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Time-dependent solutions for a stochastic model of gene expression with molecule production
in the form of a compound Poisson process
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We study a stochastic model of gene expression, in which protein production has a form of random bursts
whose size distribution is arbitrary, whereas protein decay is a first-order reaction. We find exact analytical
expressions for the time evolution of the cumulant-generating function for the most general case when both the
burst size probability distribution and the model parameters depend on time in an arbitrary (e.g., oscillatory)
manner, and for arbitrary initial conditions. We show that in the case of periodic external activation and constant
protein degradation rate, the response of the gene is analogous to the resistor-capacitor low-pass filter, where
slow oscillations of the external driving have a greater effect on gene expression than the fast ones. We also
demonstrate that the nth cumulant of the protein number distribution depends on the nth moment of the burst size
distribution. We use these results to show that different measures of noise (coefficient of variation, Fano factor,
fractional change of variance) may vary in time in a different manner. Therefore, any biological hypothesis of
evolutionary optimization based on the nonmonotonic dependence of a chosen measure of noise on time must
justify why it assumes that biological evolution quantifies noise in that particular way. Finally, we show that not
only for exponentially distributed burst sizes but also for a wider class of burst size distributions (e.g., Dirac delta
and gamma) the control of gene expression level by burst frequency modulation gives rise to proportional scaling
of variance of the protein number distribution to its mean, whereas the control by amplitude modulation implies
proportionality of protein number variance to the mean squared.
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I. INTRODUCTION

It has been confirmed experimentally that in living cells
both mRNA [1] and protein [2–6] production may take the
form of stochastic bursts of a random size. The presence
of bursts may be a result of processes involving short-lived
molecules (e.g., the mRNA in case of protein production),
concentration of which may be treated as a fast degree of
freedom [7,8]. The number of protein molecules that can be
produced from a single mRNA molecule before the latter is
degraded is a random variable, and its distribution may, in the
several experimentally known cases, be well approximated by
geometric or exponential distribution [3–5]. For that reason,
in most of the existing models of bursty gene expression, the
exponential (or geometric in a discrete case) bursts of protein
[7–11] or mRNA [10] production are considered.

However, in the case of eukaryotic cells, certain models
predict nonexponential distributions of burst sizes [12–14]. In
particular, in the case of transcriptional bursts the molecular
ratchet model predicts peaked distributions, that resemble
gamma distribution [12]. Therefore, it seems desirable to study
the analytically tractable models of bursty gene expression
dynamics with a general, nonexponential form of burst size
distributions.

Also, for the majority of stochastic models of gene expres-
sion proposed to date, even if the time-dependent solutions
are considered [15–20], it is usually assumed that model
parameters are time independent. However, taking into account
the time variation of the model parameters, in particular the
periodic time dependence of the rate of protein production
[21] gives us an opportunity to model in a simple manner
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the response of a genetic circuit to oscillatory regulation and
to indicate some qualitative properties of solutions for other
oscillating parameters.

In this paper, we investigate a simple gene expression
model, which is a natural generalization of the analytical
framework proposed in Ref. [7], and which may serve as a
model of both transcription and translation [10]. Namely, in
contrast to Ref. [7] we consider the case of an arbitrary (not
necessarily exponential) burst size probability distribution and
time-dependent model parameters. However, gene autoregula-
tion is neglected. We present time-dependent solutions of the
model of Ref. [7] in the absence of gene autoregulation.

We find the explicit time dependence of the cumulant-
generating function for the probability distribution of molecule
(protein) concentration. This general result is then applied
to describe the oscillatory response of a gene to periodic
modulation of the rate of protein production. In particular,
we consider a gene driven by a single-frequency, sinusoidal
regulation. In such a case, the time dependence of the
mean molecule concentration consists of both the transient,
exponentially decaying part and of the periodic part, whose
amplitude depends on the driving frequency. We also point out
that the division of the system’s response into periodic and
transient parts remains true in a more general case, when the
model parameters are periodic functions of time.

We also show a simple relationship that links the nth cu-
mulant of the protein number distribution and the nth moment
of the burst size distribution. In particular, this relationship is
proportional in the steady state. We use these results to discuss
the question of possible evolutionary optimization of cellular
processes with respect to noise intensity. Since it has been
shown experimentally that distributions of protein numbers
have universal scaling properties (variance proportional to
mean or variance proportional to mean squared) [22,23], we
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use our results to gain an insight into possible origins of such
scalings in the properties of the burst size distributions.

Stochastic models with bursty dynamics similar to the
model considered here are known both in mathematics (so-
called Takacs processes [24,25]) and in physics (under the
name of compound Poisson processes), where such models are
used not only to describe stochastic dynamics of transcription
or translation, but also to model such diverse phenomena
as diffusion with jumps [26–28], time dependence of soil
moisture [29–33], dynamics of snow avalanches [34], statistics
of the solar flares [35,36], and oil prices on the stock market
[37]. Therefore, our results may be relevant to other fields
beyond stochastic modeling of gene expression.

II. RESULTS

Let us consider a source (gene) that creates objects (protein
or mRNA molecules) of a single type, denoted by X, which
are subsequently degraded or diluted due to the system size
expansion, e.g., cell growth and division,

DNA
I (t)−→ X, X

γ (t)−−→ ∅. (1)

We focus on the simplest situation, when the molecules interact
neither with each other, nor with the source. In consequence,
the probability of degradation of a single molecule does not
depend on the total number of molecules in the system.
This assumption leads to a linear decay process (first-order
reaction), which is the simplest, but arguably the most natural
choice here. Still, we assume that both the source intensity I (t)
and the decay parameter γ (t) may vary with time in an arbitrary
manner. Therefore, although we assume that the characteristics
of the source are independent of the number of molecules
present in the system (feedback effects are neglected), we allow
the source (gene) to be externally regulated. If the number of
molecules is sufficiently large, the continuous approximation
is justified and the molecule concentration may be used instead
of the exact copy number of molecules.

In order to obtain the stochastic description of the system,
we assume that the molecule production takes the form of
bursts of random size. Namely, the number of newly created
molecules (or the magnitude of a concentration jump in
the present continuous model), u, is a stochastic variable
drawn from the probability distribution ν(u,t), which may
be explicitly time dependent. It is assumed here that burst
duration is short enough that even large bursts can be treated
as instantaneous. The time of appearance of each burst is also
a random variable.

The occurrence of stochastic bursts in a given system may
be due to the presence of some processes that are much
faster than production or degradation of molecules in question;
such processes are not explicitly taken into account within
the model. For example, translational bursts of proteins are
attributed to the existence of short-lived mRNA molecules
[8,11]. However, it is not our aim here to relate the functional
form of the burst size probability distribution to dynamics of
fast degrees of freedom. Rather, we treat bursty dynamics as
a well-justified approximation leading to reasonable effective
description of the system at hand.

The deterministic model describing the kinetics of reactions
(1) is given by a simple rate equation (A1), see Appendix A. Its
stochastic counterpart is the following Langevin-like equation

ẋ = I (t) − γ (t)x, (2)

where x � 0 is the molecule concentration and dot denotes
the time derivative. I (t) appearing in (2) is now a compound
Poisson process, i.e.,

I (t) =
N(t)∑
k=1

ukδ(t − tk), (3)

where uk is the size of the molecule burst (concentration
jump) that takes place at t = tk and N (t) is the number of
concentration jumps in the interval [0,t).

Stochastic differential equations similar to (2) have been
used to model diffusion in asymmetric periodic potentials
[26–28], soil moisture dynamics, and other phenomena in
geophysics [29–34], astrophysics [35,36], and economics [37].

Instead of Eq. (2) it is more convenient to study the
corresponding master equation [51], proposed in Ref. [7]

∂p(x,t)

∂t
= γ (t)

∂

∂x
[xp(x,t)]

+ k(t)
∫ x

0
w(x − x ′,t)p(x ′,t)dx ′. (4)

In the above equation, p(x,t) is a time-dependent probability
distribution of molecule concentration in the population of
cells. We also have

w(u,t) = ν(u,t) − δ(u), (5)

where ν(u,t) is the burst size probability distribution, δ(u)
denotes Dirac δ distribution, u = x − x ′ is the burst size,
whereas γ (t) and k(t) are time-dependent model parameters
(in Ref. [7], only time-independent model parameters have
been considered).

Note that from Eq. (4) one can obtain equations for the time
evolution of moments of p(x,t), see Appendix B. However,
solution of the moment equations is tedious, and it is usually
much more convenient to work with the moment generating
function.

In order to solve Eq. (4), we apply the Laplace trans-
form: p(x,t) → p̂(s,t) = L{p(x,t)}, w(u,t) → ŵ(s,t) =
L{w(u,t)}, i.e., ŵ(s,t) = ν̂(s,t) − 1. In result, Eq. (4) is trans-
formed into the following first-order linear partial differential
equation

∂p̂(s,t)

∂t
+ γ (t)s

∂p̂(s,t)

∂s
− k(t)ŵ(s,t)p̂(s,t) = 0, (6)

which can be solved by the standard method of characteristics
[38,39]. We obtain

p̂(s,t) = �(�(t)s)eG(�(t)s,t), (7)

where

�(z) = p̂(z,t0) = L{p(x,t0)} (8)
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is the Laplace transform of the initial probability distribution
p(x,t0);

�(t) = exp

(
−

∫ t

t0

γ (t ′)dt ′
)

, (9)

whereas G(z,t) is defined as

G(z,t) =
∫ t

t0

k(t ′)ŵ
(

z

�(t ′)
,t ′

)
dt ′. (10)

It can be easily verified that for p̂(s,t) (7) we have

p̂(s,t0) = �(s), p̂(0,t) = 1. (11)

If k(t), γ (t), and ŵ(s,t) are periodic functions of time
(including constant function treated as a special case of
periodic function), and at least one of these three functions
is not a constant function, time evolution of p(x,t) has an
oscillatory character. More precisely, it is shown that each
cumulant of p(x,t) consists of both the periodic part and the
exponentially decaying transient terms, cf. Appendix C.

In most cases, p̂(s,t) given by (7) cannot be expressed in
terms of elementary or standard special functions. Even if for
some choice of k(t), γ (t), and ŵ(s,t) functions it is feasible
to obtain a closed analytical formula for p̂(s,t), the analytical
evaluation of the inverse Laplace transform and hence the
explicit analytical form of p(x,t) is usually out of question [a
notable exception, for which the explicit form of p(x,t) can
be obtained is analyzed in Sec. II C].

However, making use of the relationship between p̂(s,t),
the moment-generating function M(s,t) and the cumulant-
generating function K(s,t),

p̂(s,t) = M(−s,t) =
∞∑

m=0

μm(t)
(−s)m

m!
, (12)

ln[p̂(s,t)] = K(−s,t) =
∞∑

m=1

κm(t)
(−s)m

m!
, (13)

one may find the exact analytical form of the time evolution
of moments μr (t) and cumulants κr (t) of p(x,t) [38,40]. The
cumulants of p(x,t) are of special interest here; from (7), (8),
(9), (10), and (13) one gets

κr (t) = (−1)r
(

∂r ln[p̂(s,t)]

∂sr

)
s=0

= [�(t)]r
(

κr (0) +
∫ t

t0

k(t ′)mr (t ′)
[�(t ′)]r

dt ′
)

. (14)

In the above equation, mr denotes rth moment of the burst size
probability distribution ν(u,t) (5), i.e.,

mr (t) =
∫ ∞

0
urν(u,t)du. (15)

From (14) we see that the time evolution of κr (t) depends
only on its initial value, κr (0), on the time dependence of the
model parameters k(t), γ (t), and on the time evolution of rth
moment of ν(u,t), but it does not depend explicitly on any
other cumulants of p(x,t) or moments of ν(u,t). Note that
by using Eqs. (13) and (14) we can reconstruct (at least in
principle) the time evolution of p̂(s,t), provided that the time

evolution of all moments mr (t) of ν(u,t) as well as the initial
distribution p(x,0) are given.

Equation (14) can also be obtained in an alternative way,
which does not require the solution of Eq. (6). Namely,
dividing Eq. (6) by p̂(s,t) we obtain the following equation
for K(−s,t) = ln[p̂(s,t)] given by Eq. (13)

∂K(−s,t)

∂t
+ γ (t)s

∂K(−s,t)

∂s
− k(t)ŵ(s,t) = 0. (16)

If we compute the rth derivative of Eq. (16) with respect to s

variable, and subsequently put s = 0, we get the time-evolution
equation for κr

κ̇r (t) + rγ (t)κr (t) − k(t)mr (t) = 0, (17)

from which we immediately obtain (14).
The two most important cumulants are the mean molecule

concentration κ1(t) = μ1(t) and variance κ2(t). In particular,
κ1(t) is given by

κ1(t) = �(t)

[
κ1(0) +

∫ t

t0

k(t ′)m1(t ′)
�(t ′)

dt ′
]
, (18)

cf. Eq. (B5) in Appendix B. κ1(t) and κ2(t) are of special
interest also with the connection with two standard noise
measures frequently used in biology: the Fano factor F and
the coefficient of variation η, defined as

F (t) = κ2(t)

κ1(t)
, η(t) =

√
κ2(t)

κ1(t)
. (19)

A. Periodic gene regulation

Let us now analyze the case of a time-independent, but
otherwise arbitrary burst size probability distribution ν(u),
constant decay rate γ and molecule production rate (burst
frequency) k(t) of the form

k(t) = C1 sin(ωf t + ϕ) + C2, (20)

where 0 � C1 < C2. In other words, our gene is periodically
driven with a single angular frequency,

ωf = 2π/T , (21)

where T is an oscillation period; ϕ is the initial phase. Making
use of (14) and (20), one can easily compute time evolution
of rth cumulant of p(x,t). Assuming for simplicity t0 = 0, we
get

κr (t) = κr (0)e−rγ t + C2mr

rγ
(1 − e−rγ t )

+ C1mr sin(ωf t + ϕ + β)√
r2γ 2 + ω2

f

− C1mr sin(ϕ + β)e−rγ t√
r2γ 2 + ω2

f

,

(22)

where

β = arctan

(−ωf

rγ

)
. (23)

κr (t) given by (22) contains both the transient, exponentially
decaying terms and the terms, which are periodic functions
of time, oscillating with an angular frequency of the driving.
What is important, and easily visible when κr (t) is written in
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FIG. 1. Mean molecule number κ1(τ ) = μ1(τ ) as given by
Eq. (22) for r = 1, as a function of dimensionless time variable τ =
γ t , for κ1(0) = 0, ϕ = 0, γ = 4 × 10−4 s, m1 and m2 given by (27),
a = 10, b = 20, C2 = aγ , C1 = C2, or C1 = 0, and T γ = 1

2 (blue),
T γ = 1 (green), T γ = 2 (orange), and C1 = 0 [time-independent
k(t), red curve].

a form (22), is that the oscillation amplitude depends on both
ωf and γ ,

Ar (γ,ωf ) = C1√
r2γ 2 + ω2

f

. (24)

Ar (γ,ωf ) (24) is a monotonically decreasing function of ωf ,
therefore in the present case no resonant behavior should be
expected. In Fig. 1 we plot the time evolution of the average
protein number κ1(τ ) = μ1(τ ) as a function of dimensionless
time variable τ = γ t and for various oscillation frequencies
corresponding to T γ = 1

2 (blue), T γ = 1 (green), and T γ = 2
(orange), as well as for the limiting case of nonoscillatory
driving (C1 = 0). We assume that p(x,0) = δ(x), therefore
κ1(0) = κ2(0) = 0. Also, we assume here that ν(u) is an
exponential distribution (subscript ε stands for exponential)

νε(u) = 1

b
exp

(
−u

b

)
. (25)

Moments of νε(u) (25) are given by

m(ε)
n = bnn!. (26)

In particular, we have

m
(ε)
1 = b, m

(ε)
2 = 2b2. (27)

Exponentially (or geometrically) distributed sizes of trans-
lational bursts have been observed in E. coli [3–6]. For that
reason, νε(u) (25) appears to be a natural choice of the burst
size distribution in the case of stochastic models of gene
expression in which particle concentration is used instead of
discrete particle number. Note that any other choice of ν(u)
can only affect values of m1 and m2 in Eq. (22); this results
in identical rescaling of each plot along the y axis. As can
be inferred from Eq. (22), the amplitude of oscillation is the
largest for the largest oscillation period.
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FIG. 2. Fano factor F (τ ) = κ2(τ )/κ1(τ ) as a function of di-
mensionless time variable τ = γ t , for κ1(0) = κ2(0) = 0, ϕ = 0,
γ = 4 × 10−4 s, m1 and m2 given by (27), a = 10, b = 20, C2 = aγ ,
C1 = C2, or C1 = 0, and T γ = 1

2 (blue), T γ = 1 (green), T γ = 2
(orange), and C1 = 0 [time-independent k(t), red curve].

Similarly, in Fig. 2 we plot the time evolution of the Fano
factor F (τ ) (19), again as a function of dimensionless time
variable τ = γ t and for the same model parameters as in Fig. 1.
By employing the L’Hôpital’s rule, it can be shown that for
κ1(0) = κ2(0) = 0 and ν(u) = νε(u) (25) we have

lim
τ→0

F (τ ) = 2b, (28)

which is close to value [F (0+) = 2b + 1] obtained in Ref. [41]
for a similar discrete model.

Most of the results of the present section can be immediately
generalized to the case of arbitrary periodic dependence of
burst frequency

k(t) = a
(k)
0 +

∞∑
q=1

[
a(k)

q cos(qωf t) + b(k)
q sin(qωf t)

]
. (29)

Invoking (14), for k(t) given by (29) we obtain

κr (t) = Tr (t) + Pr (t) + a
(k)
0 mr

rγ
, (30)

where

Tr (t) =
⎛
⎝κr (0) +

∞∑
q=0

b(k)
q qωf − a(k)

q rγ

r2γ 2 + q2ω2
f

mr

⎞
⎠e−rγ t , (31)

and

Pr (t) =
∞∑

q=1

a(k)
q

(
qωf sin(qωf t) + rγ cos(qωf t)

r2γ 2 + q2ω2
f

)
mr

+
∞∑

q=1

b(k)
q

(
rγ sin(qωf t) − qωf cos(qωf t)

r2γ 2 + q2ω2
f

)
mr.

(32)

In Appendix C we show that the division of κr (t) into constant,
transient, and periodic parts as given by (30) remains valid
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when not only k(t), but also γ (t) or ν(u,t) are periodic
functions of time.

Finally, let us note that Eq. (17) with k(t) given by
(20) or, in general case, by (29) has a simple mechanical
interpretation. Namely, it is the equation of motion of a
particle moving with velocity v = κr in a viscous medium
under the influence of both the drag force [−rγ κr (t), with
constant γ ] and the external periodic force mr (t)k(t). Perhaps
an even more compelling analogy is the resistor-capacitor (RC)
low-pass filter: Fast oscillations of the external driving of gene
expression [21] have less effect than the slow ones.

B. Time-independent model parameters

1. Time evolution of p(x,t)

When the model parameters do not depend on time,
i.e., k(t) = k, γ (t) = γ , and ŵ(s,t) = ŵ(s), Eq. (7) may be
rewritten as

p̂(s,t) = �(s�(t)) exp [a�(s) − a�(s�(t))], (33)

where

a = k

γ
, (34)

�(z) =
∫

ŵ(z)

z
dz. (35)

�(z) is given again by Eq. (8), whereas

�(t) = exp(−γ t) (36)

is a special case of (9). In the steady-state limit, from (33) we
obtain

lim
t→∞ p̂(s,t) ≡ p̂(s) = exp [a(�(s) − �(0))]. (37)

The form of stationary distribution p(x) [we distinguish
stationary and nonstationary probability distribution functions
(PDFs) by the number of arguments] depends neither on the
values of k and γ parameters alone, nor on the initial condition,
but only on the functional form of the burst size PDF ν(u) and
value of the parameter a (34).

Using (37), we may rewrite (33) as

p̂(s,t) = �(s�(t))[p̂(s�(t))]−1p̂(s). (38)

Invoking the following property of Laplace transform [42]

L−1[f̂ (αs)] = 1

α
f

(x

α

)
, (39)

where f̂ (s) = L[f (x)], by taking the inverse Laplace trans-
form of (38) we can express p(x,t) as the convolution of three
terms

p(x,t) = 1

�(t)
p

(
x

�(t)
,0

)
∗ p(x) ∗ 1

�(t)
q

(
x

�(t)

)
, (40)

where

p(x) = L−1[p̂(s)], q(x) = L−1[1/p̂(s)]. (41)

p̂(s) (37) and 1/p̂(s) cannot simultaneously satisfy the
necessary conditions required for the Laplace transform of an
ordinary function, in particular the condition lims→∞ f̂ (s) =
0. Clearly, the latter condition should be obeyed by p̂(s), hence

we have lims→∞[1/p̂(s)] = ∞. This implies that q(x) (41) is
not an ordinary function, but a distribution consisting of (apart
from some ordinary function) superposition of δ distribution
and its derivatives. In particular, if 1/p̂(s) is a polynomial of
degree M ,

1

p̂(s)
=

M∑
k=0

qks
k, (42)

we obtain

q(x) =
M∑

k=0

qkδ
(k)(x). (43)

If the explicit form of both p(x) and q(x) (43) is known, it
may be feasible to find the explicit form of p(x,t) by invoking
Eq. (40) and the identity

(δ(k) ∗ f )(x) = f (k)(x). (44)

The derivative on the right-hand side (r.h.s.) of Eq. (44) should
be understood as a distribution derivative [43]. Namely, if
f (x) has a discontinuity at x = 0, but is at least m times
differentiable for x 	= 0, the mth distribution derivative of f (x)
reads

f (m) = {f (m)} + σ0δ
(m−1) + σ1δ

(m−2) + · · · + σm−1δ,

(45)

where {f (m)} denotes distribution related to f (m) treated as
an ordinary function (not defined at x = 0), whereas σk =
f (k)(0+) − f (k)(0−) [43]. In Appendix F we apply Eqs. (38)–
(45) to obtain solution of Eq. (4) with the exponential
probability distribution of burst sizes (25) in an alternative
way than the one used in Sec. II C.

2. Time evolution of cumulants of p(x,t)

If the model parameters do not depend on time, Eq. (14)
takes a remarkably simple form

κr (t) = κr (0)e−rγ t + a(1 − e−rγ t )
mr

r
, (46)

where mr is given by Eq. (15) with ν(u,t) = ν(u). In the
t → ∞ limit, from (46) we obtain

κr = κr (∞) = a
mr

r
. (47)

which also follows from Eq. (D1) of Appendix D [in this
Appendix, we further elaborate on the relationship between
functional form of the burst size probability distribution ν(u)
and the functional form of the corresponding steady-state
distribution of protein concentration, p(x)]. Using (47), we
may rewrite (46) as

κr (t) = κr (0)e−rγ t + κr (∞)(1 − e−rγ t ). (48)

The time evolution of κr (t) as given by (46) or (48) consists
of the exponentially decaying contribution coming from
the initial probability distribution p(x,0), as well as the
contribution proportional to the stationary distribution (47);
the latter is completely determined solely by the values of a

and mr .
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In the present case, if only the initial distribution p(x,0) is
known, the time evolution of cumulants may be immediately
recovered from (46) if needed. This allows us to concentrate
solely on the stationary limit (t → ∞). Next, by making use
of (13) and (46), we can obtain p̂(s,t) in the form of a power
series in s variable.

From Eqs. (46) or (48) we see that the higher the cumulant
order r is, the faster κr (t) approaches its stationary value. In
particular, variance approaches stationary value faster than the
mean protein concentration. For r = 1, from (47) we obtain a
simple relation,

κ1 = μ1 = m1a. (49)

The parameter a as defined by Eq. (34) is equal to the burst
frequency, k, multiplied by the characteristic time scale of the
system, Tγ = 1/γ . Therefore, a is proportional to the mean
number of bursts (in Ref. [7] parameter a itself is called the
burst frequency) and (49) has a simple interpretation, i.e., the
average protein concentration (number) is the average burst
size times the mean number of bursts in time interval of the
length 1/γ .

For r = 2, Eq. (46) can be rewritten as

κ2(t) = κ2(0)e−2γ t + a

2
(1 − e−2γ t )[σ 2(u) + b2], (50)

where m1 = b and σ 2
ν (u) = m2 − b2 is the variance of ν(u).

The term proportional to σ 2
ν (u) in Eq. (50) is related to the

stochasticity of the burst size distribution. However, even for
the dispersionless (σν(u) = 0) burst size distribution,

νδ(u) = δ(u − b), (51)

we have an irreducible contribution to κ2(t) coming from the
term proportional to b2 in Eq. (50). For a fixed m1 = b, νδ(u)
(51) minimizes the variance of p(x,t), a result that could be
intuitively expected.

C. Example: p(x,t) corresponding to the exponential
burst size distribution

In this section we find the time-dependent solution of Eq. (4)
for the exponential burst size distribution (25). Apart from
gene expression models, exponential distribution (25), as well
as closely related two-sided exponential distribution found
applications in models of other phenomena [29–33]. It should
be also noted that in most cases only for ν(u) of the form
(25) both Eq. (4) and its generalizations (e.g., jump-diffusion
equations [26–28]) are analytically tractable.

As shown in Ref. [7], for the time-independent model
parameters, νε(u) (25) leads to stationary distribution p(x)
in the form of gamma distribution,

qγ (x; a,b) ≡ xa−1e− x
b

ba�(a)
= L−1

[
1

(sb + 1)a

]
. (52)

This can be readily verified by making use of Eqs. (35) and
(37).

From (26) and (46) we have

κ (ε)
n (t) = κn(0)e−nγ t + a(1 − e−nγ t )bn(n − 1)! (53)

In the t → ∞ limit, we obtain κ (ε)
n = abn(n − 1)!, i.e., the

cumulants of gamma distribution (52). From (13) and (53) the

Taylor series expansion of ln[p̂ε(s)] can be reconstructed, we
get

ln[p̂ε(s)] = a

∞∑
n=1

(−bs)n

n
= ln

[
1

(sb + 1)a

]
, (54)

hence p̂ε(s) = (sb + 1)−a , which is indeed the inverse Laplace
transform of gamma distribution (52).

Interestingly, in the present case both the explicit expression
for p̂ε(s,t) and even for pε(x,t) can be obtained, at least for
the initial distribution of the form

pε(x,0) = δ(x − x0), (55)

where x0 � 0 is the initial molecule concentration. The
Laplace transform of (55) is p̂ε(s,0) = exp(−x0s), and hence
from (33) we obtain

p̂ε(s,t) =
(

se−γ t + 1
b

s + 1
b

)a

exp(−x0e
−γ t s). (56)

For simplicity, we put x0 = 0 (which is arguably the most
natural choice in the case of gene expression models).
Moreover, we confine our attention to a = n ∈ N, as only
in this case we were able to find compact analytical expression
for the inverse Laplace transform of p̂ε(s,t) (56). Still, (56) is
valid for arbitrary real a > 0. It is also convenient to change
the independent variable according to t → ω = exp(−γ t). In
such a case, p̃ε,n[x,ω(t)] ≡ pε,n(x,t) = L−1{p̂ε,n(s,t)} reads

p̃ε,n(x,ω) = ωnδ(x) +
n∑

i=1

(
n

i

)
(1 − ω)iωn−i

(i − 1)!bi
xi−1e− x

b

≡ ωnδ(x) +
n∑

i=1

(
n

i

)
(1 − ω)iωn−iqγ (x; i,b),

(57)

where qγ (x; i,b) is given by (52), whereas by p̂ε,n(s,t) we
denote p̂ε(s,t) (56) for a = n and similarly for pε,n(x,t) and
p̃ε,n(x,ω). Each of p̃ε,n(x,ω) functions (57) for n = 1,2, . . .

is a superposition of gamma distributions (Dirac delta can
be also treated as a limiting case of the gamma distribution)
with different integer values of a and time-dependent weights.
Hence, (57) is a natural time-dependent generalization of the
gamma distribution (52) with a = n, obtained in [7], where
only the stationary limit of Eq. (4) has been considered.

Note that for x0 = 0, the dependence of p̂ε(s,t) (56) on s and
the mean burst size b is of the form (E3), therefore pε(x,t) =
L[p̂ε(s,t)], and in particular pε,n(x,t) = p̃ε,n(x,ω(t)) (57)
have the characteristic dependence on x variable and b

parameter as given by (E4), cf. Appendix E.
An alternative way of obtaining p̃ε,n(x,ω) (57), its gen-

eralization for x0 > 0, and its explicit form for small n are
discussed in Appendix F.

III. DISCUSSION: BIOLOGICAL INSIGHTS

The stochastic description of the simple system studied here
shares a common feature with the corresponding deterministic
model: The time evolution of the average protein number
predicted by the stochastic model is identical with the
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time evolution of the protein concentration obtained from
deterministic equations of kinetics (see Appendix A). On the
other hand, the evolution of the nth cumulant of the protein
number distribution in time depends solely on the behavior of
the nth moment of the burst size distribution in time, but it
does not depend on its other moments. In consequence, the
time evolution of the average molecule number is identical
for all those burst size distributions that have the same first
moments, if only the remaining model parameters are identical.
If additionally the time dependence of the second moments of
the burst size distributions is identical, we obtain an identical
time dependence of the coefficient of variation and the Fano
factor of the protein number distributions, the two important
measures of gene expression noise. Therefore, the predictions
of stochastic models with bursty molecule production are,
to a large extent, universal as they do not depend on other
details of the burst statistics. This may explain the success of
gene expression models that commonly assume exponentially
distributed burst sizes, despite the fact that the experimental
evidence for this particular burst size distribution can be found
in only a few papers [3–6]. (Note that a somewhat similar
conclusion about an unexpected universality of coarse-grained
models was drawn by Pedraza et al. [44] with regard to
statistics of waiting times between mRNA bursts.)

It should also be noted that the effective bursty dynamics
results from the approximation based on integrating out fast
degrees of freedom. In order to check the range of validity of
this approximation, the dynamics of the effective model (e.g.,
with protein but without mRNA, as considered here) should be
compared with the dynamics of the full model including both
slow (protein copy number) and fast (mRNA copy number)
degrees of freedom. However, it is expected that predictions
of the latter model are in agreement with the predictions of the
former for t greater than few mRNA lifetimes [8,41].

Equation (46) shows that the relaxation of the variance is
twice faster than that of the mean [Fig. 3(a)]. This has been
shown previously for the model of gene expression where
mRNA was explicitly taken into account and all reactions
were Poissonian [41]. The same has been shown in Ref. [23]
(supplementary information therein), without referring to any
particular reaction statistics. Equation (46), on the other hand,
links that result with the moments of an arbitrary distribution
of protein bursts. Below, we will discuss these results in the
context of evolutionary optimization of biological processes
with respect to time-dependent noise intensity, and also we will
relate the behavior of Eq. (46) to experimentally measurable
scaling relations between protein mean and variance. Although
our model does not account for extrinsic noise nor feedback
in gene regulation, our analysis may shed some light on
understanding of the relation between protein number statistics
and underlying burst statistics.

A. Optimization of protein level detection with respect to noise
is dependent on the assumed measure of noise

Suppose that a cell population expresses a protein at a
certain level in given environmental conditions, and then the
conditions abruptly change, which results in a change in the
expression level. How does the width of the protein distribution
vary over time before it reaches a new steady state? Although
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FIG. 3. Different measures of noise have different transient
behaviors in time after an abrupt reduction of the mean burst
frequency a (i), or the mean burst size b (ii). The mean protein
concentration 〈x〉 = ab was decreased from 103 to 102. (a) Fractional
change of mean, K1(τ ), fractional change of variance, K2(τ ), and its
square root, K2(τ )1/2. The curves for the cases (i) and (ii) overlap. (b)
Fano factor F (τ ), inset: zoom to show the minima. (c) Coefficient of
variation, η(τ ).

the stationary behavior of noise in gene circuits has been
widely studied, fewer studies have been devoted to transient
behavior of noise (see, e.g., Refs. [41,45–47]).

The difference in relaxation time scales of the protein
mean and variance may result in a nonmonotonic or, at least,
nonlinear dependence of noise on time. It would be tempting to
put forward a hypothesis that this feature may be exploited by
evolution for optimization of some processes with respect to
noise: For example, let the gene expression be reduced from an
induced level to a basal level, and suppose that this reduction
should trigger some other processes in the cell. For the trigger
to be maximally precise (such that all cells can detect the
decrease in protein concentration at almost the same time),
its threshold should not necessarily be located precisely at the
basal expression level, but perhaps somewhere higher, where
the noise is minimal.

We will show below, however, that such interpretations
are dependent on the function assumed to measure noise.
It is not known what measure of noise does the biological
evolution use – that probably depends on the nature of a
specific biological process. Coefficient of variation η(t) (19)
seems to be a relatively natural choice because it measures the
ratio of distribution width to its mean, so it is a dimensionless
quantity. However, Fano factor F (t) (19) is also frequently
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used in literature, a function that measures the ratio of variance
to the mean, i.e., the deviation of the process from Poissonian
statistics. On the other hand, in the context of detection of
transition between two expression levels, an equally natural
choice may be the fractional change of the distribution width
between the initial and final (stationary) state. One can easily
see that each of these quantities behaves differently.

For visualization of the problem, suppose that the pro-
teins are produced in exponential bursts of a mean size
b. The number of proteins is therefore gamma distributed
with mean ab and variance ab2. Let the initial expression
level be 〈x(0)〉 = κ1(0) = 103 proteins, and after the abrupt
environmental change it tends to 〈x(∞)〉 = κ1(∞) = 102.
Such a change can be attained by two mechanisms: Decreasing
a [frequency modulation (FM)] or decreasing b [amplitude
modulation (AM)]. Experimental evidence suggests that cells
are able to adjust both a and b [48]. For a = 100 and b = 10,
a tenfold decrease in 〈x〉 by changing a → a/10 at fixed b

results in a tenfold change in variance (i). The same decrease
in mean protein concentration by changing b → b/10 at fixed
a yields a change in variance by the factor of 100 (ii).

In the case (i), the coefficient of variation has a deep
minimum in t = 0, and the Fano factor has a minimum at t 	= 0
(a relatively deep one, compared to the initial and final values).
These dependencies are different in the case (ii): Here, the
coefficient of variation has a shallow minimum at t 	= 0, and
the Fano factor decreases almost monotonically by one order
of magnitude, with a minimum that is insignificant compared
to the total change of F (t) [see Figs. 3(b), 3(c)].

The situation is still different if one takes into consideration
the fractional change in the protein distribution width between
the initial and final state. It immediately follows from Eq. (48)
that the fractional change of the rth moment,

Kr (t) ≡ κr (t) − κr (∞)

κr (0) − κr (∞)
= e−rγ t . (58)

In particular, the square root of the fractional change of the
variance is equal to the fractional change of the mean (Fig. 3).
If K2(t) (or its increasing function) is used as the measure
of the distribution width, then its minimal value is at t =
∞. Therefore, the optimization of the position of a detection
threshold to minimize noise would be ambiguous, depending
on a function chosen to quantify noise.

The above example shows that any biological hypotheses
regarding the evolutionary optimization of some processes
with respect to the amount of noise must assume that evolution
has a specified method of measurement of that noise. If such
optimizations really take place in nature, then it seems that
the way the evolution quantifies noise depends on a particular
biological process. To date, it is not clear, however, which
measure of noise is important in which process. This problem
deserves a deepened experimental analysis.

B. Frequency modulation and amplitude modulation cause
different scalings of protein number variance to mean,

not only for exponential burst size distributions

Experimental results suggest that cells can control gene
expression levels both by adjusting the mean burst frequency
a (FM) and the mean burst size b (AM) [48]. With Eq. (46)

of our model, we can relate these two types of burst control to
the scaling of mean and variance of protein distributions.

According to Eqs. (46) and (47), the scaling of the variance
of the protein number distribution with the mean depends
on three parameters that describe burst statistics: mean burst
frequency a, mean burst size m1, and the second moment of
the burst size distribution, m2. For simplicity of notation, in
the following discussion we will denote by const. a constant
whose value is universal for a set of different genes or for
a single gene in cells cultured in various conditions. If the
protein number distributions produced by the studied genes
obey the scaling σ 2

x /〈x〉 = κ2(∞)/κ1(∞) = F (∞) = const.
(i), then the moments of the burst size distribution depend
on each other so that m2/m1 = const. and the mean burst
frequency a can be arbitrary. On the other hand, if one observes
the scaling σ 2

x /〈x〉2 = η2(∞) = const. (ii), then the three burst
parameters depend on each other so that m2/(am2

1) = const.
If additionally the burst size distribution is such that

m2/m2
1 = α = const., as in our examples in the main text and

in the Appendix E [α = 1 for δ burst size distribution, α = 2
for exponential, and α = (1 + λ)/λ for γ distribution] with λ

defined in the Eq. (E12), then σ 2
x /〈x〉 = const. (i) implies that

the mean burst size m1 is universal, and the gene expression
levels in the studied gene set, or in the set of conditions studied,
are modulated by varying the mean burst frequency a (FM).
If, on the other hand, σ 2

x /〈x〉2 = const. (ii), then the mean
burst frequency a is universal and the gene expression level
is modulated by mean burst size m1 (AM). This dependence
of the variance-to-mean relationship on AM or FM has been
known [49], but an explicit or implicit assumption was that
the burst size distributions are exponential. Here, we show
that this property also extends to a class of nonexponential
distributions.

Scaling (i) was observed, e.g., in S. cerevisiae [23], where
different promoters controlled transcription of their native
proteins fused with GFP, under different environmental condi-
tions. Assuming burst size distributions such that m2/m2

1 = α,
would it be possible that the mean size of protein burst
was the same in all these experiments and only the burst
frequency varied? This could perhaps be conceivable, if the
protein burst size were globally limited by the availability
of translational machinery, or if the mRNA of different
GFP fusions had simultaneously similar stability and similar
translation rates, such that the average number of proteins
produced from one mRNA molecule was the same regardless
of the gene. The burst frequencies could differ from gene
to gene depending on the on/off switching rates of different
promoters.

However, we note that if the parameters of the burst size
distribution are independent of time, then this fact imposes
a particular form of scaling of the mean and variance of
protein number distribution with time (46). In the Ref. [23],
the authors observed that when the variance and mean were
normalized with respect to the initial state, �κr (t) ≡ [κr (t) −
κr (0)]/κr (0), then the normalized variance was proportional
to the normalized mean even in the time-dependent case out
of the stationary state. Although the authors supposed that their
theoretical model explained this scaling, it does not seem to be
the case. The equations for nonstationary mean and covariance
proposed in Ref. [23] are fully consistent with the moment
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equations of our model and they imply that

�κ2(t)

�κ1(t)
= �κ2(∞)

�κ1(∞)
(1 + e−γ t ). (59)

The value in the braces changes from 2 to 1, so �κ2(t)/�κ1(t)
cannot be maintained constant in time within our model, if
the parameters of the burst distribution are constant in time.
What if they are time dependent? Using Eq. (14), one can easily
check that no simple substitution of exponential dependence of
{m1, m2, k} ∼ exp(−γ t) or ∼ exp(−2γ t) allows the function
�κ2(t)/�κ1(t) to lose the dependence on time. The problem
with time-dependent scaling suggests that as simple a model as
ours may not be suitable for description of the data presented
in Ref. [23]. This also suggests that more detailed studies are
needed on time dependence of protein noise and its relation to
the properties of burst statistics.

Scaling (ii) was observed, e.g., in E. coli and S. cerevisiae
cultured in different conditions [22]. The GFP gene was
inserted under the control of three different promoters in
multiple-copy plasmids (5 or 15 copies), or integrated into
the genome in a single copy. If the distributions of burst sizes
were such that m2/m2

1 = α, would it be possible to explain
this scaling behavior within our model? Gene expression level
should be then modulated by the mean burst size, and the
burst frequency should be universal. The quadratic scaling
of mean vs. variance ([22], Fig. 3 therein) can be fitted by a
one-parameter parabola A〈x〉2. We note that the values of A are
different for the three different promoters. Within our model,
this would mean that each promoter has its own characteristic
frequency of bursting. This would sound reasonable if single
gene copies were studied. However, in the experiments of
Ref. [22], the promoters were present in variable numbers of
copies. The burst frequencies of the gene copies should then
add up [see Eq. (D5)] and a single promoter should have a lower
burst frequency than its multiple copies, unless there is some
mechanism of dosage compensation in cells, which keeps the
total burst frequency independent on the copy number of a
given promoter. Moreover, the universal scaling of the full
protein number distributions in Ref. [22] was defined by a
function ϕ((x − 〈x〉)/σ ) (where σ denotes standard deviation),
so, for example, gamma distribution produced by exponential
bursts does not obey that scaling. Therefore, the validity of our
model with time-independent parameters and the AM of gene
expression seems unlikely in the case of the data presented in
Ref. [22].

Yet, the above considerations based on our simple theory
reveal that there are still unexplored problems in the field of
stochastic gene expression: Are the distributions of protein
burst sizes constant in time? Do they always belong to the
wide class of those fulfilling m2/m2

1 = α, which includes the
exponential distribution, commonly assumed in modeling?
Under what biological conditions are the protein number
distributions controlled by amplitude modulation of protein
bursts or by frequency modulation (AM vs. FM)? Do these
mechanisms undergo dosage compensation in the case of
gene multiplication? The present discussion may be, therefore,
an inspiration for a deepened experimental analysis of time
dependence of protein number statistics on the underlying
burst size statistics.
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APPENDIX A: DETERMINISTIC RATE EQUATION

The deterministic model of the reaction kinetics for the
system described by Eq. (1) is given by the following rate
equation

ẋ = c(t) − γ (t)x, (A1)

where x � 0 is the molecule concentration, c(t) is the source
intensity, whereas γ (t) is the decay parameter; overdot denotes
the time derivative. Note that c(t) describes a deterministic
birth process, in contrast to the random source intensity I (t)
of the corresponding stochastic model (2). The solution to the
Eq. (A1) for x(0) = x0 can be readily obtained:

x(t) = e
− ∫ t

t0
γ (t ′)dt ′

[
x0 +

∫ t

t0

c(t ′)e
∫ t ′
t0

γ (t̃)dt̃
dt ′

]
. (A2)

The existence of the stationary solution to Eq. (A1), as well
as the possible oscillatory character of molecule concentration
x(t) depends on the functional form of c(t) and γ (t). Clearly, in
the case of time-independent model parameters, i.e., c(t) = c

and γ (t) = γ , the unique, stable stationary point of (A1) is
given by

xs = c

γ
. (A3)

APPENDIX B: TIME EVOLUTION
OF THE MOMENTS OF p(x,t)

Multiplying Eq. (4) by xr and integrating such obtained
equation, one gets the time evolution equation for the rth
moment of p(x,t),

μr (t) =
∫ ∞

0
xrp(x,t)dx. (B1)

In the resulting time evolution equation for μr (t), the term
derived from the first term on the r.h.s. of Eq. (4) is readily
integrated by parts, whereas in the term containing ν(x − x ′,t)
we have to change order of integration with respect to x and
x ′ as well as to change the independent variables according to
(x,x ′) → (u,x ′), u = x − x ′, cf. Ref. [18]. In result, we get

μ̇r (t) = −rγ (t)μr (t) + k(t)
r∑

q=1

(
r

q

)
μr−q(t)mq(t), (B2)

where mr (t) denotes rth moment of the burst size distribution
ν(u,t) as given by Eq. (15), i.e.,

mr (t) =
∫ ∞

0
urν(u,t)du. (B3)

We assume here that the burst size PDF ν(u,t) is properly
normalized and that the normalization is conserved during time
evolution, i.e., m0(t) = 1, but we impose no other restrictions
on the functional form of ν(u,t). On the other hand, the
normalization of p(x,t), i.e., the condition μ0(t) = 1 follows
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immediately from Eq. (B2). For r = 1, Eq. (B2) reads

μ̇1(t) = k(t)m1(t) − γ (t)μ1(t). (B4)

Equation (B4) is identical to Eq. (A1) provided that we
put c(t) = k(t)m1(t). In such a case, the time evolution of
the average molecule number μ1(t) is the same as the time
evolution of molecule concentration x(t) in the corresponding
deterministic model (A1); this is a general property of linear
deterministic dynamical systems [38,50]. Therefore, making
use of Eq. (A2), we may immediately write down the solution
of Eq. (B4)

μ1(t) = �(t)

[
μ1(0) +

∫ t

t0

k(t ′)m1(t ′)
�(t ′)

dt ′
]
, (B5)

where �(t) is defined by Eq. (9), i.e.,

�(t) = exp

(
−

∫ t

t0

γ (t ′)dt ′
)

. (B6)

For each n ∈ N, Eqs. (B2) with r = 1,2, . . . ,n form closed
hierarchy of linear differential equations [time evolution equa-
tion for μr (t) does not depend on μi(t) if i > r]. Therefore, in
principle, starting from r = 1, the explicit analytical formula
for μn(t) can be found iteratively for arbitrary n.

APPENDIX C: PERIODIC TIME DEPENDENCE
OF THE MODEL PARAMETERS

Below, we show that the possibility of division of κr (t)
into two parts, the exponentially decaying and periodic one, as
demonstrated on the simple example analyzed in Sec. II A, is in
fact a general feature of the present model when its parameters
depend periodically on time. We assume now that not only k(t)
(29), but also γ (t), and mr (t) appearing in (14) are periodic
functions of time (including constant function as the special
case),

γ (t) =
∞∑

q=0

[
a(γ )

q cos(qωf t) + b(γ )
q sin(qωf t)

]
, (C1)

mn(t) =
∞∑

q=0

[
a(m)

n,q cos(qωf t) + b(m)
n,q sin(qωf t)

]
, (C2)

where ωf is given by Eq. (21). We also assume that at least
one of k(t), γ (t), and mn(t) functions is nontrivial periodic
function (i.e., is not a constant, k(t)γ (t)mn(t) 	= const.). From
(C1) we obtain∫ t

t0

γ (t ′)dt ′ =
∞∑

q=1

1

qωf

[
a(γ )

q sin(qωf t) − b(γ )
q cos(qωf t)

]
−A(γ )

0 + a
(γ )
0 t, (C3)

where

A(γ )
0 = a

(γ )
0 t0 +

∞∑
q=1

1

qωf

a(γ )
q sin(qωf t0)

−
∞∑

q=1

1

qωf

b(γ )
q cos(qωf t0). (C4)

From (C3) and (C4) it follows that [�(t)]−r can be written as

[�(t)]−r = era
(γ )
0 tP1(t), (C5)

where P1(t) is a periodic function of time and �(t) is given
by (9) or (B6). From (C5) it follows that the integrand
appearing in Eq. (14), i.e., k(t)mr (t)/[�(t)]r is also of the form
(C5) but with P1(t) replaced by another periodic function,
P2(t) = P1(t)k(t)mr (t) (the product of a finite number of
periodic functions is a periodic function itself). Next, consider
the integral

I =
∫ t

t0

era
(γ )
0 t ′P2(t ′)dt ′. (C6)

Because P2(t ′) can be expanded in a Fourier series, we are left
with integrals of the form

Is(q) =
∫ t

t0

era
(γ )
0 t ′ sin(qωf t ′)dt ′. (C7)

Ic(q) =
∫ t

t0

era
(γ )
0 t ′ cos(qωf t ′)dt ′. (C8)

The integrals (C7) and (C8) are elementary, we have∫
eλt sin(αt)dt = λ sin(αt) − α cos(αt)

α2 + λ2
eλt (C9)

and ∫
eλt cos(αt)dt = λ cos(αt) + α sin(αt)

α2 + λ2
eλt , (C10)

i.e., indefinite integral of the type (C7) or (C8) is a product
of the exponential function and the periodic part containing
sin(αt) and cos(αt) terms; definite integrals (C7) and (C8)
contain also the constant (time-independent) part.

In result, the exponential term e−ra
(γ )
0 t coming from [�(t)]r

in front of the integral in Eq. (14) cancels the corresponding
exponential term era

(γ )
0 t appearing in some (but not all) terms

of definite integral (C6); such terms depend on t in a
periodic manner. On the other hand, the remaining terms in
Eq. (14) are not periodic, but exponentially decaying functions
of time.

APPENDIX D: INFINITE DIVISIBILITY PROPERTY
OF PROTEIN CONCENTRATION PROBABILITY

DISTRIBUTION

Equations (35) and (37) establish a mapping between
p̂(s) = p̂(s; a) and ν̂(s), or, equivalently, between p(x; a) and
ν(u) (here we explicitly denote the dependence of probability
distributions on the parameter a both in x and s space). Given
a particular stationary distribution of molecule concentration
p(x; a), we may ask what is the functional form of ν(u) for
which p(x; a) is a stationary solution of Eq. (4). From Eq. (33)
we obtain

ν̂(s) = s

a

p̂′(s; a)

p̂(s; a)
+ 1 = s

a
{ln[p̂(s; a)]}′ + 1, (D1)

where prime denotes derivative with respect to s. Because ν̂(s)
is the Laplace transform of probability density function, for
real s � 0 it must fulfill the following conditions: (i) ν̂(0) = 1,
(ii) ν̂(s) � 0, (iii) ν̂ ′(s) < 0, and (iv) lims→∞ ν̂(s) = 0. This
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imposes restrictions on the allowed form of p̂(s; a); otherwise
the solution of Eq. (D1) satisfying (i)–(iv) may not exist. The
condition (i) is fulfilled by arbitrary p̂(s; a), but conditions (ii),
(iii), and (iv) involve parameter a. However, the dependence
of any stationary solution p̂(s; a) of Eq. (6) on a is of a special
form; from (37) we have

p̂(s; a) = [p̂(s; 1)]a, (D2)

where

p̂(s; 1) = exp[�(s) − �(0)] (D3)

does not depend on a. Invoking (D2) and (D3), Eq. (D1) can
be rewritten as

ν̂(s) = s
p̂′(s; 1)

p̂(s; 1)
+ 1. (D4)

The special form (D2) of p̂(s; a) is a manifestation of the
infinite divisibility property of stationary solutions of the
present model. Equation (D2) can be inferred even without
solving Eq. (6). Namely, within the present model, a single
gene with burst frequency k is equivalent to (and can be
replaced with) N parallel, independent gene copies (sources)
characterized by burst frequencies k1,k2, . . . ,kN , provided
that

k1 + k2 + · · · + kN = k, (D5)

(i.e., under the assumption that there is no additional mecha-
nism of dosage compensation in cells, that would decrease
the burst frequency as the gene copy number increases)
and that the burst size distributions are identical for each
source,

ν1(u) = ν2(u) = . . . = νN (u) = ν(u). (D6)

Each of these N independent gene copies alone generates
probability distribution pi(xi ; ai) of a random variable xi ,
i = 1,2, . . . ,N , where ai = ki/γ , with γ being a degradation
constant, common for all molecules present in the system.
We also have a = a1 + a2 + · · · + aN . If all N gene copies
are simultaneously present, the total molecule concentra-
tion, x = x1 + x2 + · · · + xN is a sum of N independent
random variables xi , and hence p(x; a) is a convolution of
p1(x1; a1),p2(x2; a2), . . . ,pN (xN ; aN ),

p(x; a) = p1(x; a1) ∗ p2(x; a2) ∗ · · · ∗ pN (x; aN ). (D7)

In consequence, we have

p̂(s; a) = L[p(x; a)] = p̂1(s; a1)p̂2(s; a1) · · · p̂N (s; a1).

(D8)

In particular, for a1 = a2 = . . . = aN = a/N we have
p̂1(s; a/N ) = p̂2(s; a/N ) = p̂N (s; a/N ), therefore

p̂(s; a) = p̂(s; a/N )N . (D9)

Clearly, p̂(s; a) (D2) is the solution of the above functional
equation.

For the initial condition of the form p(x,t0) = δ(x) [�(z) =
1], probability distribution of the molecule concentration
exhibits the infinite divisibility property not only in the t → ∞
limit, but for arbitrary t � t0 as well. Indeed, in such a case

(38) reads

p̂(s,t) = p̂(s; a)

p̂(s�(t); a)
=

(
p̂(s; 1)

p̂(s�(t); 1)

)a

. (D10)

From Eq. (D10) we see that for a = n ∈ N, p(x,t ; n) can be
obtained as nth convolution of p(x,t ; 1),

p(x,t ; n) = p(x,t ; 1) ∗ · · · ∗ p(x,t ; 1)︸ ︷︷ ︸
n times.

(D11)

From the above it follows that the property of infinite
divisibility also works for the time-dependent distributions
generated by our model, as long as the initial condition is
given by δ function.

APPENDIX E: EXAMPLES OF BURST SIZE
PROBABILITY DISTRIBUTIONS

Below we analyze some properties of the solutions of
Eq. (4), obtained for two selected choices of the burst size
PDF ν(u).

First, we analyze an example of a simple burst size PDF
in the form of Dirac delta distribution. In this case, as
well as for all burst PDFs of the form ν(u) = ν(u; b), i.e.,
depending on a single parameter b, equal to mean burst size,
we obtain a two-parameter family of probability distributions
of molecule concentration p(x,t) = p(x,t ; a,b). Next, we
analyze the three-parameter family of probability distributions
p(x,t) = p(x,t ; a,λ,ξ ) obtained for the burst size distribution
given by gamma distribution with parameters λ and ξ . In
order to compare this case with the remaining ones (Dirac
δ and exponential distribution analysed in Sec. II C), we put
λξ = b. Therefore for all burst size distributions considered
in the present paper, all moments mn, n = 1,2,3, . . . are finite
and m1 = b. Also, in each case analyzed here, the dependence
of burst size probability distribution on burst size u and mean
burst size b is of the form

ν(u; b) = 1

b
h

(
u

b

)
, (E1)

where h(y) � 0 and
∫ ∞

0 h(y)dy = 1. For any ν(u; b) of the
form (E1), from (39) it follows that

ν̂(s; b) = L[ν(u; b)] = ĥ(sb), (E2)

where ĥ(s) = L[h(u)]. From (E2), (35), (37), and (38) it
follows, that for �(s) = 1, we also have

p̂(s,t ; b, . . .) = ĝ(sb,t ; . . .). (E3)

Therefore, for the initial distribution p(x,t0) = δ(x), the
property (E1) is inherited by p(x,t), i.e., the dependence of
the latter distribution on parameter b is of the form

p(x,t ; b, . . .) = 1

b
g

(
x

b
,t ; . . .

)
, (E4)

where by . . . we denote the remaining model parameters. Ob-
viously, from (E4) it follows that the corresponding stationary
distribution of protein concentration depends on b in the same
manner,

p(x; b, . . .) = 1

b
g

(
x

b
; . . .

)
. (E5)
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1. Dirac delta distribution

The simplest form of the burst-size probability distribution
ν(u) is the dispersionless delta distribution νδ(u), Eq. (51),
which describes identical bursts of size b. For this particular
burst size probability distribution, only the random distribution
of the burst arrival times contributes to the stochastic character
of the protein production, but there is no contribution of the
burst size fluctuations. Obviously, we have

m(δ)
n = bn. (E6)

From (46), (47), and (E6) we obtain now

κ (δ)
n (t) = κn(0)e−nγ t + a(1 − e−nγ t )

bn

n
, (E7)

κ (δ)
n (∞) = a

bn

n
. (E8)

Equations (E8) and (13) allow us to find Taylor series
expansion of ln[p̂δ(s)],

ln[p̂δ(s)] = a

∞∑
n=1

(−bs)n

n!n
= −aEin(−bs), (E9)

where

Ein(z) =
∫ z

0
(1 − e−t )

dt

t
=

∞∑
k=1

(−1)k+1zk

kk!
(E10)

is related to exponential integral Ei(z) in the following way
[42]

Ein(−y) = −Ei(y) + ln(y) + Cγ , y > 0. (E11)

In Eq. (E11), by Cγ we denote the Euler-Mascheroni constant,
usually denoted by γ .

2. Gamma distribution

As a second example, we consider the case of burst size
PDF ν(u) given by gamma distribution

νγ (u; λ,ξ ) = uλ−1

ξλ�(λ)
exp

(
−u

ξ

)
. (E12)

νγ (u; λ,ξ ) (E12) is one of the simplest continuous and differ-
entiable unimodal burst size distribution functions. Moreover,
burst size distributions similar to (E12) appear naturally
in certain models of gene expression [12]. This burst size
distribution has also been analyzed in Ref. [31]. In order to
compare νγ (u) with the burst size distribution analyzed above,
we put λξ = m

(γ )
1 = b. Using the formula for nth moment of

gamma distribution

m(γ )
n = �(n + λ)

�(λ)
ξn = �(n + λ)

λn�(λ)
bn, (E13)

and Eq. (47) we obtain

κ (γ )
n = a

�(n + λ)

n�(λ)
ξn. (E14)

From (13) and (E14) we obtain

ln[p̂γ (s)] = a

∞∑
n=1

�(n + λ)

�(λ)�(n + 1)

(−ξs)n

n
. (E15)

Full time evolution of p̂γ (s,t) can be easily recovered, if
necessary. Further simplification is possible for λ ∈ N. In such
a case, instead of s it is more convenient to use χ (s) = (sb +
1)−1 as an independent variable. Because L−1[(sb + 1)−a] =
qγ (x; a,b), cf. Eq. (52), the expansion of p̂γ (s(χ )) in powers
χ is equivalent with expressing p(x) as a superposition of
gamma distributions (52) with different values of a but the
same b. This γ representation may be viewed in analogy with
widely used Poisson representation [40].

In particular, for λ = 2 the explicit formula for p(x) can be
obtained, we get

pγ (x; 2,ξ,a) = 1

(ea)a
e
− x

ξ

x
Fa

(
x

ξ

)
, (E16)

where

Fa(y) = (ay)a

�(a)
+ (ay)

a+1
2 Ia−1(2

√
ay) (E17)

and Iα(z) is a modified Bessel function. Although (E16) has a
rather complicated form, it has a simple expansion in terms of
gamma distributions (52), namely

pγ (x; 2,ξ,a) = 1

ea

∞∑
n=0

an

n!
qγ (x; n + a,ξ ). (E18)

APPENDIX F: ALTERNATIVE WAY OF OBTAINING
THE SOLUTION FOR EXPONENTIAL BURST SIZE

DISTRIBUTION FUNCTION ANALYZED IN SEC. II C
AND SOME OF ITS PROPERTIES

The most convenient way to compute the inverse Laplace
transform of p̂ε(s,t) (56) for a = n ∈ N is to rewrite p̂ε(s,t) =
p̂ε,n(s,t) as the following function of ω = e−γ t

p̂ε,n(s,t) = ˆ̃pε,n(s,ω) =
(

ω + 1 − ω

sb + 1

)n

e−x0ωs

=
n∑

i=0

(
n

i

)
(1 − ω)iωn−i

(sb + 1)i
e−x0ωs. (F1)

According to Eq. (52), the inverse Laplace transform of
(sb + 1)−i is a gamma distribution with parameters i and b,
whereas the inverse Laplace transform of unity is a Dirac δ

function. Hence, for x0 = 0, from (F1) we immediately obtain
Eq. (57). If x0 � 0, instead of p̃ε,n(x,ω) (57) we obtain the
more general solution p̃ε,n(x,ω; x0). From the well-known
properties of Laplace transform it follows that p̃ε,n(x,ω; x0)
has identical functional form as p̃ε,n(x,ω) (57), but the x

variable is replaced by ξ = x − x0ω, i.e., p̃ε,n(x,ω; x0) =
p̃ε,n(x − x0ω,ω).

The explicit form of p̃ε,n(x,ω) (57) can be also obtained in
an alternative way. From Eq. (54) for a = n ∈ N and e−γ t = ω

we have

1

p̂(sω)
=

(
sω + 1

b

)n

= ωn

n∑
k=0

(
n

k

)
sn−k

bkωk
. (F2)

By applying the inverse Laplace transform to (F2), we obtain

1

ω
q
( x

ω

)
= ωn

n∑
k=0

(
n

k

)
δ(n−k)(x)

bkωk
. (F3)
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For x0 = 0, p̃ε,n(x,ω) is a convolution of p(x) (52) and
q(x/ω)/ω (F3), cf. Eq. (40). Invoking Eq. (44), we see that in
order to obtain p̃ε,n(x,ω) we need to compute derivatives of
p(x) (52). However, one has to remember, that p(x) is in fact a
distribution, equal to �(x)qγ (x; a,b), and not just an ordinary
function qγ (x; a,b) [here by �(x) we denote a Heaviside step
function]. Therefore, in order to compute the mth derivative of
p(x), Eq. (45) should be invoked.

It is also convenient to rewrite Eq. (57) in a more compact
form

p̃ε,n(x,ω) = ωnδ(x) + W̃ε,n(x,ω)e− x
b , (F4)

where

W̃ε,n(x,ω) =
n∑

i=1

(
n

i

)
(1 − ω)iωn−i

(i − 1)!bi
xi−1. (F5)

Explicitly, for n = 0,1,2, and 3, we have

W̃ε,0(x,ω) = 0, (F6)

W̃ε,1(x,ω) = 1 − ω

b
, (F7)

W̃ε,2(x,ω) = (1 − ω)2

b2
x + 2

(1 − ω)ω

b
, (F8)

W̃ε,3(x,ω) = (1 − ω)3

2b3
x2 + 3

(1 − ω)2ω

b2
x + 3

(1 − ω)ω2

b
.

(F9)

Clearly, p̃ε,n(x,ω) as given by (57), (57), or by Eqs. (F6)–(F9)
has correct ω → 1 (t → 0) and ω → 0 (t → ∞) limits, as
expected.

The validity of (57) for each n can also be verified directly
by inserting p̃ε,n(x,ω) to Eq. (4). To deal with the term

proportional to δ(x), one should invoke the identity xδ(x) ≡ 0,
in order to avoid differentiation of the distribution. Also, at
t = 0 (ω = 1), the initial condition (55) is satisfied, and in the
t → ∞ (ω → 0) limit, only the i = n term of (57) survives,
leading again to gamma distribution (52). Also, it could be
checked that p̃n(x,ω) functions are correctly normalized for
arbitrary n and ω. The weight of the δ(x) term, equal to ωn,
vanishes more rapidly for larger values of n.

It can be also checked that (p̃ε,1 ∗ p̃ε,1)(x) = p̃ε,2(x),
(p̃ε,1 ∗ p̃ε,2)(x) = p̃ε,3(x), etc., and that p̃ε,n(x,ω) (57) is an
n-fold convolution of p̃ε,1(x), i.e., it obeys Eq. (D11).

The kth moment of the probability distribution p̃n(x,ω) (57)
is equal to

μ̃
(ε,n)
k (ω) ≡

∫ ∞

0
xkp̃ε,n(x,ω)dx

=
n∑

i=1

A
(n)
i bk+i�(k + i), (F10)

where

A
(n)
i ≡

(
n

i

)
(1 − ω)iωn−i

(i − 1)!bi
. (F11)

In particular, we obtain

μ̃
(ε,n)
1 = nb(1 − ω),

μ̃
(ε,n)
2 − (

μ̃
(ε,n)
1

)2 = nb2(1 − ω2)

= μ̃
(ε,n)
1 b(1 + ω), (F12)

in agreement with Eq. (53). Note that the expression for μ̃
(ε,n)
1

obtained here is identical to that obtained in Ref. [8] within the
corresponding discrete model, whereas the expressions for the
variance differ, although the difference is small if only b � 1.
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