) to the size of our selected tissue (L):

ε = l

L
. (6)

For our purpose, we reformulate the equations within the
multiscale framework. In order to obtain process-adapted
models in the homogenization limit, it is important to identify
the characteristic microscopic and macroscopic lengths and to
properly nondimensionalize the system of equations [45,46].

Reasonable scaling can be derived, for example, by per-
forming a nondimensionalization procedure, which reveals the
weighting of the different processes. In order to nondimen-
sionalize the problem, we define the following dimensionless
variables:

x̃ = x/L, t̃ = t/tref, ψ̃ε = ψε/ψref,

φ̃ε = φε/ψref G̃ = G/l,

and dimensionless parameters:

D̃ε
e = tref

L2
Dε

e , D̃ε
i = tref

L2
Dε

i , p̃f = tref

l
pf , ṽw = ψrefvw,

where ψref and tref are a reference concentration and a reference
time, respectively.

From (1), (2), (3), (4), (5), and (6), the following dimen-
sionless model is obtained:

∂t̃ ψ̃ε = ∇̃ · (D̃e∇̃ψ̃ε) x̃ ∈ �̃ε
e(t),t̃ ∈ (0,T̃ )

∂t̃ φ̃ε = ∇̃ · (D̃i∇̃φ̃ε) x̃ ∈ �̃ε
i (t),t̃ ∈ (0,T̃ )

∂t̃ G̃ε + εṽn|∇̃G̃ε | = 0 x̃ ∈ �̃,t̃ ∈ (0,T̃ )
D̃e∇̃ψ̃ε · nε + εṽnψ̃ε = 0 x̃ ∈ �̃ε(t),t̃ ∈ (0,T̃ )
D̃i∇̃φ̃ε · nε − εṽnφ̃ε = 0 x̃ ∈ �̃ε(t),t̃ ∈ (0,T̃ ),

(7)

where

ṽn = p̃f ṽw(ψ̃ − φ̃), x̃ ∈ �̃ε(t),t̃ ∈ (0,T̃ ). (8)

Subsequently, we describe the approach for deriving an
equivalent macroscopic description from the dimensionless
microscopic system (7). For more details about the homog-
enization technique, see Ref. [40]. In the following sections,
tildes are omitted for convenience.

1. Asymptotic expansion

Brain tissue structure is considered a multiscale system; we
characterize it by two spatial variables: the global variable x

(slow variable) and a microscopic variable y (fast variable).
Both are connected via the relation y = x/ε. As a conse-
quence, the expansion of the spatial gradient reads [40]:

∇ = ∇x + 1

ε
∇y.

Higher-order spatial derivatives are calculated in a similar way
by applying the chain rule.
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Furthermore, the two-scale asymptotic expansions for all
variable functions have the following form [40]:

ψε(x,t) = ψ0(x,y,t) + εψ1(x,y,t) + ε2ψ2(x,y,t) + · · · ,

φε(x,t) = φ0(x,y,t) + εφ1(x,y,t) + ε2φ2(x,y,t) + · · · ,

(9)

where each term φk(x,y,t),ψk(x,y,t) is Y -periodic with
respect to the microscopic variable.

In our work, we perform the homogenization procedure
by handling the evolving microstructure directly by a level
set function. This was first suggested in Ref. [47] in the
framework of precipitation/dissolution reactions in porous
media. In addition to the expansions (9), in the framework
of a level set description, the level set function Gε itself and
the normal vector nε are also expanded in terms of ε due to
the evolving microstructure.

For a two-dimensional setting, the expansion of the normal
vector is expressed by expansion of the level set function, and

we obtain the following expressions [47]:

Gε(x,t) = G0(x,y,t) + εG1(x,y,t) + ε2G2(x,y,t) + · · · ,

(10)

nε = n0 + εn1 + O(ε2), n0 = ∇yG0

|∇yG0| ,

n1 = τ0
τ0 · (∇xG0 + ∇yG1)

|∇yS0| , (11)

with τ0 := n⊥
0 denoting the orthogonal complement of n0 in

the two-dimensional space.
The zero-order expansion of the level set function

is also used to describe the zero-order time evolv-
ing domain Y e

0 (x,t) = {y : G0(x,y,t) < 0}, Y i
0(x,t) = {y :

G0(x,y,t) > 0} and interface �0(x,t) = {y : G0(x,y,t) =
0} [47]:

∂tG0 + pf vw(ψ0 − φ0)|∇yG0| = 0. (12)

For formal homogenization, the microscale is rewritten in
terms of the asymptotic expansions. Then, by comparing the
coefficient of different powers of ε, a cascade of equations for
the terms φk(x,y,t) and ψk(x,y,t) are obtained:

∂tφ0 = 1

ε2
∇2

yφ0 + 1

ε

(∇x · ∇yφ0 + ∇y · ∇xφ0 + ∇2
yφ1

) + (∇2
xφ0 + ∇2

yφ2 + ∇x · ∇yφ1 + ∇y · ∇xφ1
) + ε(· · · ) (13)

and, in a similar way,

∂tψ0 = 1

ε2
∇2

yψ0 + 1

ε

(∇x · ∇yψ0 + ∇y · ∇xψ0 + ∇2
yψ1

) + (∇2
xψ0 + ∇2

yψ2 + ∇x · ∇yψ1 + ∇y · ∇xψ1
) + ε(· · · ). (14)

Now we expand the boundary conditions:

Di∇φε · nε + εvnφε = 0 (15)

by assigning φε and nε in (15), we will have:

Di

[(
∇x+1

ε
∇y

)
φ0+ε

(
∇x+1

ε
∇y

)
φ1+ε2

(
∇x + 1

ε
∇y

)
φ2 + · · ·

]
· (n0 + εn1 + ε2n2 + · · · ) + εvn(φ0 + εφ1 + · · · ) = 0,

Di

[
1

ε
∇yφ0 + (∇xφ0 + ∇yφ1) + ε(∇xφ1 + ∇yφ2) + ε2(· · · )

]
· (n0 + εn1 + ε2n2 + · · · ) + εvn(φ0 + εφ1 + · · · ) = 0,

1

ε
Di∇yφ0 · n0 + Di∇yφ0 · n1 + Di(∇xφ0 + ∇yφ1) · n0

+ε[Di∇yφ0 · n2+Di∇xφ0 · n1+Di∇yφ1 · n1+Di∇xφ1 · n0+Di∇yφ2 · n0 + pf vw(ψ0 − φ0)φ0]+ε2(· · · )=0, x ∈ �ε(t).

As in Ref. [47], for the formulation of upscaled model it would be convenient to have a boundary condition enforced at
�0(x,t) = {y : G0(x,y,t) = 0}:

1

ε
Di∇yφ0 · n0 + Di∇yφ0 · n1 + Di∇xφ0 · n0 + Di∇yφ1 · n0 + y · ∇x(Di∇yφ0 · n0) + λn0 · ∇y(Di∇yφ0 · n0)

+ε
[
y · ∇x(Di∇yφ0 · n1 + Di∇xφ0 · n0 + Di∇yφ1 · n0) + λn0 · ∇y(Di∇yφ0 · n1 + Di∇xφ0 · n0 + Di∇yφ1 · n0)

+Di∇yφ0 · n2 + Di∇xφ0 · n1 + Di∇yφ1 · n1 + Di∇xφ1 · n0 + Di∇yφ2 · n0 + pf vw(ψ0 − φ0)φ0

+1

2
(y,�n0) · (D2(Di∇yφ0 · n0)(y,�n0))

]
+ ε2(· · · ) = 0, y ∈ �0(x,t), (16)

where D2 is Hessian and the parameter � is related to the expansion of level set function Gε in the following way [47]:

� = G1

|∇yG0| − y · ∇xG0

|∇yG0| , y ∈ �0(x,t).
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In a similar way, for the boundary condition

De∇ψε · nε + εvnψε = 0, (17)

by assigning ψε and nε in (17), we will have:

1

ε
De∇yψ0 · n0 + De∇yψ0 · n1 + De∇xψ0 · n0 + De∇yψ1 · n0 + y · ∇x(De∇yψ0 · n0) + λn0 · ∇y(De∇yψ0 · n0)

+ε
[
y · ∇x(De∇yψ0 · n1 + De∇xψ0 · n0 + De∇yψ1 · n0) + λn0 · ∇y(De∇yψ0 · n1 + De∇xψ0 · n0 + De∇yψ1 · n0)

+De∇yψ0 · n2 + De∇xψ0 · n1 + De∇yψ1 · n1 + De∇xψ1 · n0 + De∇yψ2 · n0 − pf vw(ψ0 − φ0)ψ0

+1

2
(y,λn0) · (D2(Di∇yψ0 · n0)(y,λn0))

]
+ ε2(· · · ) = 0, y ∈ �0(x,t). (18)

2. Lowest-order problems

We collect the ε−2-term form (13) and ε−1-term form (16)
and obtain:

∇2
yφ0 = 0, ∇yφ0 · n0 = 0.

Because of periodicity in the y of φ0, it follows that φ0 is
determined up to a constant and does not depend on y and that
∇yφ0 = 0. Similarly, ψ0 is determined up to a constant and
does not depend on y.

3. Reference cell problems

The multiscale approach of homogenization yields a bound-
ary value problem that must be solved in order to determine the
effective diffusivity. This boundary value problem, commonly
referred to as the cell problem, is obtained by the next part
of the asymptotic expansion of (13). We collect the ε−1 term
from (13), the ε0 term from (16), and, given ∇yφ0 = 0:

∇y · [Di(∇yφ1 + ∇xφ0)] = 0 y ∈ Y i
0(x,t)

Di(∇yφ1 + ∇xφ0) · n0 = 0 y ∈ �0(x,t)
. (19)

We set the function F = Di(∇xφ0 + ∇yφ1). We claim that
F = 0.

We define the function

α = φ1 + y · ∇xφ0 + ᾱ(x,t).

From the system (19), we see that α is the solution of the
following system:

∇y · (Di∇yα) = 0 y ∈ Y i
0(x,t)

Di∇yα · n0 = 0 y ∈ �0(x,t)
. (20)

On the other hand, from the view of theory of partial differ-
ential equations, it is well known that the solutions of a linear
homogeneous elliptic equation with zero Neumann boundary
condition [like system (20)] are constants [48]. So the solutions
of system (20) are independent of variable y. Thus the solution
α of the system is the independent of variable y, and the
derivative of α with respect to y is zero. This means that:

∇yα = ∇xφ0 + ∇yφ1 = 0

and

F = Di(∇xφ0 + ∇yφ1) = 0.

This prove the claim.
In the next step, we collect the ε−1 term from (14), the ε0

term from (18), and, using that ∇yψ0 = 0:

∇y · [De(∇yψ1)] = 0, y ∈ Y e
0 (x,t)

De(∇yψ1 + ∇xψ0) · n0 = 0, y ∈ �0(x,t)

So, the cell problem becomes:

∇y · (∇yωj ) = 0, y ∈ Y e
0 (x,t)

∇yωj · n0 = −ej · n0, y ∈ �0(x,t)
ωj periodic in y

(21)

for j = 1,2, where ψ1 = ω1∂x1ψ0 + ω2∂x2ψ0.

4. Homogenized problems

The third term in the expansion of intracellular and extracellular concentrations must be considered in order to obtain a
first-term approximation. For extracellular concentration, we have:

∂tψ0 = ∇y · (∇yψ2 + ∇xψ1) + ∇x · H y ∈ Y e
0 (x,t)

y · ∇x(H · n0) + λn0 · ∇y(H · n0) + H · n1

+(∇yψ2 + ∇xψ1) · n0 + pf vw(ψ0 − φ0)ψ0 = 0 y ∈ �0(x,t)
, (22)

where H = De∇xψ0 + De∇yψ1.
Next, we integrate the first (22) on Y e

0 (x,t) with respect to y and apply the related boundary condition, and we will have:∫
Y e

o (x,t)
∂tψ0dy =

∫
Y e

o (x,t)
∇y · (∇yψ2 + ∇xψ1) + ∇x · Hdy

∣∣Y e
0 (x,t)

∣∣∂tψ0 =
∫

�0(x,t)
(∇yψ2 + ∇xψ1) · n0dS(y) +

∫
Y0(x,t)

∇x · Hdy
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=
∫

�0(x,t)
[−y · ∇x(H · n0) − λn0 · ∇y(H · n0) − H · n1 − pf vw(ψ0 − φ0)ψ0]dS(y)

+
∫

Y e
0 (x,t)

∇x · Hdy (23)

by applying the Reynold transport theorem in order to interchange integration and spatial derivation:

∇x ·
∫

Y e
0 (x,t)

Hdy =
∫

Y e
0 (x,t)

∇x · Hdy −
∫

�0(x,t)

∇xG0

|∇yG0| · Hdy. (24)

Then, from (23) and (24), we will have:
∣∣Y e

0 (x,t)
∣∣∂tψ0 = ∇x ·

∫
Y e

0 (x,t)
Hdy −

∫
�0(x,t)

pf vw(ψ0 − φ0)ψ0dS(y) − I1 − I2,

where

I1 =
∫

�0(x,t)
y · ∇x(H · n0) − y · ∇xG0

|∇yG0| n0 · ∇y(H · n0)dS(y),

I2 =
∫

�0(x,t)

τ0 · ∇yG1

|∇yG0| τ0 · H − G1

|∇yG0| · ∇y(H · n0)dS(y).

and by using Lemma 3.1 and Lemma 3.2 in Ref. [47],

I1 = I2 = 0.

Next, we get the following partial differential equation for the ECS osmolarity concentration:∣∣Y e
0 (x,t)

∣∣∂tψ0 = ∇x · (D̄(x,t)∇xψ0) − |�0(x,t)|pf vw(ψ0 − φ0)ψ0,

where the tensor D̄(x,t) = (D̄ij )i,j is given by:

D̄ij = D

∫
Y e

0 (x,t)
(δij + ∂yi

ωj )dy (25)

and by the Reynolds transport theorem for time derivatives:

∂t

(∣∣Y e
0 (x,t)

∣∣ψ0
) = ∇x · (D̄(x,t)∇xψ0) +

∫
�0(x,t)

pf vw(ψ0 − φ0)ψ0dS(y) − |�0(x,t)|pf vw(ψ0 − φ0)ψ0. (26)

Finally, from (26), we will have:

∂t

(∣∣Y e
0 (x,t)

∣∣ψ0
) = ∇x · (D̄(x,t)∇xψ0). (27)

For intracellular space, we have:

∂tφ0 = ∇y · (∇yφ2 + ∇xφ1) + ∇x · F y ∈ Y i
0(x,t)

y · ∇x(F · n0) + λη0 · ∇y(F · n0) + F · n1

+(∇yφ2 + ∇xφ1) · n0 + pf vw(ψ0 − φ0)φ0 = 0 y ∈ �0(x,t)
, (28)

where we integrate the first (28) on Y i
0(x,t) with respect to y

and apply the related boundary condition. In a similar way,
since F = 0, we will have:

∂t

(∣∣Y i
0(x,t)

∣∣φ0
) = 0. (29)

In the next section, through upscaling, we obtain a macro-
scopic description of the transport processes supplemented by
the cell problem (21).

E. Upscaling

In the previous section, periodic homogenization was
applied to the system of partial differential equations (7)
and (8), describing diffusion transport of osmolarities within
a porous medium in evolving domains. A level set formu-
lation was used to handle the evolving microstructure. As a

result of performing the averaging procedure using two-scale
asymptotic expansion, we obtained a set of modified averaged
diffusion equations for ECS and ICS osmolarities. These
equations are supplemented by several families of microscopic
cell problems.

From these, we derive averaged coefficient functions, which
explicitly depend on space, time, microscopic geometry, os-
molarity differences across the cell membrane, and membrane
water permeability. These procedures lead to the following
upscaling results for the dynamics of the ECS and ICS
osmolarities:

∂t

(∣∣Y e
0 (x,t)

∣∣ψ0
) = ∇x · (D̄(x,t)∇xψ0), x ∈ �,t ∈ (0,T )

∂t

(∣∣Y i
0(x,t)

∣∣φ0
) = 0, x ∈ �,t ∈ (0,T )

,

(30)
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with sufficient initial and boundary conditions and diffusion
tensor D̄(x,t) defined by:

D̄(x,t) = D

∫
Y e

0 (x,t)
(δij + ∂yi

ωj )dy, (31)

where ωj being the solutions of the cell problems (21).
Furthermore, the level set function G0 = G0(t,x,y) fulfills
the following:

∂tG0 + pf vw(ψ0 − φ0)|∇yG0| = 0, (32)

and Y e
0 (x,t) = {y : G0(x,y,t) < 0}, Y i

0(x,t) = {y :
G0(x,y,t) > 0}.

F. Tortuosity

The main result of the homogenization procedure coupled
with the level set method in this study is the derivation of
the tortuosity factor based on the relevant parameters. These
parameters are time, space, the geometry of the reference
cell, diffusivity in the ECS, osmolarity difference across the
membrane, and cell membrane water permeability. We first set
D∗(x,t) as the following:

D∗(x,t) = D̄(x,t)∣∣Y e
0 (x,t)

∣∣ = D∣∣Y e
0 (x,t)

∣∣
∫

Y e
0 (x,t)

(δij + ∂yi
ωj )dy.

Then this leads to the following expression for the definition
of the tortuosity:

1

λ2(x,t)
= D∗(x,t)

D
= 1∣∣Y e

0 (x,t)
∣∣
∫

Y e
0 (x,t)

(δij + ∂yi
ωj )dy.

(33)

To compute these relations, we should solve the coupling
equations in (30), (31), (32), and the cell problem (21). In
the following sections, we present the results of simulated
numerical methods for solving these equations.

III. EXAMPLES

To illustrate the simulated numerical results of our model,
we established a 2D geometry as a selected tissue of the
brain and calculated the tortuosity and volume fraction in a
few physiologically relevant example conditions. The solution
of the coupled equations in (30), (31), (32), and the cell
problem (21) is technically interesting. The main difficulty of

the numerical algorithm for solving these equations is the fact
that the microstructure of the porous medium is evolving due
to the osmotic process. Additional difficulties are nonlinearity
of these equations and coupling them.

We applied the numerical algorithm that was proposed in
Ref. [49]. We used the implicit Euler method in order to
obtain a sequence of discrete-time coupled systems. Spatial
discretization was performed by using finite element method
(FEM) for our simulations and numerical schemes.

In this work, we model the cells as square tiles with initial
length 0.45 μm. The tissue selected for simulation is taken to
be � = [0,J ] × [0,J ], with the length J = 100 μm. Also, we
denote the initial osmolarity difference across the membrane
as σ = φ(x,0) − ψ(x,0). Values and units of the parameter
that are used in the simulation are indicated in Table I.

Today it is well established that the ECS constitutes about
15–20% of the normal adult brain tissue volume and that this
figure falls to 5% during ischemia [17]. We considered the
initial volume fraction as 19%, which means that α(x,0) =
0.19.

Water transport across the ICS-ECS interface is driven by
the difference in ICS and ECS osmolarities. Cell membrane
water permeability is mediated by AQP4 water channels. Water
transport between the ICS and ECS compartments result in
displacement of the ICS-ECS interface, with water influx
causing ECS contraction and cell expansion.

For our computational purposes, we discuss some simplifi-
cation in Eq. (32) of the effective model equations presented in
the upscaling section above. We consider a geometrical setting
in which the cells are of square shape at initial time (see Fig. 3).
The solution of level set equation (32) for all x ∈ � and t > 0
is shown by the dashed-line square in Fig. 3, [33,34]. For
simplification of our computations and for comparison of our
results to previous data, we approximate the dashed-line square
with the solid-line square (Fig. 3). By this assumption, (32)
can be reduced to

∂h

∂t
(x,t) = −pf vw[ψ0(x,t) − φ0(x,t)], (34)

where h is the length of the square cell shape.
In what follows, a fully discrete numerical scheme is

presented, which is capable of approximating the effective
quantities of interest. This incorporates the solving of the sys-
tem (30), (31), (34), as well as the cell problem (21). We apply

TABLE I. Model parameters.

Parameter Value Description Reference

φ(x,t) – Osmolarity of the ICS (mol/m3) –
ψ(x,t) – Osmolarity of the ECS (mol/m3) –
De 10−4 Diffusion coefficient of osmolyte in ECS (cm2/s) –
Di 10−4 Diffusion coefficient of osmolyte in ICS (cm2/s) –

pf

0.001, 0.002,

0.004, 0.008
Membrane water permeability (cm/s) [50,51]

vw 18 Partial molar volume of water (cm3/mol) [50]
λ – Tortuosity –
σ – ψ(x,0) − φ(x,0) –
t – Time (s) –
x – Space –
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FIG. 3. The initial shape of the cell is represented by the dash-
dotted line. Using this initial shape, the solution of our level set
equation (32) is represented by the dashed line, which is approximated
by the square shape that is represented by the solid line.

Rothe’s method to the system using the implicit Euler method
in order to obtain a sequence of discrete-time, yet still coupled,
systems. The couplings between the microscopic scale and the
macroscopic scale and also the couplings between the length
of square are resolved by an iterative splitting scheme.

Spatial discretization is performed on unstructured triangu-
lar grids by finite elements for both the macroscopic problems
and the cell problems.

Time discretization: Let 0 =: t0 < t1 < · · · < tN be a not-
necessarily equidistant decomposition of the time interval
I =]0,T [ and let tn − tn−1 =: ηn denote the time step size.
Furthermore, for any time-dependent quantity u(x,t), we
use the notation un = un(x) = u(tn,x). Application of the
implicit Euler method yields a sequence of N stationary yet
coupled systems. More precisely, for n = 1, . . . ,N we have
to find (ψn

0 ,φn
0 ,hn) in terms of ψn−1

0 (x), φn−1
0 (x), hn−1(x),

and D̄n−1(x) with coefficients D̄n(x) which in turn depend in
particular on hn(x).

Spatial discretization: Let TK = {T } be a regular decom-
position of the macroscopic domain � into closed triangles
T of characteristic size H such that �̄ = ⋃

T . We call the
associated mesh of TK the coarse-scale grid, represented by
the same symbol. Each triangle T ∈ TK is associated with a
unit cell Y T

0 containing an evolving ECS space Y T
0,e = Y T

0,e(t)
that is clearly time dependent due to the evolving interface
and that is denoted by Y

T,n
0,e for the time level tn. Analogously,

let Tk = T
n,T
k denote the family of fine-scale grids covering

the domains Y
T,n
0,e , T ∈ TK . We denote by Pm(T ) the space of

polynomials of degree at most m on T and Pm(TK ) = {ωK :
� :−→ R|∀T ∈ TK,ωk|T ∈ Pm(T )}. In order to approximate
the vector and scalar unknowns of (30) and cell problem (21),
we use the spaces P1(TK ) and P1(Tk).

We skip the variational formulation of the discrete-time
macroscopic system (30) and of the cell problems (21), which
are beyond the scope of this paper. Instead, we refer to Ref. [52]
and indicate only the major points of the discretization.

We state our solution strategy by means of the following
algorithm.

Algorithm:

Initialization
Let n = 0. Generate a coarse-scale grid TK = TK (�0),
initialize φn

0,K , ψn
0,K , hn

0,K , and choose a fixed time step
size τn = τ .

Time Step
(1) Set n := n + 1. If tn = tN , then terminate.
(2) For each triangle T ∈ TK , generate fine-scale

grids Tk(Y T,n
0,e ) using the coarse scale hn−1

K,0 and an
appropriate mesh sizes.

(3) For each triangle T ∈ TK , solve the cell prob-
lem (21) on Y

T,n
0,e in order to compute the coarse-scale

coefficients D̄n
K .

(4) Solve (30), φn
0,K , and ψn

0,K using D̄n
K .

(5) Solve (34) for hn
0,K using φn

0,K and ψn
0,K .

(6) Proceed with (1).

Postprocessing
For all time levels tn, compute the coarse-scale porosity
Yn

0,e,K using hn
0,K and the coarse-scale φn

0,K and ψn
0,K .

Remark: We use fixed time step size τn = 0.01. At the first
and last time levels, we use a coarse-scale grid TK consisting of
5645 triangles. For fixed t = tn these are covered by fine-scale
grids Tk,T ∈ TK consisting of 1000 to 7000 triangles.

A. Tortuosity as a function of ECS volume fraction

The earliest model of this class is what was described by
Maxwell. His result (λ = √

2 − α) was originally derived for
a dilute suspension of spheres where α is close to unity. In
fact, spheres neither fill the 2D space nor pack closely, and
the limiting values close to zero of α are unattainable. But in
our model, squares can fill the 2D space and pack closely. It
follows that the limiting values α → 0 are applicable to these
packed geometry on small values of α.

Our results (Fig. 4) show that for packed squares λ increases
slowly to a finite value of

√
2 = 1.414 for the limiting values

α → 0, the well-known limit for λ in 2D [13,14], even
though Maxwell’s assumptions are severely violated under
these circumstances. This is consistent with the conclusion on
λ for limiting values of α presented in Refs. [13,14]. This is
probably the reason why equation λ = √

2 − α works fairly
well for a wide range of well-connected ECS volume fractions
(see Fig. 4). So, the extension of the Maxwell formula to
packed square cells with uniform spacing is valid for the small
values of α.

FIG. 4. Tortuosity plotted as a function of volume fraction. A
comparison is made between our model prediction and the formula
λ = √

2 − α.
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FIG. 5. (a) Tortuosity (λ) plotted as a function of time for multiple values of initial osmolarity difference across the cellular membrane (σ ).
(b) Volume fraction α plotted as a function of time for multiple values of initial osmolarity difference across the cellular membrane (σ ). Values
and units of these parameters are given in Table I.

B. Time evolution of tortuosity and volume fraction
against osmolarity gradient

First we studied the temporal behavior of the tortuosity
factor (Fig. 5) for multiple values of initial osmolarity differ-
ence with a fixed membrane permeability. The time course of
tortuosity is plotted according to initial osmolarity differences
of σ = 100, 150, 200, and 250 mol/m3 and cell membrane
water permeability of pf = 0.002 cm/s. As shown in the
figure, tortuosity increases and volume fraction decreases
when the initial osmolarity difference is higher. The low
initial osmolarity difference (i.e., σ = 100 mol/m3) leads to a
significant decrease in α and a small increase in λ. However, a
high initial osmolarity difference (i.e., σ = 250 mol/m3) leads
to a larger decrease in α and a larger increase in λ.

Brain cells swell when exposed to hypotonic media or
during ischemia, with reciprocal changes in the ECS [53,54].
Information about global ECS changes during global cerebral
ischemia has been very limited. One of the applications of
our model is in explaining the changes of molecular diffusion
during global cerebral ischemia. As shown in Fig. 5(b), for
pf = 0.002 cm/s and σ = 250 mol/m3, volume fraction
decreases from 19% to 4%, which is consistent with the
decreased volume of ECS volume during ischemia.

C. Time evolution of tortuosity and volume fraction
against membrane permeability

Next, we studied the temporal behavior of tortuosity and
volume fraction (Fig. 6) for several values of cell membrane
water permeability, pf = 0.001, 0.002, 0.004, and 0.008 cm/s,
with a fixed osmolarity difference of σ = 150 mol/m3. As
shown, by reducing water permeability (e.g., with AQP4
inhibition or deletion), the rate of decrease in volume fraction
and the rate of increase in tortuosity are both reduced.

In physiological context, such delayed increase of the vol-
ume fraction and delayed increase of tortuosity are observed
following the AQP4 deletion [55].

The above results demonstrate an equilibrium phenomenon
in our model, which is a crucial behavior of many physical
systems. These results show that increasing the initial
osmolarity difference has very little effect on osmolarity
equilibrium time. In contrast, an increase in membrane water
permeability has a strong effect on the equilibrium time
because it allows faster water flow.

D. Case of nonuniform osmolarity distribution

In the previous case studies, we assumed that the initial
osmolarities in the ECS and ICS are distributed uniformly,

FIG. 6. (a) Tortuosity (λ) plotted as a function of time for multiple values of water permeability of the membrane (pf ). (b) Volume fraction
(α) plotted as a function of time for multiple values of membrane water permeability (pf ). Values and units of these parameters are given in
Table I.
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i.e., σ is constant throughout the selected tissue. However,
under some physiological conditions, such as focal ischemia,
the osmolarity difference across the membranes is confined to
a specific region of the brain [56]. Our model is able, to some
extent, to explain the time course of tortuosity and volume
fraction changes in such a localized situation. In this case, we
assume that pf = 0.004 cm/s and that the initial osmolarities
are distributed nonuniformly in the ECS and uniformly in the
ICS, with the following equation:

ψ(x,0) =
{

150 x2
1 + x2

2 � 10
300 else

, φ(x,0) = 300,

(35)

where, x = (x1,x2) is spatial coordinate. Equation (35) indi-
cates that initial ECS osmolarity in the small circular region
in the tissue is 150 mol/m3 and in other regions of the tissue
is 300 mol/m3, and initial ICS osmolarity in all regions of the
tissue is 300 mol/m3 [see Fig. 7(a)]. More precisely, the only
initial osmolarity difference exists at the boundary of the small
circular region, and there is no initial osmolarity difference in
the rest of the selected tissue. As shown in Fig. 7(b), changes
of tortuosity in region A, where there is a difference in
osmolarity, is higher than the other locations, i.e., B, C, and D.
As illustrated, a decrease of volume fraction and increase of
local tortuosity occurs near the region of osmolarity difference.
This shows that tortuosity temporarily increases only in the
ischemic region of the brain. It also shows that tortuosity does
not depend on time alone but on spatial coordinates as well.

According to our results, the change in tortuosity caused
by global ischemia is delayed compared to focal ischemia.
Moreover, although changes in tortuosity occur globally, they
most profoundly affect the ischemic region and adjacent areas.
This finding may be important for developing neuroprotective
strategies based on regional brain ischemia in experimental
models.

E. Microscale and macroscale comparison

Last but not least, we compare numerical solutions of the
original equations at the microscopic scale with numerical

solutions of the homogenized model in order to see how well
the homogenization technique approximates the real solutions
to the original microscopic problem. For this purpose, we
compare the solutions of the homogenized equations (30), (31),
and (32) with the solutions of Eqs. (7) and (8) in the original
microscopic model. The numerical simulation is performed in
two cases, where the initial osmolarities are either uniformly
or nonuniformly distributed in the selected domains.

In the case of uniformly distributed initial osmolarity, we
use the constant water permeability pf = 0.008 cm/s, and
consider the initial conditions φ(x,0) = 300 mol/m3 in the
ICS domain and ψ(x,0) = 200 mol/m3 in the ECS domain.
In Fig. 8(a) the time course of the ICS concentration φ0 in
the homogenized model and the ICS concentration φε in the
microscopic model are compared in a point inside the ICS.
In Fig. 8(b) the time course of the ECS concentration ψ0 in
the homogenized model and the ECS concentration ψε in the
microscopic model are compared in a point inside the ECS.

In the case of nonuniformly distributed initial osmolarity,
we use the constant water permeability pf = 0.004 cm/s and
consider the initial conditions in the relation (35). In Fig. 9(a)
the time course of the ICS concentration φ0 in the homogenized
model and the ICS concentration φε in the microscopic model
are compared in a point inside the ICS. In Fig. 9(b) the time
course of the ECS concentration ψ0 in the homogenized model
and the ECS concentration ψε in the microscopic model are
compared in a point inside the ECS.

The numerical simulation results show that the solution of
the homogenized model well agrees with the solution of the
microscopic model.

IV. DISCUSSION

Molecular diffusion in the brain ECS is an important topic in
neuroscience research and drug delivery. Molecular diffusion
depends, among other factors, on the ECS geometry, which is a
complex and dynamic structure. In many physiological as well
as pathological states, the ECS geometry is not stable and is
affected by cell (especially glial) volume change [19]. This is

FIG. 7. (a) Nonuniform initial distribution of osmolarities in the selected tissue. Initial ECS osmolarity in the small circular region in the
tissue is 150 mol/m3 and in other regions of the tissue is 300 mol/m3. Initial ICS osmolarity is 300 mol/m3 throughout. (b) Tortuosity plotted
as a function of time for the points A, B, C, and D. Values and units of these parameters are given in Table I.
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FIG. 8. Comparison of concentration profiles as a function of time between the microscopic model and the homogenized model in the case
of nonuniformly distributed initial osmolarity. (a) The circles are the concentration of φε in the microscopic model and the dashed line is the
the concentration of φ0 in the homogenized model. (b) The dashed line is the concentration of ψε in the microscopic model and the circles are
the concentration of ψ0 in the homogenized model.

due to the movement of water between intra- and extracellular
compartments in response to osmotic challenges. Water move-
ment across the cellular membranes in the brain takes place
via AQP4 water channels. Modulation of AQP4 expression has
been shown to be effective in the treatment of water imbalance
in various pathological states of the brain [57,58].

Changes in the diffusion parameters due to water transport
influence both synaptic and extrasynaptic transmission. These
changes may enhance or suppress neuronal activity or the
accumulation of neuroactive substances (e.g., glutamate) due
to changes in ECS volume. Information about these changes
may be valuable for diagnostic or therapeutic purposes [1,59].

Because of the complex interplay between osmosis, mem-
brane permeability, and ECS geometry, studying diffusion un-
der different osmotic conditions requires quantitative models.
To model the role of spatiotemporally nonlinear ECS dynamics
in the brain, it is essential to develop computationally efficient
descriptions for molecular diffusion in the tissue. The main
objective of this paper has been to provide, for the first time,
a comprehensive mathematical and computational framework
for such dynamic processes. We studied diffusion, osmosis,

ECS geometry, and their interplay, all physical phenomena.
We showed that the interplay between diffusion and osmosis
can give the brain ECS a new property, which is reflected in
its dynamic geometry and tortuosity.

We demonstrated how such a multiscale framework can
be constructed using a homogenization theory coupled with
the level set method. By using a level set formulation,
we performed periodic homogenization of a coupled model
describing ECS and ICS osmolarity dynamics within a porous
medium as a selected brain tissue. In this process, we used
the level set method to model the movement of cellular
membranes with a velocity that is proportional to osmolarity
difference across the cell membrane. Through this, we related
cell membrane water permeability to diffusion parameters of
the ECS.

The main outcome of our approach is establishment of a
clear relation between the effective diffusion coefficient from a
spatially averaged model and the original microscopic model.
We demonstrated how homogenized equations can be used as
appropriate and efficient tools to interpret the parameters of the
original problem, as well as the time course of changes in these

FIG. 9. Comparison of concentration profiles as a function of time between the microscopic model and the homogenized model in the case
of nonuniformly distributed initial osmolarity. (a) The circles are the concentration of φε in the microscopic model and the dashed line is the
concentration of φ0 in the homogenized model. (b) The circles are the concentration of ψε in the microscopic model and the dashed line is the
concentration of ψ0 in the homogenized model.
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parameters. Homogenization is required not only to derive the
averaged equation but also to enable coupling of osmosis and
diffusion parameters with dynamic geometrical variations of
the ECS, independent of the uniformity or nonuniformity of
the initial concentration distribution.

A key prerequisite of the homogenization technique is a
wide separation of geometric length scales, which is clearly
satisfied for the ECS. In fact, the characteristic size of the
ECS is much smaller than the characteristic length scales of
the representative brain tissue. The homogenization theory
and level set method have been widely used to study various
other phenomena in physics, engineering, and biology, and
useful descriptions of their features have been provided in the
literature [42,43,60,61].

Various computational approaches have been used for the
investigation of diffusion parameters in the brain ECS [13–
15,62]. However, the approaches have not illustrated the effect
of cell membrane water permeability on diffusion parameters.
Also, the time course of this dynamic effect has been un-
known. Coupling the time-dependent equations of geometry,
concentration gradient, water flux, osmolarity, and molecular
diffusion renders the system strictly nonlinear. The interplay
between these parameters is nonlinear as well, as demonstrated
in our numerical simulations. In each simulation, although
the final solute concentrations would be easily predictable by
the initial equations, the goal of our model and numerical
simulations is not to reach to the final equilibrium values but
to demonstrate and analyze the nonlinear temporal dynamics
of getting to that state from various initial states of the system.

Our model predicts, for the first time, the sensitivity of
tortuosity to volume fraction, cell size, time, cell membrane
water permeability, and osmolarity differences across the cell
membrane. Our model can be used to understand the conse-
quent effects of acute brain cell swelling, which results in ECS
contraction and is seen in many pathologic conditions such as
cerebral edema. Also, it can be concluded that the diffusion
rate of neuroactive substances is modulated not only by the size
of the pores between the cells but also by the dynamic changes
of the ECS. This new understanding may reveal new targets
for potential therapeutic interventions during brain pathologies
associated with cell swelling, such as ischemia.

Our model and simulations were constructed and performed
in two dimensions. The next natural step would be to extend
the model to a realistic 3D setting. To this end, either the
methods applied in this study need to be further developed
or different approaches have to be used. For extending the
model to three dimensions, one should modify the parameters
on homogenization using the level set equation.

One major question addressed in this paper was whether
reduced cell membrane water permeability (for example, in
AQP4 deficiency) could, by itself, account for the altered
ECS tortuosity dynamics, and, if so, how much the cell water
permeability is reduced in AQP4 deficiency. The model makes
predictions about the magnitude of reduction in cell water
permeability needed to account for the observed experimental
data [31,55,63]. AQP4, the predominant water channel in the
brain, is mainly expressed in the glia and is not homogeneously
distributed in the cell membrane. This inhomogeneous distri-
bution of AQP4 may be a key point for better understanding the
biological function of this water channel. For the purpose of the

current study, we assumed that water channels are distributed
uniformly in the cell membranes. This simplification allows
for studying the influence of high water permeable membranes
on the volume fraction and tortuosity factor.

The studied effect (change in tortuosity caused by water
transport) is small here, mainly because we are looking at the
global tissue level scale. This is supported by previously pub-
lished experimental observation in rodent brains [31,55,63].
However, such an effect may be more pronounced if we get
down to molecular level and consider variations in tortuosity
and diffusion coefficient of molecules from the ion channels or
receptors perspective (microdomain). This encourages future
models with water channels distributed nonuniformly in the
membrane.

In the real world, the assumption that the cell membrane is
only permeable to water holds true only in short time scales
since the effect of membrane ion transport including the active
transport through Na-K-ATPase also comes into play and may
cancel out the observed effects of water transport on tortuosity.
There is a phenomenological model that has studied such
long-term coupling between water transport through AQP4 in
the brain and other passive and active transports [64].

The tortuosity changes in our model and the resulting
changes in molecular diffusion in the ECS can play a role in
the function of passive ion transporters with high conductance
such as Kir 4.1- inward rectifying potassium channel expressed
in glial cells with conductance GKir4.1 = 27pS [65]. This
assumption leads to the effects of water transport on tortuosity
described in Fig. 5 and Fig. 6 at the maximum possible at the
global scale, as water transport and volume change take place at
their maximum rate. This is because there will be no reduction
in the osmotic challenge caused by the solute transport.

In our model, anomalous diffusion processes in various
distinct physical mechanisms are considered in terms of
effective time- and space-dependent diffusivities. Combina-
tions of space- and time-dependent diffusivities in theoretical
considerations were investigated in Ref. [66]. Anisotropies
in water diffusion have been observed in biological tissues
with directional fibrous structure, for example, in the white
matter of the human brain [67]. Measurement of such diffu-
sional anisotropy (i.e., fractional anisotropy, axial diffusivity,
and radial diffusivity) through diffusion-weighted magnetic
resonance imaging (MRI) and diffusion tensor imaging serves
as the basis of numerous studies of structural and functional
connectivity in the human cerebral cortex, including the human
connectome project [68].

Detection of early microstructural changes of neurodegen-
eration from bulk measurements of diffusivity on MRI is of
great clinical interest for early detection of Alzheimer’s disease
and other dementias [69]. In the literature, restricted or hin-
dered diffusion in various porous media has been considered
in terms of effective time-dependent diffusivities. Controlled
variation of the diffusion time, and corresponding modulation
of the degree of restricted diffusion, can provide enhanced
specificity and quantification of such properties as pore size,
shape, connectivity, and permeability. The initial reduction of
measured diffusion below its bulk value at short diffusion time
is given by the ratio of the diffusion length to the confining
length scale (or, more generally, to the inverse surface-to-
volume ratio). On the other hand, very long diffusion times
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are more widely feasible, especially in the clinic, and can
maximize restricted diffusion contrast. Recently, the concept
of time-dependent diffusivities in long times has been applied
to interpret signals in nuclear magnetic resonance experiments
and diffusion magnetic resonance imaging (dMRI) [67,70].
In Ref. [67], the following equation has been proposed for
identifying the time-dependent instantaneous diffusion coeffi-
cient [Dinst(t)], which is accessible with techniques measuring
the mean-square molecular displacement for the universality
classes of disordered media with permeable barriers:

Dinst(t) = D∞ + const.t−θ ,

where the dynamical exponent θ was related to the structural
exponent p of the disorder as θ = (p + d)/2 (d is the
spatial dimension) and approaches the finite bulk diffusion
constant D∞. The structural exponent can be defined from the
asymptotic behavior of the Fourier transform of the two-point
structure correlation function: �(k) ∼ kp as k → 0. Structural
universality classes of the medium can be distinguished by
the exponent p: the ordered periodic arrangement (p = ∞),
short-range disorder with a finite correlation length (p = 0),
or strong disorder (p < 0) that can be achieved. The relation
between the structural exponent and the dynamical exponent
allows one to determine from dMRI the most appropriate kind
of model for mesoscopic structural disorder. In particular, au-
thors in Ref. [67] identified the relevant microscopic structure
affecting water diffusion measured with dMRI in muscles and
in brain and elucidated the corresponding microscopic changes
providing clinically relevant dMRI contrast in ischemic stroke.

The above studies [67,70] seek to estimate tissue mi-
crostructural geometry from bulk measurements of diffusivity
at equilibrium, i.e., when t → ∞. Our model, in contrast,
demonstrates the dynamics of reaching to that equilibrium
state when the osmotic equilibrium is disturbed.

Finally, it is worth noting that ECS is characterized by both
its geometry and content (extracellular matrix; ECM) [59].
While the ECS geometry is a global factor influencing
diffusion of all molecules, the ECM affects only diffusion
of molecules that interact with it, either electrostatically or
sterically. The ECM impact on diffusion depends on its con-
centration and distribution in the ECS and thus would change
during dynamic ECS changes. Studying the ECM effects is
outside the scope of this paper. For even more detailed studies,
the transport of ions such as potassium, sodium, and chloride
in the ECS and their corresponding membrane transport
mechanisms are also needed to fully characterize the system.

V. CONCLUSION

We provided a unified multiscale mathematical and compu-
tational framework for studying diffusion in biological tissues
in general and in the brain in particular. The model uniquely
binds, dynamically in time and space, the ECS volume fraction
and tortuosity with cell membrane water permeability and
osmotic gradient across the membrane. We presented multiple
numerical simulations, using this framework, that either
demonstrate or predict dynamic ECS changes under various
common physiologic and pathologic conditions, including
uniform and nonuniform osmolarity distributions, in both
microscale and macroscale. Our model can be used as a

first step towards studying more complicated and biologically
relevant systems.
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APPENDIX

Here we describe the details of the derivation of the
boundary condition presented in Sec. II C, the mathematical
formulation of our model. First, we assume that v is the
velocity of the membrane and vn = v · n is the normal velocity
of the membrane so n is the unit normal which pointing into
the ICS. Let t > 0 and x ∈ γ (t) be given in which γ (t) is a
boundary on a single cell. Consider a cylinder of radius δ > 0,
with the axis intersecting γ (t), normal to γ (t), and x in the
center of cylinder (Fig. 10). Bound this cylinder by a fixed
disk at distance δ from x and the portion of γ (t) inside the
membrane. This is a cylinder-like portion of space, with one
face evolving through time which is denoted by ϒt,δ . Denote
this small portion of space at time t by �t,δ . After a small time
�t , the face containing x has moved a little due to boundary
movement, while the other face has not moved. The flux into
the cylinder is given by:∫

∂�t,δ

De∇φ · ndS

and since the membrane (ϒt ) is impermeable to solutes, then
the net flux into the �t is∫

∂�t,δ−ϒt,δ

De∇φ · ndS. (A1)

On the other hand, the total amount of the property ψ(t) within
the control volume �t is given by:

M(t) =
∫

�t,δ

φdV .

FIG. 10. Impression of a typical cell and the selected square
region in it.
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For moving interface, the Reynolds transport theorem can be
stated as:

dM(t)

dt
=

∫
�t,δ

∂φ

∂t
dV +

∫
∂�t,δ

vnφdS (A2)

and by using (2) and (A2) the Divergence theorem yields:

dM(t)

dt
=

∫
∂�t,δ

De∇φ · n + vnφdS.

Since except ϒt , the other sides of �t,δ are not moving, we
have:

dM(t)

dt
=

∫
∂�t,δ

De∇φ · n +
∫

ϒt,δ

vnφdS (A3)

by using (A1) and (A3) and conservation law of mass:∫
ϒt,δ

De∇φ · n + vnφdS = 0

and by δ −→ 0, we have the boundary condition:

De∇φ(x,t) · n + vn(x,t)φ(x,t) = 0. (A4)
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