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Nonlinear onset of calcium wave propagation in cardiac cells
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Spontaneous calcium (Ca) waves in cardiac myocytes are known to underlie a wide range of cardiac
arrhythmias. However, it is not understood which physiological parameters determine the onset of waves. In this
study, we explore the relationship between Ca signaling between ion channels and the nucleation of Ca waves.
In particular, we apply a master equation approach to analyze the stochastic interaction between neighboring
clusters of ryanodine receptor (RyR) channels. Using this analysis, we show that signaling between clusters can
be described as a barrier hopping process with exponential sensitivity to system parameters. A consequence of
this feature is that the probability that Ca release at a cluster induces release at a neighboring cluster exhibits
a sigmoid dependence on the Ca content in the cell. This nonlinearity originates from the regulation of RyR
opening due to more than one Ca ion binding site, in conjunction with Ca mediated cooperativity between RyR
channels in clusters. We apply a spatially distributed stochastic model of Ca cycling to analyze the physiological
consequences of this nonlinearity, and show that it explains the sharp onset of Ca wave nucleation in cardiac cells.
Furthermore, we show that this sharp onset can serve as a mechanism for Ca alternans under physiologically
relevant conditions. Thus our findings identify the nonlinear features of Ca signaling which potentially underlie
the onset of Ca waves and Ca alternans in cardiac cells.
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I. INTRODUCTION

Calcium (Ca) plays an important role in biological cells
since it is involved in a wide range of signal transduction
pathways [1–4]. In most cells, this is accomplished by a
tight spatial and temporal control of the Ca concentration
via Ca channels, which transport Ca between intracellular
compartments. In the heart, Ca cycles between intracellular
stores and this cycling process controls the coupling between
membrane voltage and tissue contraction. A crucial signaling
molecule involved in Ca cycling is the ryanodine receptor
(RyR) which controls the flow of Ca from the sarcoplasmic
reticulum (SR), which is the main intracellular Ca store. These
channels are Ca sensitive and can transition between different
conformational states in a Ca dependent manner. Thus small
Ca concentration changes in the vicinity of RyR channels can
be amplified by inducing channel openings, which further
stimulates the additional flow of Ca. In a cardiac cell, this
autocatalytic release process occurs within localized regions
surrounding an RyR cluster, and the local increase of Ca
concentration is called a Ca spark. This signaling mechanism
is referred to as Ca-induced Ca release (CICR), and it is used in
the cell to mediate important signaling pathways in response
to spatially localized Ca concentration changes [3,4]. This
amplification mechanism is an important component of the
Ca signaling apparatus, which is used in a wide variety of
intracellular processes.

RyR clusters are spatially distributed within the three-
dimensional volume of a cardiac cell. Thus when a Ca
spark occurs at an RyR cluster, then Ca can diffuse and
elevate the concentration in the vicinity of nearby clusters
[4,5]. If this elevation of Ca is large enough then the local
Ca release can ignite nearby clusters and propagate in a
wavelike manner [5–8]. These Ca waves are important since
they can lead to triggered activity which can cause cardiac
arrhythmias [6,9–11]. A key feature of Ca waves is that
their formation is highly sensitive to the Ca concentration

in the sarcoplasmic reticulum (SR) [12–16]. Effectively, at
low SR Ca concentration, spontaneous Ca sparks occur, but
they rarely transition to Ca waves. However, as the SR load
is increased, Ca waves begin to form and propagate across
the full extent of the cardiac cell. During wave propagation,
a substantial amount of Ca can be released in the cell, which
can stimulate enough sodium-calcium exchange to induce a
membrane depolarization [17]. Thus the presence of waves
will disrupt the tight coupling between membrane voltage and
subcellular Ca release [18]. Under pacing conditions several
experimental studies [19,20] demonstrated that Ca waves can
also induce Ca alternans, which is a beat-to-beat alternation in
the amount of Ca released into the cell. Fluorescence imaging
under these conditions demonstrated that waves propagate
only on alternate beats, indicating that wave propagation
played a key role in the instability to alternans. Using a
computational model Tao et al. [21] showed that indeed Ca
alternans can be caused by wave propagation which occurred
at alternate beats. In a later study Li et al. [22] showed that
spatial heterogeneity of the Ca signaling system made atrial
cells more prone to Ca waves, which led to a steep SR load
dependence of release which caused alternans. Also, Nivala
et al. [23] showed that the nonlinear regulation of Ca waves
due to SR load can drive alternans under conditions of heart
failure, where the tight coupling between L-type Ca channels
(LCCs) and RyR channels is disrupted. These findings indicate
that the onset of Ca waves disrupts the rhythmic response of a
cell, and likely plays a key role in various cardiac arrhythmias.

In this paper, we apply theoretical and numerical ap-
proaches to determine the factors that govern the onset of Ca
waves in cardiac cells. In particular, we analyze how clusters
of RyRs interact and compute the probability that a Ca spark
at a cluster will induce a neighboring cluster to fire. Our main
finding is that this probability distribution function exhibits
a sigmoid dependence on system parameters such as the SR
load. We show further that this sharp nonlinearity provides
a quantitative estimate for the onset Ca wave propagation in
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a cardiac cell. Our analysis demonstrates that the underlying
mechanism for this nonlinearity is due to two essential factors:
(i) RyR channels open in a Ca dependent manner regulated by
more than one Ca binding site. (ii) RyR channels are arranged
in clusters so that Ca release at one receptor induces all the
channels to fire. Both of these factors lead to a nonlinear
sigmoid dependence of the firing probability on SR load. Our
analysis reveals that this nonlinearity is due to a barrier hopping
process that is exponentially sensitive to system parameters
such as the SR load. Using a detailed stochastic model of
Ca cycling we demonstrate that the onset of Ca waves has
a sharp sigmoid dependence on the SR load. We show that
this sigmoid dependence is due to the nonlinear signaling
between neighboring RyR clusters, and present an analytic
approximation for the threshold SR concentration. Finally, we
show that nonlinear signaling between RyR clusters offers a
mechanism for the formation of Ca alternans under certain
physiological conditions. This analysis provides a quantitative
mechanism linking stochastic dynamics at the ion channel
level, and dynamical instabilities at the scale of the whole cell.

II. STOCHASTIC DYNAMICS OF RyR CLUSTERS
IN CARDIAC MYOCYTES

A. Computational cell model

To model the spatiotemporal distribution of Ca in ventric-
ular myocytes we have implemented an established mathe-
matical model devised by Restrepo et al. [24,25] (Restrepo
model). In this model, the myocyte is represented as a
collection of subcellular compartments that are distributed in

a three-dimensional (3D) representation of the cell interior
[Figs. 1(a)–1(c)]. To model the spatial distribution we denote
the Ca concentration in compartment x as cn

x [Fig. 1(b)], where
the superscript n indicates the location of that compartment in
a 3D grid representation of the cell interior. The subcellular
compartments in the model are: (1) the dyadic junction, with
concentration cn

p, where a few LCCs on the cell membrane
are in close proximity to a cluster of ∼100 RyR channels
attached to the junctional SR (JSR); (2) the submembrane
space, with concentration cn

s , which represents a volume in the
vicinity of the sarcolemma, which regulates membrane bound
ion currents such as the NaCa exchanger and LCC; (3) the
bulk myoplasm, with concentration cn

i , which characterizes
the volume of space into which Ca diffuses before being
pumped back into the SR via SERCA (sarcoplasmic reticulum
calcium ATPase) uptake channels; (4) the junctional SR, with
concentration cn

jsr, that is the portion of the SR network that
is positioned close to the cell membrane; (5) the network SR
(NSR), with concentration cn

nsr, which represents the bulk SR
network that is spatially distributed in the cell. In this study,
our cardiac cell model will consist of 60 planes representing
Z planes, where each plane contains an array of 20 × 20
regularly spaced compartments [Fig. 1(c)]. Ca diffusion in
the cell interior is modeled by allowing a diffusive flux
between nearest neighbor compartments of the submembrane,
the bulk myoplasm, and the SR network. This diffusive
flux between nearest neighbors i and j has the form J

ij

d =
�cij /τij , where �cij is the concentration difference between
the compartments, and τij is the diffusion time constant. In
this study we have modified several parameters in the original

FIG. 1. (a) Schematic illustration of the spatial architecture of Ca signaling in a cardiac ventricular cell. Signaling between channels occurs
within dyadic junctions distributed in the 3D volume of the cell. (b) Illustration of two nearest neighbor signaling units (CRUs) showing the
subcellular compartments. Here the superscript n denotes the nth CRU in a 3D grid representing the cell. (c) Spatial architecture of the cell
interior showing Z planes.
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TABLE I. Model parameters modified from the original Restrepo computational cell model.

Parameter Description Value

τ T
i Transverse cytosolic diffusion time 1.47 ms

τL
i Longitudinal cytosolic diffusion time 1.16 ms

τ T
s Transverse submembrane diffusion time 0.71 ms

τL
s Longitudinal submembrane diffusion time 0.85 ms

τ T
NSR Transverse NSR diffusion time 3.60 ms

τL
NSR Longitudinal NSR diffusion time 12.0 ms

Ku CSQN-unbound opening rate 1.5 × 10−4(μM)−2 ms−1

N Number of channels in RyR cluster 100

Restrepo model. In particular we scaled down diffusive time
constants between nearest neighbor compartments by a factor
of 2 to promote robust wave propagation at an SR load of
roughly 1200 μM. The model parameters used in this study
are summarized in Table I, and all parameters not shown are
the same as in the original Restrepo model [25]. Finally, we
note that the time evolution of RyR and LCC channels is
simulated using established Markov state models [11], where
the stochastic evolution of the channels is computed according
to the reaction rates linking the Markov states.

B. Master equation approach to modeling Ca signaling
between RyR clusters

In this section we develop an analytic approach to explore
the conditions for wave propagation in the Restrepo cell model.
As a starting point we will first compute the probability,
denoted as pij , that a spark at the ith RyR cluster induces a Ca
spark at a neighboring cluster j . To determine this probability
we first simulate the concentration changes due to diffusive
fluxes from nearest neighbors on the same Z plane. In Fig. 2(a),
we plot the dyadic junction Ca concentration at site i when a
Ca spark is induced at that junction. In this simulation the
initial SR load is fixed at 1000 μM and the concentration
during a spark rises to a peak of ∼300 μM for a time duration
τs ∼ 15 ms. In Fig. 2(b), we plot the Ca concentration at a
nearest neighbor site j on the same Z plane. Here we set the
RyR conductance in this site to zero in order to measure the
rise in local Ca concentration due only to the diffusive flux
from the neighboring site i. In this case, after a short delay
the local Ca concentration rises to roughly ∼2.5 μM for a
duration similar to the spark lifetime ∼15 ms. To compute the
probability that this rise in local Ca concentration induces a Ca
spark at site j , we will approximate the concentration change
as a step function of the form

cp(t) =
{
ca 0 < t < τs

co t < 0 and t > τs
(1)

where ca ∼ 2.5 μM, co ∼ 0.2 μM is the background concen-
tration, and where τs ∼ 15 ms. We note that ca is dependent
on a variety of factors such as the diffusivity of Ca, the
distribution of intracellular buffers, and the JSR load. To
proceed we note that Ca diffusion within the dyadic junction
is in the range D ∼ 100–500 (μm)2/s [24,26], so that the
diffusion time across a junction is ∼0.1–0.4 ms, which is
much faster than the typical RyR channel transition times.

Thus we can make the rapid diffusion approximation and
assume that Ca is spatially uniform within the junction. The
local concentration is then cp(t) ≈ c(t) + gn, where c(t) is
the concentration due to diffusive fluxes into the junction, n is
the number of RyR channels open, and g is the rise in local
concentration due to an open RyR channel. This quantity can
be approximated as g � Jr/(2πDhθF ) where Jr is the Ca
flux due to an open RyR channel in units of picoamps, F is
Faraday’s constant, θ = 2 is the charge of the Ca ion, and
where h is the height of the dyadic space, i.e., the spacing
between LCC and RyR channels. Here we also note that the

FIG. 2. (a) The local Ca concentration ci
p at junction i in which

a Ca spark occurs. In this simulation a spark is induced in that
junction by raising the local concentration above the threshold for
spark activation. Here the initial JSR load is cjsr = 1000 μM, and the
Ca concentration rises to a peak of roughly cp ∼ 300 μM. (b) The
local concentration cj

p at a nearest neighbor junction j on the same
Z plane. Here the local flux due to the RyR cluster is set to zero so
that the rise in concentration is due only to the diffusive flux from
junction i. At this site the local concentration rises to ∼3 μM.
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RyR flux has the form Jr = gr (cjsr − ci) ≈ grcjsr, where gr

is the channel conductance, and cjsr is the JSR concentration,
which is much larger than the diastolic Ca concentration before
the firing of a spark (cjsr � ci). These simplifications give the
approximate relation g � αcjsr with α = gr/(2πDhθF ).

The RyR channel in the Restrepo model is described using
a four-state scheme that accounts for calsequestrin (CSQN)
binding to luminal sites of the RyR [24]. In this study we focus
only on activation of an RyR cluster where all the channels
are initially in the unbound closed state, and which transition
to the unbound open state during a Ca spark. Thus for this
purpose it is sufficient to simplify the Markovian model to a
two-state scheme:

C

k+c
γ
p

�
k−

O, (2)

where the exponent γ � 2 models the cooperativity of multiple
Ca ions binding to the RyR channel, and where the rate
constants are the same as the closed-to-open transition of the
CSQN-unbound state of the Restrepo model. Here we stress
that our simplified approach is sufficient only to describe the
activation of Ca sparks in clusters, and it does not describe
slower processes that depend on RyR channel inactivation
and binding to calsequestrin. The effect of these features will
be accounted for in the full stochastic model. Given these
assumptions the stochastic dynamics of the cluster is then
governed by P (n,t) which is the probability that n of N RyR
channels in the cluster are open at time t . This quantity obeys
a master equation:

dP (n,t)

dt
= w+(n − 1)P (n − 1,t) + w−(n + 1)P (n + 1,t)

− [w+(n) + w−(n)]P (n,t), (3)

where w+(n) = k+(N − n)(cp + g n)γ and w−(n) = k−n.

Thus the dynamics is described by a birth-death process with
a forward rate that is a nonlinear function of the local Ca
concentration.

To proceed we follow our previous work [27], which is
based on Hinch et al. [28], and consider the large N limit
where the birth-death process can be mapped to the continuum.
Then, if we define the fraction of channels in the open state as
x = n/N , the detailed balance between the states of the cluster
gives an equilibrium distribution,

pe(x) ∝ exp [−N�(x)], (4)

where �(x) is the effective potential given by

�(x) = −
∫ x

0
ln[ρ(x ′)] dx ′, (5)

and where

ρ(x) = w+(Nx)

w−(Nx)
= η(1 − x)(s + Nx)γ

x
, (6)

with dimensionless parameters

s = cp

g
, η = k+gγ

k−
. (7)

In this picture, η is a variable that gives a measure of the
cluster excitability, and s measures the interaction between
two clusters via the local Ca concentration cp. These two
dimensionless quantities characterize the stochastic dynamics
of an RyR cluster in which the local concentration has the time
dependence given by cp(t).

Model parameters. In order to compute the effective
potential, we will determine the parameters s and η directly
from numerical simulations of the Restrepo cell model. Firstly,
we note that the rise in local concentration due to a neighboring
spark ca is proportional to the JSR load. Therefore, we will
model the local concentration using a simple linear relation
ca = βcjsr, where β is a constant that characterizes the cluster-
to-cluster interaction. Using Fig. 2(b) we estimate that β =
2.5/1000, since the local concentration rises to cp ≈ 2.5 μM
at a JSR load of cjsr = 1000 μM. To estimate the parameter
g we note that cp ≈ gn, so that g can be extracted directly
by measuring the local rise in Ca concentration due to the
opening of RyR channels in the cluster. Using this approach we
estimate that g ∼ 5 μM when the JSR load is cjsr = 1000 μM,
which gives g = αcjsr with α = 5/1000. Using these estimates
we find that when a neighboring spark occurs, then s = son

where son = β/α = 0.5. Now, when all neighboring units are
inactive, then s = soff with soff = 0.2/5 = 0.04. Hereafter,
we will refer to each case as “spark on” and “spark off,”
respectively. To compute the effective potential we use model
parameters taken from the Restrepo model along with the
estimates described above (Table II). In Fig. 3(a), we plot
the effective potential �(x) for small x for the spark off (black
solid line) and spark on case (red dashed line). In the spark
off case the effective potential has a stable stationary point at
xo ∼ 0 which represents the fully shut cluster, and an unstable
stationary point at x1 ≈ 0.03. For x > x1 the effective potential
decreases and reaches a global minimum at x2 ∼ 1 (not shown)

TABLE II. Parameters used to compute effective potential.

Parameter Description Value

k+ RyR opening rate 1.5 × 10−4(μM)−2 ms−1

k− RyR closing rate 1.0 (ms)−1

γ Exponent of Ca binding 2
N Number of channels in cluster 100
τs Spark lifetime 15 ms
β Ratio of the peak Ca concentration due to the diffusive flux from a neighboring spark to the JSR load 2.5/1000
α Ratio of the dyadic junction concentration due to one open RyR channel to the JSR load 5.0/1000
son Dimensionless parameter during nearest neighbor spark 0.5
soff Dimensionless parameter in the absence of a nearest neighbor spark 0.04
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FIG. 3. (a) The effective potential �(x) for spark off (black solid
line, soff = 0.04), and spark on (red dashed line, son = 0.5). As s is
increased the barrier height between the stable stationary point at xo

and the unstable point at x1 is reduced. (b) Plot of the stationary points
xo and x1 as a function of the parameter s.

which represents the fully open cluster. Here we focus on the
small x regime since signaling between clusters is dictated by
the changes in the effective potential in this region. In the spark
on case the bistable potential tilts and the barrier separating the
two stable stationary states is reduced (red line). To determine
the stationary points, we note that they satisfy d�/dx = 0
which requires that ρ(x) = 1. The stationary points are then
solutions to the algebraic condition

η(1 − x)(s + Nx)γ − x = 0. (8)

In Fig. 3(b) we show the stationary points xo and x1 as
a function of the parameter s. Here we find that as s is
increased the stationary points merge and the system becomes
monostable with only one global minimum at (x2 ∼ 1), which
corresponds to the fully open cluster.

C. Stochastic dynamics of spark activation

The dynamics of the effective potential allows us to
characterize the dynamics of spark activation due to a rise
in the local Ca concentration. We first note that for t < 0,
the effective potential landscape will have the spark off shape
[Fig. 3(a), solid black curve] and the system will reside at
the stable stationary point at xo, which corresponds to the
closed cluster. Once the local concentration rises to ca then the
landscape will shift to the spark on shape (red dashed curve).
Note that this tilted effective potential has new stationary points

that we will denote as x ′
o and x ′

1. Finally, when the diffusive
fluxes are turned off for t > τs the landscape returns to the
spark off shape. Hence, the condition for a spark to be triggered
is that the cluster, starting at xo, should cross the barrier peak
at x1, within the spark lifetime τs . If it does not cross in this
time then the system will roll back to the stationary point at
xo ∼ 0, and the transition to the open cluster state will not
occur; i.e., a spark will not fire at that cluster. Here we note
that the crossing dynamics is dictated by the tilted landscape
where s = son, while the crossing points are determined by
the untilted case with s = soff . To determine the probability of
triggering a Ca spark we will first consider the limit where son is
small, so that the effective potential in the spark on state is still
bistable [Fig. 3(a), dashed red curve]. In this case the potential
is tilted slightly and spark activation can be viewed as a barrier
hopping process where the peak needs to be surmounted. In
this limit, the probability that the system crosses x1 in a time
t will have an exponential distribution

P (t) = 1

T
exp

(
− t

T

)
, (9)

where T is the mean first passage time (MFPT) for x to make
the transition from xo to x1. This exponential distribution
arises from the fact that in this limit the barrier crossing
time is still long compared to the time scale of RyR channel
fluctuations, so that the crossing rate is approximately constant.
The transmission probability is then just the probability of
firing in time τs , which gives

pij = 1 − exp
(
−τs

T

)
. (10)

Thus, in this limit, the transmission probability is dictated
by the ratio of the average spark lifetime τs and the MFPT
for the cluster to undergo a stochastic transition from xo to
x1. Note that for a large tilt, in which the effective potential
is monostable, then the exponential distribution above will
not hold. In this scenario, we will resort to direct numerical
simulations to compute the transmission probability pij .

To compute the mean first passage time T we note that for
the cluster to transition from xo to x1 it is necessary for the
system to surmount the barrier height of the tilted effective
potential. The escape rate for this to occur is dictated by
the stationary points of the tilted effective potential. This is
because, to leading order, the system will spend most of the
time near the local minimum at x ′

o, and if it surmounts the
barrier at x ′

1, then it is very likely going to cross x1 [29,30]
since x1 > x ′

1. Following our previous work [27], based on
Doering et al. [29], we note that the MFPT has the leading
order behavior

T ∼ exp (N��), (11)

where �� = �(x ′
1) − �(x ′

o) is the barrier height, and where
x ′

o and x ′
1 are the stationary points of the tilted effective

potential. In Fig. 4(a) we plot N�� vs the JSR load (cjsr)
in the spark on case where s = 0.5. Our results show that there
is a critical JSR load, c∗

jsr ≈ 1150 μM, where ��(c∗
jsr) = 0,

in which the barrier height is zero. For cjsr < c∗
jsr the barrier

height increases with decreasing SR load which leads to
an exponential increase in the MFPT. To confirm these
predictions, we have applied the Gillespie algorithm [17]
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FIG. 4. (a) The effective potential barrier N�� as a function of the JSR load cjsr for the spark on case s = 0.5. (b) The waiting time vs the
JSR load computed using an exact stochastic simulation of an isolated cluster of N = 100 RyR channels. (c) The transmission probability pij

as a function of the JSR load computed using the exact stochastic simulation (red dashed line) and from Eq. (10) (black solid line). (d) The
threshold for transmission probability cth is computed as the JSR load where pij (cth) = 1/2, where pij is computed with the exact stochastic
simulation (black circles). c∗

jsr (red squares) is computed using our analytic approximation given by Eq. (13).

to compute the exact waiting time statistics of an isolated
cluster of N = 100 RyR channels obeying the simple reaction
scheme given by Eq. (2). In Fig. 4(b), we plot T vs the JSR
load showing the exponential increase in waiting time as the
JSR load is decreased. In order to confirm Eq. (10) we have
also computed the sparking probability pij . To compute pij

numerically we hold s = 0.5 for a duration τs = 15 ms, after
which s = 0.04. We then compute the fraction of independent
simulation runs in which the RyR cluster has fired within
50 ms. In these simulations we designate a cluster to have fired
when the number of open RyR channels reaches n = N/2. In
Fig. 4(c) (red dashed curve) we plot pij computed numerically,
along with the prediction of Eq. (10) (black solid line), showing
good quantitative agreement. These results indicate that pij

has a sigmoid dependence on the JSR load which is due to the
exponential dependence of the MFPT.

D. The nonlinear properties of stochastic signaling
between RyR clusters

Our results indicate that stochastic signaling between
clusters will exhibit a strong nonlinear dependence on system
parameters. In this section, we will analyze the parameters that
control the onset of this nonlinearity. As a starting point, we
evaluate the dependence of the barrier height �� on system
parameters such as the JSR load. Also, for simplicity we
will consider the case γ = 2, which is the exponent used
in the Restrepo model, and which allows for an analytic
computation of the stationary points. In this case we can solve

for the approximate stationary points and evaluate ��. For
the parameters considered here we have that sNη < 1, so that
to leading order we have

N�� ≈ 1

Nη
− 2s[1 − log (Nηs)] . (12)

Within this approximation we can solve for the onset of
the exponential nonlinearity by finding the critical SR load c∗

jsr
such that ��(c∗

jsr) = 0. Solving for the critical JSR load yields

c∗
jsr ≈

√
k−
k+

q

Nαβ
, (13)

where q ≈ 0.19 is the solution to the algebraic equation
0 = 1 − 2x[1 − log(x)]. For the parameters given in Table II
this gives an estimate for the onset of exponential dependence
as c∗

jsr ≈ 1000 μM. Equation (10) suggests that the onset of
the exponential dependence of the MFPT should be well
approximated by the threshold of the sigmoid dependence
of pij . In Fig. 4(d) we plot our analytic estimate [Eq. (13)]
for a range of cluster sizes N , and compare to the threshold
concentration cth such that pij (cth) = 1/2, where pij is
computed from the exact stochastic simulation. Indeed we
find that Eq. (13) gives a good quantitative estimate of the
threshold of the transmission probability pij .

In summary, our results indicate that the probability that
a Ca spark activates a nearby cluster can be mapped to a
barrier hopping process. This hopping process is governed
by an effective potential that is determined by the nonlinear
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dependence of the RyR channel opening rate on the local Ca
concentration. Thus signaling between clusters will be highly
nonlinear, since the transmission probability is dependent on
the mean first passage time, which itself is exponentially
sensitive to parameters that determine the barrier height. In the
following section, we argue that this exponential sensitivity
provides a precise criterion for the onset of Ca waves in a
computational cell model, and is the underlying nonlinearity
that drives alternans under certain physiological conditions.

III. WAVE PROPAGATION ONSET IN THE 3D
STOCHASTIC CELL MODEL

In this section, we apply the Restrepo cell model to deter-
mine the relationship between the transmission probability pij

and the onset of Ca wave propagation. In this model Ca waves
occur at elevated SR loads where spontaneous Ca sparks can
nucleate a Ca wave in the 3D array of CRUs. In Fig. 5(a),
we show the spatial distribution of Ca in a two-dimensional
(2D) cross section of a cell with 60 × 20 × 20 CRUs. In
this example, we see that Ca waves originate from two
nucleation sites and proceed to activate all CRUs in the cell.
To characterize the timing of these waves we measured the
average diastolic Ca, defined as ci(t) = (1/M)

∑M
n=1 cn

i (t)
where M is the total number of CRUs in the cell. This
average concentration is roughly ci ∼ 0.2 μM, in the absence
of Ca waves, and then rises to a maximum concentration in

the range ∼1–3 μM when a Ca wave occurs in the cell.
Thus the mean waiting time for a Ca wave to occur can
be estimated by measuring the time tw when an intermediate
concentration, in this case ci(tw) = 0.7 μM, is crossed for
the first time. Using this approach we have computed the
average waiting time to a wave, denoted as Tw = 〈tw〉, by
averaging over 100 independent simulations at a fixed initial
JSR load concentration cjsr. In these simulations the action
potential (AP) is fixed at the resting potential of V = −85 mV.
At this voltage the LCC channels are shut and Ca wave
nucleation is due only to fluctuations of RyR channels. In
Fig. 5(b), we plot Tw vs cjsr showing that the MFPT to a Ca
wave exhibits a strong nonlinear dependence on JSR load.
In effect, as the JSR load decreases below the concentration
cjsr ∼ 1100 μM the MFPT increases exponentially. In fact, for
concentrations below cjsr ∼ 1000 μM Ca waves essentially do
not occur within our total simulation time of 3500 ms. In order
to present these results within a more physiological setting we
have computed the probability that a Ca wave occurs within a
200 ms interval. To compute this quantity we set the JSR load
to a fixed concentration cjsr at time t = 0 and then compute
the number of times a Ca wave occurred within 200 ms in
100 independent simulation runs. In Fig. 5(c) we plot the
probability of a wave occurring within a 200 ms interval,
denoted as pw (blue solid line), as a function of the initial cjsr.
As expected, we find a sharp sigmoid dependence of the wave
nucleation probability as a function of the JSR load.

FIG. 5. Ca wave nucleation and propagation in a 3D stochastic cell model. (a) Spatial distribution of dyadic junction Ca concentration cn
p

visualized across a 2D cross section of a cell with 20 × 20 × 60 CRUs. (b) The mean waiting time Tw for a Ca wave as a function of JSR load.
Points shown are averaged over 100 independent simulations. (c) The probability pw of a Ca wave occurring within a 200 ms time interval as
a function of the JSR load (blue solid line). Line is computed by averaging over 100 independent simulations. The transmission probability
between two adjacent units, denoted as pr

ij , computed using the Restrepo model (red dashed line). The transmission probability computed using
Eq. (10) (black dash-dotted line). (d) The threshold as a function of the number of channels in the cluster N . Blue dash-dotted line corresponds
to the wave propagation onset cw defined as pw(cw) = 1/2. Red dashed line is the SR load such that pr

ij (c̃) = 1/2, computed directly from the
Restrepo model, and the black solid line is the analytic threshold given by Eq. (13).
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To explain our findings above, we first note that the
transmission probability pij determines the interaction be-
tween CRUs. Thus we expect that the threshold of the wave
nucleation probability should coincide with the threshold
of pij . To confirm this hypothesis, we have computed the
transmission probability pij directly from simulations of the
Restrepo cell model. To compute this probability we simply
trigger a Ca spark at a specific CRU and compute the fraction
of times that a nearest neighbor site also fires within 20 ms.
In this way we compute the JSR load dependence of the
transmission probability, which we denote as pr

ij [Fig. 5(c),
red dashed line], directly from the 3D stochastic model. On
the same graph we also plot our theoretical prediction for pij

using Eq. (10) (black dash-dotted line). Here we find that the
threshold for wave nucleation occurs at roughly the same range
of concentrations as predicted by the transmission probability.
However, the wave probability is substantially sharper, as a
function of JSR load, than both the theoretical and numerically
computed transmission probability.

To quantify the relationship between the wave threshold
and the transmission probability we have computed these
quantities for a range of cluster sizes N . In Fig. 5(d) we plot
the JSR load concentration cw such that pw(cw) = 1/2 (blue
dash-dotted line). This quantity gives a measure of the onset
of Ca wave nucleation as a function of system parameters.
On the same graph we have also plotted the threshold of the
transmission probability computed directly from the Restrepo
model. This quantity is denoted as c̃ which satisfies pr

ij (c̃) =
1/2 (red dashed line). Finally, we also show our theoretical
prediction c∗

jsr from Eq. (13) (black solid line). Indeed, we see
that the onset of wave propagation coincides approximately
with the threshold of the transmission probability. Thus our
results indicate that c∗

jsr gives a quantitative approximation for
the onset of Ca waves.

IV. NONLINEAR WAVE ONSET AS A MECHANISM
FOR ALTERNANS

The nonlinear relationship between the wave propagation
probability and the JSR load will influence the dynamics of
Ca cycling at the whole cell level. Here we explore how this
relation influences the beat-to-beat response of a cardiac cell
when it is paced with a periodic AP clamp. As a starting
point, we first analyze the response of the Ca cycling system
to a single AP under varying initial JSR loads. In this case, the
membrane depolarization during the AP upstroke induces LCC
channels to open and trigger Ca sparks in the cell. The amount
of Ca released during the AP clamp will be crucially dependent
on two factors: (i) the onset of the JSR load dependence
of the wave propagation probability pw, which will dictate
the conditions for waves to propagate. (ii) The fraction of
clusters that are triggered by LCC channels, which determines
the number of available RyR clusters, which can support Ca
wave propagation. Note that the fraction of RyR clusters in
the vicinity of LCC channels can vary between different cell
types and under conditions of heart failure. To explore the role
of these features we compute the peak diastolic Ca transient,
denoted as cmax

i , in response to an AP and under a range of JSR
loads. In Fig. 6(a) we plot cmax

i vs cjsr in the case where 30%,
50%, and 70% of the clusters have LCC channels. Indeed, we

find that when most clusters are triggered by LCC channel
openings then the presence of Ca waves plays little role in the
response to an AP, since there are no available RyR clusters
to sustain waves. However, when the density of LCC channels
is reduced then cmax

i exhibits a highly nonlinear response as a
function of JSR load, since above the propagation transition
Ca waves are induced and the amount of Ca release increases
substantially.

Under periodic pacing conditions, the nonlinear response
between Ca wave propagation and JSR load can drive Ca
alternans. In Fig. 6(b), we plot the steady-state JSR load as
a function of time using a 3D cell model where only 30% of
the dyadic junctions contain LCC channels. Indeed, we find
that when the cell is paced at T = 200 ms then Ca release
alternates from one beat to the next. Simultaneous line scan
imaging [Fig. 6(c)] reveals that on the large beat Ca release
is enhanced since LCC channel openings initiate Ca waves
which propagate into the cell. Indeed, the JSR load clearly
alternates above and below the threshold concentration for
wave propagation [Fig. 6(b)]. To explore the rate dependence
of alternans we have also computed the bifurcation diagram
of the system. In Fig. 7 we show the peak of the Ca transient
for the last two beats after pacing for 20 beats at a cycle length
T . In this case we simulate the condition where the fraction
of release sites with LCC channels is 30% (black circles) and
50% (red squares). Indeed, we find that the system exhibits a
typical period doubling bifurcation as the pacing cycle length is
decreased. Furthermore, we observe that the onset of alternans
shifts to smaller cycle lengths as the fraction of LCC channels
is increased. This result is consistent with Fig. 6(a) which
shows that the amount of Ca released into the cell as a function
of SR load becomes more steep as the density of LCC channels
is reduced. Hence, the system is more prone to the alternans
instability when the signaling fidelity between LCC and RyR
clusters is reduced.

V. DISCUSSION

In this paper, we have shown that the onset of Ca waves
is a sharp sigmoid function of the SR load. This result is
consistent with experimental studies showing that Ca waves
occur only at elevated SR loads, a feature referred to as
store-overload-induced Ca release (SOICR) [31]. In particular,
Jiang et al. [12] measured the occurrence of Ca waves in
populations of cells and showed that the fraction of cells
displaying waves exhibited a sigmoid relationship on the Ca
content in the cell. Also Diaz et al. [32] measured the frequency
of Ca waves in isolated myocytes and found that below a
critical SR load Ca waves did not occur, but occurred with
high frequency above that threshold. This result is consistent
with several studies showing that the SR load dependence of
Ca release exhibits a highly nonlinear threshold relationship
[33]. In this study, we have identified the key features of
the Ca signaling architecture that determines the onset and
nonlinearity of this SR load dependence. Our main result is
that the onset of Ca waves is dictated by the transmission
probability pij , which is the probability that a Ca spark induces
a nearest neighbor to fire. Using a master equation approach
we have shown that the transmission probability is a nonlinear
function of SR load, since spark activation can be mapped
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FIG. 6. (a) The calculated peak of diastolic Ca concentration, cmax
i , as a function of cjsr for cases where 30% (black, bottom line), 50% (red,

middle line), and 70% (top, blue line), of the clusters have LCC channels. (b) Time dependence of the steady-state JSR load simulated using
a 3D cell model where only 30% of the clusters are driven by LCC channels. In this case the cell is paced with an AP clamp with a period of
T = 200 ms. The shape of the AP clamp is the same as that used in the original Restrepo model. (c) Simulated line scan of subcellular Ca
release during alternans.

to a barrier hopping process that is exponentially sensitive
to system parameters. It is this exponential sensitivity which
underlies the nonlinearity of signaling between RyR clusters,
and consequently determines the onset of Ca waves in cardiac
cells. Based on this result we have developed a quantitative
estimate, given by Eq. (13), for the onset of Ca waves in
cardiac myocytes. In particular, we point out the dependence
of the onset on the parameter β, which is the ratio of the
rise in local Ca concentration due to the diffusive flux from a
nearest neighbor, to the SR load. This quantity is dependent on
a variety of factors such as the distance between the clusters,
the diffusion coefficient of Ca in the intracellular space, and
also the presence of Ca buffers. Hence, β serves as a measure
of the effective strength of the diffusion mediated coupling
between RyR clusters in the cell. Also, the threshold depends

FIG. 7. Plot of the peak Ca transient cmax
i for the last two beats

after pacing the cell for 20 beats. Black circles and red squares
correspond to 30% and 50% LCC density, respectively.

on the parameter α, which gives the ratio of the rise in local
Ca concentration due to an RyR channel opening to the SR
load. This quantity also depends on a variety of factors such
as the volume of the dyadic junction, and the conductance
of the RyR channel. Hence, our findings give a quantitative
relationship between local signaling at the ion channel scale
to arrhythmogenic whole cell events such as Ca waves.

The analysis in this paper reveals that the underlying
nonlinearity can be traced to the architecture of Ca signaling
in cardiac myocytes. In particular we identify two essential
features leading to the nonlinear sigmoid dependence of the
transmission probability: (i) An RyR channel has multiple Ca
binding sites that regulate the transition from the closed to
open state of the channel. This property is well known from
experiments on isolated RyR channels which show that the
open probability increases in a nonlinear fashion with the Ca
concentration on the cytoplasmic side of the channel [34].
To incorporate this feature in our model we make the RyR
closed-to-open rate proportional to the square of the local Ca
concentration (γ = 2). (ii) RyR clusters have 50–150 channels
that gate cooperatively due to the local diffusion of Ca. This
feature has been established by super-resolution imaging of
subcellular Ca proteins in rat ventricular cells which reveal that
the average channel number is roughly 60 channels [35,36].
Incorporating both of these features within our master equation
approach revealed that the dynamics of an RyR cluster can
be mapped to a nonlinear birth-death process. This process
can be described by an effective potential which exhibits
two local minima separated by a potential barrier, so that
spark activation is equivalent to a barrier hopping process
where the system transitions between these minima. A crucial
requirement for this feature is that γ � 2, which indicates
that Ca binding cooperativity underlies the main features of
stochastic Ca signaling. The main consequence of this property
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is that all the statistical features of spark activation acquire an
exponential dependence on system parameters that modulate
the barrier height. Therefore, the observed nonlinear onset of
Ca waves is a direct consequence of basic features of the Ca
signaling architecture. In several studies it has been shown
that RyR channels are sensitive to the Ca concentration in the
SR [31,33]. In our analysis luminal gating can be described
by allowing the RyR forward rate k+ to depend on the JSR
concentration. Indeed, Eq. (13) predicts that such a dependence
will have a direct effect on the Ca wave onset. However, we
point out that the sharp nonlinearity does not rely on luminal
gating. Thus luminal gating will serve to shift the onset of Ca
waves but is not essential to explain the nonlinear behavior of
Ca signaling.

Our findings reveal that the threshold for wave propagation
is well predicted by pij , which is the transmission proba-
bility between clusters on the same Z plane. However, this
probability only dictates propagation within a Z plane, and
does not imply propagation between planes. This is because
the cluster spacing within a Z plane (∼500 nm) is typically
smaller than the spacing between adjacent Z planes (∼2 μm).
Thus it is necessary to compare pij in both the transverse
and longitudinal directions in the cell. Our simulations reveal
that, for the parameters of the Restrepo model, both of these
distributions are similar. The reason for this is that in the
Restrepo model the diffusion time constants in the longitudinal
and transverse directions are similar. This choice of time
constants is based on experimental observations which reveal
that Ca waves are approximately spherical, which implies that
longitudinal coupling between clusters should be roughly the
same as that in the transverse direction [37]. This is likely
due to a higher density of diffusional barriers in the transverse
rather than longitudinal direction, which compensates for the
distance anisotropy. This result explains why pij between sites
on the same Z plane is sufficient to predict the Ca wave onset
in the cell.

An important finding in this paper is that the probability of
wave propagation pw, shown in Fig. 5(c) (solid blue line) is a
sharp sigmoid function of the SR load. In particular we note
that the wave threshold increases from pw ∼ 0 to pw ∼ 1 for
a change of SR load of roughly 30 μM, which is substantially
sharper than the SR load dependence of pij . Thus while the
transmission probability correctly predicts the onset of wave
propagation it does not directly account for the sharpness of the
nonlinear dependence. To explain this result we note that wave
nucleation is likely due to spontaneous Ca sparks which induce
a chain reaction of sparks, which can then summate to sustain
a propagating wave front. Let us assume that a critical number
of sparks, denoted as nc, will have to fire in order to nucleate a
propagating wave. The probability that a spontaneous spark
in the cell leads to a chain reaction of nc sparks is then
∼p

nc

ij . Therefore, the average waiting time for a wave can
be approximated as Twave ∼ Ts/p

nc

ij , where Ts is the mean
time between spontaneous Ca sparks. Thus the cooperativity
necessary to nucleate a wave amplifies the nonlinearity of
pij by the critical number of sparks nc. However, the critical
number of sparks nc, which itself depends on the SR load, is
not known and is likely difficult to determine analytically. Here
we emphasize our basic finding that cooperativity between
clusters amplifies the intrinsic nonlinear signaling between

clusters, so that the onset of Ca waves is substantially sharper
than the local signaling nonlinearity.

In this study, we have also analyzed the beat-to-beat
response of a spatially distributed Ca cycling model. Inter-
estingly, we find that the nonlinear dependence of Ca wave
onset on the SR load has a strong influence on the response
of the system to periodic pacing. In particular, we showed that
when the system is paced close to the Ca wave onset then
the beat-to-beat response of the system displays Ca transient
alternans. This finding is consistent with experimental and
theoretical studies [19,21,22] showing that large amplitude
alternans of the Ca transient during alternans corresponds to
a release sequence where Ca waves are observed on the large
beat, but not on the small. This nonlinear response is due
to the steep release load relationship that is observed near
the wave onset transition. However, it should be noted that
this nonlinearity is only exposed under specific conditions
where the number of sparks recruited at pacing rates below the
alternans transition is small. This condition applies in the case
where a large fraction of release units lack LCC channels,
so that only a small fraction of units fire in response to an
action potential. Under these conditions, a cell paced near
the threshold for Ca waves will be unstable to Ca transient
alternans. This mechanism is particularly relevant in heart
failure where it is known that the close positioning between
LCC and RyR clusters is disrupted [23]. In this case a large
number of RyR clusters lack nearby LCCs so that the cell is
more prone to propagating Ca waves, and is therefore more
unstable to alternans. An important finding of this study is
that these wave induced alternans are due to the nonlinear
signaling between Ca release units. Thus our theory of the
nonlinear onset of Ca waves can be used to quantify the un-
derlying mechanism for wave induced alternans. Here we also
point out that alternans can also occur due to an alternative
mechanism that is due to an order-disorder transition in large
ensembles of Ca release units [25,38]. There global alternans
occurred when local all-or-none responses at Ca release units
where synchronized by local Ca diffusion. In the mechanism
presented here, the global response is due to a propagating Ca
wave and not to the onset of synchronization which occurs at
rapid rates. However, in both cases the underlying nonlinearity
can be traced to local stochastic signaling that is due to the
architecture of Ca signaling in cardiac cells.

In this study, we have presented a quantitative theory of
the nonlinear onset of Ca waves. These findings identify the
important physiological parameters that set the threshold and
degree of nonlinearity of the SR load dependence of Ca waves.
Thus these findings can serve as a guide in the development
of therapeutic approaches, which target both Ca waves and
alternans. In particular, our study highlights the importance
of the quantity β which is the ratio of the rise of local Ca
concentration, due to diffusion from a nearest neighbor, to the
JSR load. This quantity is dependent on a variety of factors
such as the distance between RyR clusters, the diffusion of
Ca in the intracellular space, and also the distribution and
kinetics of buffers. Our analysis reveals that if β is reduced
then the threshold for Ca waves shifts to larger SR loads
[Eq. (13)]. Thus any mechanism that decreases β will reduce
the frequency of Ca waves and the degree of Ca transient
alternans in the cell. Perhaps the most natural approach to
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control this parameter is by changing the concentration and
distribution of Ca buffers in the cell. For example, buffers
located in the subcellular volume between Z planes will reduce
the probability of plane-to-plane excitations and shift the onset
of Ca waves to higher SR loads. However, it should be stated
that a basic limitation of all proposals seeking to perturb the Ca
cycling system is that these changes may disrupt Ca signaling
processes, which are vital to other cellular processes. Here we
point out that buffers offer a unique flexibility to control the
rise in local Ca concentration since buffer kinetics can be tuned
to act only at the elevated Ca levels that are relevant during
Ca overload. In addition, immobile buffers can be targeted to
specific sites in the cell where they will serve as diffusion
barriers, while having a potentially minimal effect on the
overall rise in Ca concentration in other parts of the cell. For
instance, a major Ca buffer in the cell is troponin C which is

bound to actin myofilaments located between Z planes. It may
be worthwhile to explore the possibility of tuning the binding
affinity of troponin C to Ca in order to suppress large Ca fluxes
which induce activation between Z planes. In this way it may
be possible to reduce dynamical instabilities by controlling
the rate of Ca diffusion between different parts of the cell.
Thus our approach, by uncovering the essential mechanism
for the nonlinearity underlying Ca wave onset and alternans,
suggests alternative antiarrhythmic strategies, which have yet
to be explored.
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