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In this study we investigate the resilience of duplex networked layers α and β coupled with antagonistic
interlinks, each layer of which inhibits its counterpart at the microscopic level, changing the following factors:
whether the influence of the initial failures in α remains [quenched (case Q)] or not [free (case F)]; the effect
of intralayer degree-degree correlations in each layer and interlayer degree-degree correlations; and the type of
the initial failures, such as random failures or targeted attacks (TAs). We illustrate that the percolation processes
repeat in both cases Q and F, although only in case F are nodes that initially failed reactivated. To analytically
evaluate the resilience of each layer, we develop a methodology based on the cavity method for deriving the size
of a giant component (GC). Strong hysteresis, which is ignored in the standard cavity analysis, is observed in the
repetition of the percolation processes particularly in case F. To handle this, we heuristically modify interlayer
messages for macroscopic analysis, the utility of which is verified by numerical experiments. The percolation
transition in each layer is continuous in both cases Q and F. We also analyze the influences of degree-degree
correlations on the robustness of layer α, in particular for the case of TAs. The analysis indicates that the critical
fraction of initial failures that makes the GC size in layer α vanish depends only on its intralayer degree-degree
correlations. Although our model is defined in a somewhat abstract manner, it may have relevance to ecological
systems that are composed of endangered species (layer α) and invaders (layer β), the former of which are
damaged by the latter whereas the latter are exterminated in the areas where the former are active.
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I. INTRODUCTION

Our real world is composed of a huge variety of systems,
which function in various layers, such as technology, soci-
ety, and biology, and are continuously growing in unstable
environments. It is thus of great importance to capture the
essence of these complex critical systems. The graph [1,2]
or network is one of the most powerful tools, where the
constituents of the systems are regarded as nodes and the
interactions between the nodes as links. Since it has been
detected that networks representing real-world systems exhibit
small-world properties [3,4] and scale-free (heterogeneous)
properties [5] in general, various topological characteristics
have been demonstrated and salient results have been reported
[6–9]. One of the most important properties of a network
is its robustness, that is, its tolerance to the malfunction of
some nodes and/or links, which is frequently evaluated as
an aggregated property, characterized as the structural phase
transition of the emergence of a giant component (GC) [10].
Although vast studies have been conducted in this field,
research remains insufficient, because in most studies network
patterns were projected as a single layer and the effect exerted
by the fact that real-world systems couple with one another
was not realized.

For the purposes of analyzing real-world networks more
essentially, the concept of multilayer networks was developed
and is considered a new paradigm of complex network
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science [11–28]. The seminal work on multilayer networks
is the analysis of the robustness of interdependent networks
presented in [29,30]. A mutually connected GC consisting of
nodes that belong to a GC in each of the layers collapses even
if only a portion of the nodes has initially failed in one layer,
triggering a chain of failures (called the cascade phenomenon)
that spreads over all networks. This type of model may in fact
be the most dependable because real-world systems in general
are becoming increasingly dependent on one another [31].

A different class of multiplex networks consists of those
that couple with each other with antagonistic interlayer
interactions, which are called antagonistic networks. Several
papers were published with regard to the robustness of
antagonistic networks with neutral degree-degree correlations
[32–34]. The theoretical framework was presented to analyze
the robustness on duplex antagonistic networks without initial
failures in [32] and later extended to include the failures in
[11]. Although it was surprising that these models exhibited
the first-order transition in the GC size, the definition of the
antagonistic property of interlinks was artificial to some extent,
in particular for numerical experiments. In our model the
property of interlinks is defined simply at the microscopic
level: Nodes that belong to the GC deactivate their replica
nodes, while the other nodes, which do not belong to the GC,
activate their replica nodes. In addition, we explicitly define
that initial failures occur in layer α.

Although our model is defined in a somewhat abstract
manner, one may be able to regard it as a family of graph
models for ecological systems [35–39]. Employing duplex
networks instead of a single network, we represent habitat
patches of two categories of species (endangered species and
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the invasive ones) and interactions in and between them;
the habitats of endangered species and those of invaders
are projected on layer α and layer β, respectively, and the
GC in each layer represents the largest and most significant
habitat of the relevant layer. Each interlayer link represents
the antagonistic interaction because the invaders prey on the
endangered species, while the latter are conserved, thus the
eradication program expels the former.

In this paper we analyze the resilience of antagonistic
duplex networks that suffer from failures, in terms of the
following three factors: (i) the type of the initial failures, (ii) the
remaining effect of the initial failures, and (iii) degree-degree
correlations. Two scenarios are examined featuring the two
types of initial node failures in the the first layer α: Nodes suffer
random failures (RFs) or high degree nodes selectively fail,
called targeted attacks (TAs). The result of the initial failures
propagates to the confronting layer β, which causes node
failures at the second stage and the outcome return to the layer
α. At the third stage, two possibilities are considered for the
remaining effect of the initial damage. In one scenario, which
is referred to as the quenched setting (case Q), the effect of the
initial damage remains such that failed nodes cannot become
active again. In contrast, in the second scenario, termed the free
setting (case F), all the nodes are free of the initial damage,
which also implies that the nodes can be reactivated with the
aid of replica nodes.

In the above-described realistic scenario, case F corre-
sponds to the situation in which endangered species can
recover, while in case Q, they cannot even though invaders
disappear in the area. In both cases percolation processes
exhibit periodic phenomena, which were also reported in a
different model [34]. In addition, we consider the effects of
two types of degree-degree correlations, those between nodes
within a layer (intralayer degree-degree correlations) and those
between replica nodes (interlayer degree-degree correlations).
In general, degrees in real-world networks are correlated
[40–42] and therefore the influence of degree-degree corre-
lations is considered one of the most important topics in the
research on multilayer networks [11,43,44].

As the main part of this paper we address the development of
an analytical framework based on the cavity method developed
in statistical mechanics [45–48], which is categorized as a
mean-field approach [11,49,50], supposing a locally treelike
structure and utilizing the Bethe-Peierls approximation. In our
framework, we first describe the flow for computing GC size
from a microscopic viewpoint, the formulation of which is
extended to a macroscopic viewpoint, and the expected GC
size is analytically evaluated solving a set of self-consistent
equations numerically. Unfortunately, the results obtained in
this fashion deviate from numerical ones, in particular in case
F. The cause of the discrepancy lies in the assumption of
self-averaging property that nodes of the same degree have
equivalent statistical properties, though at each single instance
local states of some nodes, which are affected by the hysteresis
in the layer, deterministically contribute to global property
of the relevant layer, namely, GC size. The technique to
efface the influence of the hysteresis is implicitly used for
robustness analysis of multilayer interdependent networks [11]
and antagonistic networks [32]. However, this is not valid in
the latter case, unlike the former case: Some inactive nodes

are regarded as active, which may makes some of them belong
to the GC, if it exists. Although the fraction of these nodes
is almost negligible [51], their existence may significantly
influence the critical behavior of the system, namely, whether
the manner of the percolation transition is continuous [34] or
discontinuous [8,32]. In keeping with the periodic phenomena,
we heuristically describe the GC size at the microscopic level
and extend it to the macroscopic one, the utility of which
is confirmed by comparing with the numerical ones. The
percolation transition of each layer turns out to be continuous
in both cases Q and F in our model; in particular, that of layer
α depends on the first stage and the critical point is determined
only by intralayer topologies in layer α. On the other hand, the
GC size depends on both interlayer and intralayer correlations,
in particular the GC size in layer α exceeds about half of the
layer size.

The remainder of this paper is organized as follows. In
Sec. II we present the problem setup and introduce the
notation that is used in our analysis. In Sec. III we develop
an analytical framework for evaluating the robustness on
antagonistic networks. In Sec. IV we examine the accuracy
in evaluating the GC size of our methodology. We find
discrepancies between theory and experiment for the GC size
evaluation, particularly in case F. To resolve this inconsistency,
we heuristically improve the developed methodology, which
is verified by numerical experiments in Sec. V. In Sec. VI we
discuss the influence of interlayer and intralayer degree-degree
correlations on the robustness of each layer and suggest the
relevance of real-world ecological systems that have been
reported recently. In Sec. VII we conclude the paper with a
summary. The periodic phenomena are reconfirmed by the
heuristic in the Appendix.

II. MODEL

In this section we present a brief outline of our model
of antagonistic networks consisting of layers (networks) α

and β, where the number of nodes in each layer is N . They
are generated separately in some initial configuration, where
no isolated node exists in either network prior to the failure
process.

Our model is seeded by initial damages that destroy
a portion of the nodes in layer α, chosen uniformly at
random or targeted (selected degree-dependent randomly) with
probability 1 − q. As a result of the first stage, a GC may
remain in layer α, the size of which is typically O(N ) [or
O(N2/3) at the critical point exactly] [1]. We show that nodes
that belong to the GC in layer α deactivate their replica nodes
in layer β, while all other nodes that do not belong to the GC
activate their replica nodes, which causes the failure of nodes
in layer β at the second stage, resulting in a GC in layer β

that differs from the GC in layer α. Similarly, all the nodes
that belong to the GC in layer β deactivate their replica nodes,
while the rest of the nodes activate their replica nodes. The
difference between cases Q and F corresponds to whether or
not the initial damages remain in layer α at the third stage:
In case Q, nodes are affected by both the initial damages and
layer β, while in case F, nodes are free from the initial damage
and are only affected by layer β.
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The organization of this section is as follows. In Sec. II A
we show that the failure process oscillates in both cases Q and
F. In Sec. II B we provide the bipartite graph representations
of the original networks, which are necessary for microscopic
analysis in Sec. III A. In Sec. II C the topologies of each net-
worked layer, degree distribution, and interlayer and intralayer
degree-degree correlations are introduced. They are used for
macroscopic analysis in Sec. III C.

A. Percolation process

In Fig. 1 we categorize the nodes in each layer into three
groups and depict them as the stage elapses, which does not
depend on the initial failure type (RFs or TAs) or any degree-
degree correlations in and/or between networks.

(i) After the t = 1 percolation process, the nodes in layer
α that constitute a GC make their replica nodes inactive at
the start of stage t = 2. This guarantees that the nodes in
layer α are active at the start of stage t = 3. In addition, the
network topology is unchanged from stage t = 1. Therefore,
it is ensured that the nodes belong to the GC after the t = 3
percolation process and repeating this argument concludes that
the nodes continue to constitute the GC for ever at stages
t = 5,7, . . . . Accordingly, their replica nodes continue to be
inactive at stages t = 2,4, . . . .

(ii) The same argument guarantees that the active nodes
in layer β at stage t = 2 are active at the stages t = 4,6, . . .

and their replica nodes in α are never reactivated at stages
t = 3,5, . . . .

(iii) Statements (i) and (ii) may appear to guarantee that,
when a node has been categorized as inactive, it cannot be
reactivated later. However, this is not necessarily the case only
in case F. This is because it is not ensured that the active nodes
in layer β at stage t = 2, the replica nodes of which in layer
α are inactive (damaged or isolated) at stage t = 1, form the
GC, which allows a portion of the inactive nodes at t = 1 to
be reactivated at stage t = 3.

Consideration of (i)–(iii) restricts possible state transitions
to those depicted in Fig. 1. This figure indicates that we can
terminate the repetition of the percolation at stage t = 3 in case
Q and at stage t = 4 in case F, considering that the percolation
processes converge.

B. Bipartite graph expression and notation

In Fig. 2 we provide the bipartite graph representations
of the original networks, which help us consider the message
passing scheme in the failure process graphically. Each original
node is also a variable node and expressed as a circle. To
indicate whether the variable node has initially failed or not
without removing it, a function node is connected to each
variable node, which is depicted as a closed square in the
figure. For the purpose of passing messages, we append a
function node on each interlink and each intralink, respectively.
A function node that is depicted as an open slashed square
expresses the role of the interlinks, whereas a function node
that is depicted as an open square represents the role of the
intralink. We now introduce the basic notation for antagonistic
bipartite networks. We denote a variable node in layer α by
iα . The variable node iα is directly connected with the set of

(a)

(b)

(c)

t =1/ t = 2, 4,... / t = 3,5,... /
GC

GC
GC

GC

t =1/ t = 2 / t = 3,5,... / t = 4,6,... /
GC

GC
GC

GC

GC

GC

GC

GC

t =1/ t = 2, 4,... / t = 3,5,... /
GC

GC
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FIG. 1. Transitions of the states of nodes of the percolation
process in antagonistic networks. Each stage is expressed as a large
rounded rectangle, where red and blue represent networked layers
α and β, respectively. Symbols on the left-hand side in a large
rectangle express the condition of the set of nodes and those on the
right-hand side represent the percolation result under the condition
of the left-hand side. A cross represents the set of failed nodes at
the stage, while a circle represents the set of nonfailed nodes, which
are classified into two classes: (i) nodes belonging to the GC and (ii)
nodes belonging to one of the small components, represented by a
triangle. Dotted lines separate the groups of nodes that have different
percolation results. In case Q, only the nodes that form the GC affect
their replica nodes. In case F, all nodes influence their replica nodes.
Possible transitions are shown for (a) case Q and (b) case F. (c) State
transitions realized in the model examined in the case that node iβ is
supposed to be the replica node of node iα [11].

function nodes, which is denoted by ∂iα . We denote a function
node on each intralink in layer α by aα and we denote a
function node on interlinks by p. The function node aα is
directly connected with two variable nodes, denoted by ∂aα .
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FIG. 2. Diagram of antagonistic duplex networks.

C. Statistical expression of graph topologies

One of the most fundamental topologies of network (layer)
is degree distribution, which is defined as the probability that
a randomly chosen node has degree kα , denoted by pα(kα). We
also provide rα(kα), which denotes the degree distribution of
a link computed as the probability that one terminal node of a
randomly chosen link has degree kα . We describe rα(kα) using
pα(kα):

rα(kα) = kαpα(kα)∑
lα

lαpα(lα)
. (1)

Related to this, the intralayer joint degree distribution (in-
tralayer degree-degree correlations) is defined as the probabil-
ity that, given an intralink is randomly chosen, one terminal
node has degree kα and the second terminal node has degree
lα , which is denoted by rα(kα,lα) and is described using rα(kα),

rα(kα) =
∑
lα

rα(kα,lα). (2)

Related to the intralayer degree-degree correlations, the
intrajoint degree distribution (intralayer degree-degree corre-
lations) is described as

rα(kα|lα) = rα(kα,lα)

rα(lα)
. (3)

The interjoint degree distribution is denoted by P (kα,kβ),
defined as the probability that the degrees of a randomly
chosen node pair are kα and kβ and are called interlayer degree
correlations. The relationship between pα(kα) and P (kα,kβ) is

pα(kα) =
∑
kβ

P (kα,kβ). (4)

Related to interlayer joint degree distribution, the intercondi-
tional distribution is described as

Pα(kα|kβ) = Pα(kα,kβ)∑
kβ

Pα(kα,kβ)
, (5)

which is defined as the probability of a node having degree kα ,
given that the degree of its replica node is kβ .

Exchanging α with β in Eqs. (1)–(5), we define rβ(kβ),
rβ(kβ |lβ), pβ(kβ), and Pβ(kβ |kα), respectively. Using the
definition of Pβ(kβ |kα), the intralayer conditional distributions
of node pairs are obtained as

rα(kα,kβ |lα,lβ) = Pβ(kβ |kα)rα(kα|lα), (6)

the definition of which is the probability that a randomly
chosen node pair having degree (lα,lβ) is connected with
another node pair having degree (kα,kβ), given an intralink
in layer α.

III. THEORETICAL FRAMEWORK

The aim of this section is to develop a framework to analyze
the robustness of antagonistic networks based on the cavity
method. In preparation for evaluating the GC size from the
macroscopic viewpoint, we examine the message flow for a
single instance from the microscopic viewpoint in Sec. III A;
Sec. III A 1 provides the message flow at stages t = 1 and t = 2
and Secs. III A 2 and III A 3 describe how the flow behaves for
t � 3 in cases Q and F, respectively. In Sec. III B we define
macroscopic intralayer messages using microscopic ones.
With the aid of the local tree approximation and self-averaging
properties of a random network, we extend our formulation
to the macroscopic level in Sec. III C; Sec. III C 1 provides
the macroscopic message flow at stages t = 1 and 2 and
Secs. III C 2 and III C 3 describe how the macroscopic flow
behaves for t � 3 in cases Q and F, respectively.

A. Message flow from the microscopic viewpoint

1. First and second stages

We define a binary variable ψiα , which is set at 0 or 1
depending on whether or not the node suffers from the initial
damage, respectively, and assign it to another variable, called
the activity index st=1

iα
of iα at stage t = 1,

st=1
iα

≡ ψiα . (7)

Note that the total fraction of the active nodes at the initial
condition, namely,

∑
iα

δ(ψiα
= 1)/N , is handled as a survival

ratio in Sec. III C. To examine the first stage in layer α, we
apply the cavity method presented in [47] for the given set of
{s1

iα
}, which yields a set of self-consistent equations

mt=1
aα→iα

= mt=1
jα→aα

(∂aα = {iα,jα}), (8)

mt=1
iα→aα

= 1 − st=1
iα

+ st=1
iα

∏
bα∈∂iα\aα

mt=1
bα→iα

. (9)

Here mt
i→a ∈ {0,1} in general is the message from variable

node i to function node a at the t th stage, which takes 0 when
i belongs to a GC in the layer from which node a is removed
and unity otherwise. The message mt

a→i ∈ {0,1}, on the other
hand, conveys 0 from function node a to variable node i at
the t th stage when at least one j ∈ ∂a\i belongs to the GC,
and unity otherwise. Using the solution of Eqs. (8) and (9), we
derive the indices of the GC and the size of the GC in layer α
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at stage t = 1 as

σ t=1
α =

∑
iα

σ t=1
iα

=
∑
iα

st=1
iα

⎛
⎝1 −

∏
aα∈∂iα

mt=1
aα→iα

⎞
⎠, (10)

which also provides a message from iα to the function node p

on an interlink at stage t = 1 as

mt=1
iα→p = σ t=1

iα
= st=1

iα

⎛
⎝1 −

∏
aα∈∂iα

mt=1
aα→iα

⎞
⎠. (11)

Because of the antagonistic nature of the interlinks, the inverted
value of Eq. (11) is propagated from the function node p to
the replica node iβ of layer β after stage t = 1 as

1 − mt=1
iα→p = 1 − st=1

iα

⎛
⎝1 −

∏
aα∈∂iα

mt=1
aα→iα

⎞
⎠

= mt=2
p→iβ

. (12)

The second stage (t = 2) is considered the initial step for
layer β. In contrast to the first stage at layer α, a particular set of
ψiβ is not involved (in other words ψiβ = 1), because the nodes
in layer β are free from the initial damage and influenced only
by the activity pattern of layer α at stage t = 1. The activity
index of iβ at the start of stage t = 2 is

st=2
iβ

= mt=2
p→iβ

= 1 − st=1
iα

⎛
⎝1 −

∏
aα∈∂iα

mt=1
aα→iα

⎞
⎠. (13)

Note that st=2
iβ

= 1 holds if either ψiα = 0 or ψiα = 1 and∏
aα∈∂iα

mt=1
aα→iα

= 0 are satisfied. Given {st=2
iβ

}, the cavity
method provides the self-consistent equations

mt=2
aβ→iβ

= mt=2
jβ→aβ

(∂aβ = {iβ,jβ}), (14)

mt=2
iβ→aβ

= 1 − st=2
iβ

+ st=2
iβ

∏
bβ∈∂iβ\aβ

mt=2
bβ→iβ

. (15)

The solution of Eqs. (14) and (15) provides the GC size of
layer β at stage t = 2 as

σ t=2
β =

∑
iβ

σ t=2
iβ

=
∑
iβ

st=2
iβ

⎛
⎝1 −

∏
aβ∈∂iβ

mt=2
aβ→iβ

⎞
⎠. (16)

The solution also provides the messages from iβ to p and the
message from p to iα as

mt=2
iβ→p = st=2

iβ

⎛
⎝1 −

∏
aβ∈∂iβ

mt=2
aβ→iβ

⎞
⎠, (17)

mt=3
p→iα

= 1 − mt=2
iβ→p. (18)

At the third and further stages, nodes in layer α receive the
intermessages that are represented as Eq. (18).

2. Third and further stages in case Q

As already discussed in Sec. II A, we obtain the final
robustness of layer α and layer β, which is the robustness

of layer α at the first stage (10) and that of layer β at the
second stage (16), respectively,

σ 2t ′+1
iα

= σ t=1
iα

, σ 2t ′
iβ

= σ t=2
iβ

(Q). (19)

3. Third and further stages in case F

In case F, nodes in layer α at stage t = 3 are influenced by
only interlayer messages and are free from the initial activity
indices, which provides the activity index of iα as

st=3
iα

(F) = mt=3
p→iα

= 1 − st=2
iβ

⎛
⎝1 −

∏
aβ∈∂iβ

mt=2
aβ→iβ

⎞
⎠. (20)

Substituting st=3
iα

(F) for st=1
iα

in Eqs. (8) and (9),

mt=3
aα→iα

= mt=3
jα→aα

(∂aα = {iα,jα}), (21)

mt=3
iα→aα

= 1 − st=3
iα

(F) + st=3
iα

(F)
∏

bα∈∂iα\aα

mt=3
bα→iα

, (22)

we obtain the solution mt=3
aα→iα

, which derives the size of the
GC in layer α as

σ t=3
α =

∑
iα

σ t=3
iα

=
∑
iα

st=3
iα

(F)

⎛
⎝1 −

∏
aα∈∂iα

mt=3
aα→iα

⎞
⎠. (23)

We describe st=4
iα

(F), which denotes the message through
the interlink, which each iβ receives at stage t = 4, as

st=4
iα

(F) = mt=4
p→iβ

= mt=3
iα→p = 1 − σ t=3

iα

= 1 − st=3
iβ

(F)

⎛
⎝1 −

∏
aβ∈∂iβ

mt=3
aβ→iβ

⎞
⎠. (24)

As discussed in Sec. II A, the percolation result at stage t = 4
becomes identical to that at stage t = 2 in case F. Therefore,
we can determine the indices of each node in each network as

σ 2t ′+1
iα

= σ t=3
iα

, σ 2t ′
iβ

= σ t=2
iβ

(F). (25)

Consequently, we can terminate the repetition of the perco-
lation at stage t = 2 by considering the networks converged
[Fig. 1(a)].

The local message flows are categorized with the aid of
the bipartite graph expression that is introduced in Sec. II B
(see Fig. 3).

B. Cross-link from the microscopic viewpoint
to the macroscopic one

We first focus on a pair of nodes iα and iβ , the degrees
of which are lα and lβ , respectively. The node iα is initially
attached st=1

iα
, which is described as Eq. (7). Using st=1

iα
, we

evaluate q
α,t=1
lα lβ

, which denotes the fraction of the set of node
pairs, the degrees of which are lα and lβ , taking the value of
unity at the first stage:

q
α,t=1
lα ,lβ

=
∑

iα
δ(|∂iα| = lα)δ(|∂iβ | = lβ)sα,t=1

iα∑
iα

δ(|∂iα| = lα)δ(|∂iβ | = lβ)
. (26)
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(b)(a)

(d)(c)

(e)

FIG. 3. Diagram of message passing. (a) Message flow passing
a function node in a layer, which corresponds to Eqs. (8), (14),
and (21). (b) Message flow passing a variable node in a layer,
which corresponds to Eqs. (9), (15), and (22). (c) Message flow
for computing the size of the GC, which corresponds to Eqs. (10),
(16), and (23). (d) Message flow from a variable node in a layer to
a function node on an interlink, which corresponds to Eqs. (11) and
(17). (e) Message flow from a function node on an interlink to a
variable node in the layer, which corresponds to Eq. (12) or (18).

In the case of layer β, we define the relevant active probability
as

q
β,t=2
lα ,lβ

=
∑

iβ
δ(|∂iα| = lα)δ(|∂iβ | = lβ)sβ,t=2

iβ∑
iβ

δ(|∂iα| = lα)δ(|∂iβ | = lβ)
. (27)

As in Eq. (26), we implicitly define q
α,t=3
lα,lβ

using s
α,t=3
iα

,
which leads to Eq. (39). We compute the fraction of message
mt=1

jα→aα
= mt=1

aα→iα
taking unity, which is characterized by the

degree of iα and its replica node iβ , solving the relevant
cavity equations [e.g., Eq. (33)] iteratively. We denote the
macroscopic message by I

α,t=1
lα,lβ

,

I
α,t=1
lα,lβ

=
∑

iα
δ(|∂iα| = lα)

∑
aα∈∂iα

m
α,t=1
aα→iα

lα
∑

iα
δ(|∂iα| = lα)δ(|∂iβ | = lβ)

. (28)

Similarly, in layer β,

I
β,t=2
lα,lβ

=
∑

iβ
δ(|∂iβ | = lβ)

∑
aβ∈∂iβ

m
β,t=2
aβ→iβ

lβ
∑

iβ
δ(|∂iα| = lα)δ(|∂iβ | = lβ)

. (29)

Note that these macroscopic variables are relevant for network
ensembles and thus may not be appropriate for each individual
network; in particular, each active label of all the nodes is
strongly correlated with the network connectivity.

C. Message flow from the macroscopic viewpoint

1. First and second stages

Let us consider the initial stage (t = 1) in layer α. First,
we set only one parameter q as the initial survival probability,
that is, the fraction of nonfailed nodes in layer α. In the case
of RFs, we set

q
α,t=1
kα,kβ

= q
α,t=1
kα

= q. (30)

On the other hand, in the case of TAs, nodes having larger
degrees in layer α are preferentially damaged. We therefore
set

q
α,t=1
kα,kβ

= q
α,t=1
kα

=
⎧⎨
⎩

0 (kα > �)
	 (kα = �)
1 (kα < �),

(31)

where � and 	 are uniquely determined so that

q =
∑
lβ

⎛
⎝	P (�,lβ) +

∑
lα<�

P (lα,lβ)

⎞
⎠ (32)

holds. Substituting q
α,t=1
kα,kβ

in the self-consistent equation,

I
α,t=1
lα,lβ

=
∑
kα,kβ

rα(kα,kβ |lα,lβ)

× [
1 − q

α,t=1
kα,kβ

+ q
α,t=1
kα,kβ

(
I

α,t=1
kα,kβ

)kα−1]
, (33)

which corresponds to Eqs. (8) and (9). Solving Eq. (33)
iteratively, the solution I

α,t=1
lα,lβ

is determined, which offers the
fraction of GC in layer α at stage t = 1,

μt=1
α =

∑
kα,kβ

P (kα,kβ)qα,t=1
kα,kβ

[
1 − (

I
α,t=1
kα,kβ

)kα
]
. (34)

Let us consider the second stage in layer β, in which q
β,t=2
kα,kβ

denotes the probability that nodes do not fail at stage t = 2,
the degree of which is kβ ; their replica node’s degree is kα .
Considering the message flow [Eqs. (11)–(13)], q

β,t=2
kα,kβ

is

directly calculated from the solution I
α,t=1
lα ,lβ

in Eq. (33) as

q
β,t=2
kα,kβ

= 1 − q
α,t=1
kα,kβ

+ q
α,t=1
kα,kβ

(
I

α,t=1
kα,kβ

)kα
. (35)

Substituting q
β,t=2
kα,kβ

in the self-consistent equation

I
β,t=2
lα ,lβ

=
∑
kα,kβ

rβ(kα,kβ |lα,lβ)

× [
1 − q

β,t=2
kα,kβ

+ q
β,t=2
kα,kβ

(
I

β,t=2
kα,kβ

)kβ−1]
, (36)

based on Eqs. (14) and (15), we compute the set of messages
I

β,t=2
lα,lβ

, which offers the fraction of the GC in layer β at stage
t = 2 as

μt=2
β =

∑
kα,kβ

P (kα,kβ)qβ,t=2
kα,kβ

[
1 − (

I
β,t=2
kα,kβ

)kβ
]
. (37)

2. Third and further stages in case Q

In Sec. II A we already discussed that the final GC in layer
α is identical to that at stage t = 1, while the final GC in layer
β is identical to that at stage t = 2, which provides

μα(Q) = μt=1
α , μβ(Q) = μt=2

β . (38)
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3. Third and further stages in case F

Here we naively compute q
α(F),t=3
kα,kβ

, the fraction of nodes
that have not failed at stage t = 3, based on Eq. (20),

q
α(F),t=3
kα,kβ

= 1 − q
β,t=2
kα,kβ

+ q
β,t=2
kα,kβ

(
I

β,t=2
kα,kβ

)kβ
. (39)

As discussed in Sec. IV, it is necessary to evaluate Eq. (20)
in detail. Substituting q

α(F),t=3
kα,kβ

in the self-consistent equation
based on Eqs. (21) and (22),

I
α,t=3
lα,lβ

=
∑
kα,kβ

rα(kα,kβ |lα,lβ)

× [
1 − q

α(F),t=3
kα,kβ

+ q
α(F),t=3
kα,kβ

(
I

α,t=3
kα,kβ

)kα
]
, (40)

we obtain a solution of I
α,t=3
kα,kβ

, which yields the fraction of the
GC in layer α

μt=3
α =

∑
kα,kβ

P (kα,kβ)qα(F),t=3
kα,kβ

[
1 − (

I
α,t=3
kα,kβ

)kα
]
. (41)

The GC in layer β at stage t = 4 is identical to that at stage
t = 2, which means that the percolation process is only the
repetition of the stage at stage t = 3 and the stage at stage
t = 4 alternately. Therefore, the robustness of layer α and
layer β is evaluated as

μα(F) = μt=3
α , μβ(F) = μt=2

β , (42)

respectively.

IV. NUMERICAL TEST

A. Procedure

We conducted numerical experiments to confirm the valid-
ity of the method developed for analyzing the robustness of
antagonistic networks. Here the procedure of the numerical
experiments is briefly described.

(i) We constructed two random networks (layers) α and
β, each of size N = 10 000. The degree distribution of each
layer was represented by Pα(4) = Pβ(4) = 0.5 and Pα(6) =
Pβ(6) = 0.5.

(ii) To introduce intralayer degree-degree correlations, we
set a Pearson coefficient in each layer Cα and Cβ , respectively.
For each layer, we randomly selected two pairs of connected
nodes and rewired the intralinks, employing the algorithm in
[40].

(iii) To introduce interlayer degree-degree correlations, we
set a Pearson coefficient between layers CI . We rewired the
interlinks, reordering the indices of one layer. Note that it
is necessary to suppose that P (kα = x,kβ = y) = P (kα =
y,kβ = x), because CI does not determine P (kα,kβ) uniquely.

(iv) For the degree-correlated networks, we applied the
Monte Carlo simulation described below. Setting an initial
survival probability q, we chose initially failed nodes randomly
depending on the type of failures (RFs or TAs). Failed nodes
cause networks to decompose into connected components,
each of which is detected using the algorithm in [52,53]. Note
that we modified the open MATLAB code in [53] very slightly
in the part of “case 4c ii,” tracing the nest of “NodeLP(N)”
sufficiently to reach its source such that “NodeLPmin” should
be labeled the smallest cluster. We terminated the single

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 q

μ  Cα = 0, Cβ = 0,  C
I
 = 0

μα
μβ

α (N = 10000)
β (N = 10000)
 single

FIG. 4. Analytical results of the robustness of layer α versus q for
the case where antagonistic networks suffer from RFs and the setting
is case Q. Examples of the robustness of layer α at stage t = 1 are also
plotted, which are the results of failure processes that are completed
in the single layer α. Each dot is averaged 50 times, produced by
numerical experiments.

instance if each active label of all nodes in layer α accorded
with that at the last stage in a one-to-one manner. Similar
procedures were tested 50 times at each initial survival
probability q.

B. Methodological accuracy

1. Case Q

Figure 4 shows a comparison of the theoretical prediction
obtained for the analysis and the experimental results, which
exhibits excellent consistency. In particular, antagonistic inter-
links do not affect the robustness in layer α, which is the GC
at stage t = 1.

2. Case F

Figure 5 shows a comparison of the theoretical predictions
of the robustness of layers α and β and the numerical results
in the condition of case F. Experimental data for layer β

exhibit excellent agreement with the theoretical predictions.
However, with regard to the robustness in layer α, there exist
significant discrepancies between the theoretical predictions
and the numerical results.

V. ACCURACY IMPROVEMENT

The results in Sec. IV indicate that there are significant
discrepancies in the GC size evaluation between theory
and experiment for case F. The purpose of this section
is to resolve this inconsistency. In Sec. V A we examine
the cause of the discrepancies. To improve the accuracy of
the theoretical evaluation, we derive alternative expressions
for the microscopic equations (20)–(23) and corresponding
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FIG. 5. Analytical results of the robustness of layer α versus q

for the case where the antagonistic networks suffer from RFs and
the setting is case F. Each dot is averaged 50 times, produced by
numerical experiments.

macroscopic equations (39)–(41). Consequently, we introduce
a heuristic treatment in the microscopic level in Sec. V B and
extend it to derive macroscopic expressions in Sec. V C, the
utility of which is verified by numerical experiments.

A. Clarifying the cause of discrepancy

The causes of the above discrepancies between theory
and experiment lie in the transformation from microscopic
variables to macroscopic ones at stage t = 3. To reach this
resolution, we dissect the GC at stage t = 3, which is
constitutively heterogeneous and divided into three subsets
depending on the history of nodes.

(I) Nodes that belonged to the GC at stage t = 1. These
nodes necessarily belonged to the GC at stage t = 3, which
implies that strong correlations existed between st=3

iα
and∏

aα∈∂iα
mt=3

aα→iα
and thus q

α(F),t=3
kα,kβ

and I
α,t=3
kα,kβ

. Note that the
last statement holds if and only if node iα is classified as this
class.

(II) Nodes that failed at stage t = 1. These nodes generally
belonged to the GC by themselves.

(III) Nodes that belonged to one of the small components
at stage t = 1. These nodes belonged to the GC at t = 3 with
the aid of the node(s) of (II).

Because of the heterogeneity due to the hysteresis, the
assumption that nodes of the same degree are statistically
equivalent does not hold from the macroscopic viewpoint at
stage t = 3. Therefore, Eq. (41), in which q

α(F),t=3
kα,kβ

and I
α,t=3
kα,kβ

are independent of each other, underestimates the GC size
[see Figs. 6(a) and 6(b)].

In order not to treat the heterogeneity argued above, we
drop the term of the past intralayer messages to obscure (or
encapsulate) the connectivity in the relevant layer in Eq. (20).
Note that, unlike interdependent networks, this treatment has a

(a)

(b)

(c)

t =1/ t = 2 /
GC

GC

GC

GC

GCGC

t = 3,5,... / t = 4,6,... /

t =1/ t = 2 / t = 3 /
GC

GC

GC

GC

stop

t =1/ t = 2 / t = 3 / t = 4 /
GC

GC

GC

GC

GCGC

stop

FIG. 6. Possible transitions for case F from (a) a microscopic, (b)
a naive macroscopic, and (c) a modified macroscopic viewpoint. Note
that, for simplicity, we considered the situations where the number
of active nodes that were isolated from the GC in layer β was almost
negligible. The meaning of each symbol is similar to that in Fig. 1. The
red triangle in (b) represents the nodes that are not judged constituents
of the GC, which causes the discrepancies in Fig. 5. The red circle
in (c) represents the nodes that are actually inactive according to the
rule of antagonistic interlinks [see also (a)], but regarded active by
dropping the self-feedback term from Eq. (43) as Eq. (44).

possibility of considering that some failed nodes belong to the
GC in layer α at stage t = 3 in antagonistic networks, which
depends on the percolation result of layer β at stage t = 2 (see
Fig. 7). To compensate for this inconsistency, we deduct them
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t =1/ t = 2 / t = 3 / t = 4 /
GC

GC
GC
GC

GC

GC

GC

GC

GC

FIG. 7. Possible transitions from a modified macroscopic view-
point for case F in the situations where the number of active nodes that
are isolated from the GC in layer β is not negligible. Because some
initially destroyed nodes in layer α are revived at stage t = 3 because
of antagonistic interlinks, some nodes that are treated as active by
encapsulation involuntarily belong to the GC at stage t = 3, which
allows the impossible state transitions that are highlighted by stars.
To compensate for this inconvenience, we modified the evaluation of
the GC size as Eq. (47), highlighted by a small diagonal line. The
meaning of each symbol is the same as in Fig. 1.

using the original interlayer message to derive the GC size at
the microscopic level.

B. Heuristic

To keep our model analytically tractable, we define the
provisional active variables s∗t=3

iα
instead of st=3

iα
(F) such that

they do not include messages in layer α. We first describe
Eq. (20) in detail and show that st=3

iα
(F) includes the past

intralayer messages in layer α,

st=3
iα

(F) = st=1
iα

+ (
1 − st=1

iα

) ∏
aβ∈∂iβ

mt=2
aβ→iβ

− st=1
iα

∏
aα∈∂iα

mt=1
aα→iα

⎛
⎝1 −

∏
aβ∈∂iβ

mt=2
aβ→iβ

⎞
⎠. (43)

It is clear that st=3
iα

F is already influenced by the connectivity of
layer α, because it includes the term

∏
aα∈∂iα

mt=1
aα→iα

, which is
indeed

∏
aα∈∂iα

mt=3
aα→iα

itself in the case that node iα has the his-
tory (I) (see Table I). Supposing the term

∏
aα∈∂iα

mt=1
aα→iα

= 0

TABLE I. All possible cases of
∏

aα∈∂iα
mt=1

aα→iα
,
∏

aα∈∂iα
mt=3

aα→iα
,

or
∏

aα∈∂iα
m∗t=3

aα→iα
, denoted by Mt=1

iα
, Mt=3

iα
, and M∗t=3

iα
, respectively.

Here φ denotes the unrealizable case in which
∏

aα∈∂iα
mt=1

aα→iα

vanishes and
∏

aα∈∂iα
mt=3

aα→iα
is equal to unity at the same time.

st=1
iα

Mt=1
iα

Mt=3
iα

M∗t=3
iα

st=1
iα

Mt=1
iα

Mt=3
iα

st=1
iα

Mt=1
iα

M∗t=3
iα

1 1 1 1 1 1
1 1 0 0 0 0
1 0 0 0 0 0
1 0 1 1 φ φ

in Eq. (43), we define the provisional active variables

s∗t=3
iα

(F) ≡ st=1
iα

+ (
1 − st=1

iα

) ∏
aβ∈∂iβ

mt=2
aβ→iβ

. (44)

Substituting s∗t=3
iα

(F) for st=3
iα

(F) in Eqs. (21) and (22), we
compute the provisional message m∗t=3

aα→iα
. Employing s∗t=3

iα

and m∗t=3
aα→iα

in Eq. (23), we can compute the provisional GC,

σ ∗t=3
iα

≡ s∗t=3
iα

(F)

⎛
⎝1 −

∏
aα∈∂iα

m∗t=3
aα→iα

⎞
⎠, (45)

the sum of which is larger than the actual GC size in particular
when the number of isolated nodes in layer β is not negligible
(see Fig. 7).

Our idea is to replace only intralayer messages in Eq. (23):
Employing m∗t=3

aα→iα
instead of mt=3

aα→iα
, we approximately

describe the GC label of each node at stage t = 3 [Eq. (23)] in
detail:

σ t=3
iα

(F) ≈ s∗t=3
iα

(F)

⎛
⎝1 −

∏
aα∈∂iα

m∗t=3
aα→iα

⎞
⎠ − st=1

iα

∏
aα∈∂iα

mt=1
aα→iα

×
⎛
⎝1 −

∏
aβ∈∂iβ

mt=2
aβ→iβ

⎞
⎠
⎛
⎝1 −

∏
aα∈∂iα

m∗t=3
aα→iα

⎞
⎠,

(46)

where it is possible to replace
∏

aα∈∂iα
mt=1

aα→iα

∏
aα∈∂iα

mt=3
aα→iα

with
∏

aα∈∂iα
mt=3

aα→iα
, which is due to the correlations between

the product of intralayer messages at stage t = 1 and that
at stage t = 3 (see Table I). Therefore, we renew Eq. (46)
as

σ t=3
iα

(F) ≈ σ ∗t=3
iα

− st=1
iα

⎛
⎝1 −

∏
aβ∈∂iβ

mt=2
aβ→iβ

⎞
⎠

×
⎛
⎝ ∏

aα∈∂iα

mt=1
aα→iα

−
∏

aα∈∂iα

m∗t=3
aα→iα

⎞
⎠, (47)

where the second term of Eq. (47) corresponds to deducting
the nodes that incorrectly belong to the GC.

C. Macroscopic evaluation and numerical validation

For the purposes of macroscopic analysis, we denote the
ratio of active nodes at t = 3 based on Eq. (44),

q
∗α(F),t=3
kα,kβ

= q
α,t=1
kα,kβ

+ (
1 − q

α,t=1
kα,kβ

)(
I

β,t=2
kα,kβ

)kβ
. (48)

Substituting q
∗α(F),t=3
kα,kβ

in the self-consistent equation

I
∗α,t=3
lα,lβ

=
∑
kα,kβ

rα(kα,kβ |lα,lβ)

× [
1 − q

∗α(F),t=3
kα,kβ

+ q
∗α(F),t=3
kα,kβ

(
I

∗α,t=3
kα,kβ

)kα
]
, (49)
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FIG. 8. Modified analytical results of the robustness of layer α

versus q for the case where antagonistic networks suffer from RFs
and the setting is case F. Examples of the robustness of layer α at
stage t = 1 are also plotted, which are the results of failure processes
that are completed in the single layer α. Each dot is averaged 50 times,
produced by numerical experiments.

we compute the set of messages I
∗α,t=3
lα ,lβ

, which yields the
fraction of the GC

μ�t=3
α(F) =

∑
kα,kβ

P (kα,kβ)q∗α(F),t=3
kα,kβ

[
1 − (

I
∗α,t=3
kα,kβ

)kα
]

− q
α,t=1
kα,kβ

[
1 − (

I
β,t=2
kα,kβ

)kβ
][(

I
α,t=1
kα,kβ

)kα − (
I

∗α,t=3
kα,kβ

)kα
]

(50)

based on Eq. (47).
Figure 8 shows the size of the GCs in layer α predicted by

Eq. (50) in the case where no degree-degree correlations exist,
which is in excellent agreement with the experimental data.
Similar accuracy was also achieved for the other parameter
sets.

VI. RESULT

A. Influence of degree-degree correlations

Here we argue the influence of interlayer and intralayer
degree-degree correlations on the robustness of each layer,
the specific topologies of which are defined in Sec. IV A.
We narrow the argument to the case F and TAs because the
percolation processes in each layer in case Q can be reduced to
those of a single network and the influence of degree-degree-
correlations on the robustness in RFs is considerably smaller
than that in TAs. In Figs. 9 and 10 we show examples of the
robustness of layer α and the effects of various interlayer and
intralayer degree-degree correlations.

We focus on the effect of degree-degree correlations
on critical (minimum) robustness (μα ≈ 0) and maximum
robustness (μα ≈ 1) of layer α, respectively. The thresh-
olds at which μα vanishes depend on only its intralayer
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FIG. 9. Plot of GC size in layer α versus the initial parameter q for
the case where antagonistic networks suffer from TAs, the remaining
effect of which is case F. The GC size in layer α at stage t = 1 is also
shown, which is the result of the percolation process that is completed
in the single layer α. The intralayer correlations in layer α are fixed
to be positive, e.g., Cα = 0.6, to focus on the effect of intralayer
degree-degree correlations in layer β and interlayer degree-degree
correlations on the robustness of layer α.
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FIG. 10. Plot of GC size in layer α versus the initial parameter
q for the case where antagonistic networks suffer from TAs, the
remaining effect of which is case F. The GC size in layer α at stage
t = 1 is also shown, which is the result of the percolation process
that is completed in a single network. The intralayer correlations
in layer α are fixed to be negative, e.g., Cα = −0.4, to focus on the
effect of intralayer degree-degree correlations in layer β and interlayer
degree-degree correlations on the robustness of layer α.

degree-degree correlations, which are characterized by the
Pearson coefficient Cα . This is because the GC at t = 1
plays the role of the core of the final GC and thus if there
exists no GC at t = 1, no node can belong to the GC
thereafter. Meanwhile, the maximum robustness of layer α

is affected by both intralayer degree-degree correlations and
interlayer degree-degree correlations, the transition point of
which accords with that for critical robustness of layer β.

Let us consider the advantageous conditions for the maxi-
mum robustness of layer α, the parameter example of which
is Cα = 0.6, Cβ = −0.4, and CI = −1 in Fig. 9. Layer α is
more robust against TAs if its degree-degree correlations are
positive. In addition, layer α is more robust if layer β is more
fragile due to antagonistic properties. Layer β is the most
fragile if its intralayer degree-degree correlations are negative
and it suffers from TAs, which are realized in the cases where
interlayer degree-degree correlations are highly negative. In
this case, nodes of higher degree in layer β become inactive
because they connect with nodes of lower degree in layer α that
tend to be active due to TAs in layer α. Considering the above,
it is natural that the maximum robustness of layer α is the
most fragile if the parameter example is Cα = −0.4, Cβ = 0.6,
and CI = 1 in Fig. 10, because each sign of the parameter
is opposite that in the conditions that are advantageous for
layer α.

B. Possible relevance to real-world systems

As for significance to real-world systems, the antagonistic
networks may serve as a model of complex ecological
interactions between endangered species and invaders. Ref-
erences [54,55] report such ecological relationship in the
Amami islands in Japan: Populations of endangered species,
such as the Amami rabbit (Pentalagus furnessi) and the
Amami Ishikawa’s frog (Odorrana splendida) were restored
to almost the original level at the areas where invaders such
as the small Indian mongoose (Herpestes auropunctatus) were
exterminated, whereas few were observed in places where the
invaders were established.

Our analysis shows that if initially damaged nodes can be
reactivated (case F), the GC size is restored to the original level
owing to the antagonistic inhibition to the replica nodes as long
as the fraction of the initial damage is sufficiently small. This
is consistent with the above reports. The endangered species
in the reports have relatively high reproduction rates and short
life cycles, which may fit the conditions of case F. On the other
hand, species such as large mammals and primates have low
reproduction rates and long life cycles and may correspond
to case Q, for which populations of the species cannot be
restored only by the antagonistic interaction. However, our
analysis, in conjunction with Refs. [54,55], implies that, even
in such cases, the combination of increasing the reactivation
rate of endangered species by human-induced methods such as
relocation and extermination of invasive species is an effective
scheme for conserving ecological systems.

VII. SUMMARY

In this paper we developed an analytical methodology
based on the cavity method to study the robustness of duplex
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networks coupled with antagonistic interlinks, considering
intralayer and interlayer degree-degree correlations. We in-
vestigated two scenarios according to whether initially failed
nodes are able to revive (case F) or not (case Q) with the aid of
their replica nodes. In both cases Q and F we showed that the
failure process periodically repeated because of the peculiarity
of the antagonistic property of interlinks and the percolation
transition exhibited continuity.

The oscillation was due to hysteresis of each layer, which
led to the inconsistency between theory and experiment
particularly for case F. Therefore, we introduced a heuristic
treatment for improving the theoretical prediction accuracy,
the utility of which was verified by numerical experiments.

We also argued the most advantageous situations for layer
α in terms of degree-degree correlations employ bimodal
networks. While the minimum robustness of layer α (μα ≈ 0)
was affected from only intralayer degree-degree correlations

in layer α, the maximum robustness of layer α (μα ≈ 1) was
influenced from various degree-degree correlations; the most
robust situations are positive intralayer degree-degree cor-
relations in layer α, negative intralayer degree-degree cor-
relations in layer β, and negative interlayer degree-degree
correlations. As for significance to real-world systems, a
possible relevance to ecological systems that are composed
of endangered and invasive species was mentioned.

Future works should include the construction of a model
and an analytical framework that works with more realistic
settings in the network approach.
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APPENDIX: RECONFIRMING THE PERIODICITY BY THE HEURISTIC

Although we already made sure that the percolation processes oscillate in both cases Q and F in Sec. II A, here we reconfirm
these by the heuristic in Sec. V B.

1. Case Q

The active variable of each node at stage t = 3 is provided as

st=3
iα

(Q) = st=1
iα

mt=3
p→iα

= (
st=1
iα

)2 + st=1
iα

(
1 − st=1

iα

) ∏
aβ∈∂iβ

mt=2
aβ→iβ

− (
st=1
iα

)2 ∏
aα∈∂iα

mt=1
aα→iα

⎛
⎝1 −

∏
aβ∈∂iβ

mt=2
aβ→iβ

⎞
⎠

= st=1
iα

⎡
⎣1 −

∏
aα∈∂iα

mt=1
aα→iα

⎛
⎝1 −

∏
aβ∈∂iβ

mt=2
aβ→iβ

⎞
⎠

⎤
⎦. (A1)

Substituting mt=1
aα→iα

= 0 in Eq. (A1), we obtain s∗t=3
iα

(Q) = st=1
iα

, which also shows that m∗t=3
aα→iα

is equivalent to mt=1
aα→iα

. Using
s∗t=3
iα

(Q) and m∗t=3
aα→iα

, we obtain the result on the GC size, namely,

σ t=3
iα

≈ st=3
iα

(Q)

⎛
⎝1 −

∏
aα∈∂iα

m∗t=3
aα→iα

⎞
⎠ = st=1

iα

⎛
⎝1 −

∏
aα∈∂iα

mt=1
aα→iα

⎞
⎠

2

+
∏

aα∈∂iα

mt=1
aα→iα

⎛
⎝1 −

∏
aα∈∂iα

mt=1
aα→iα

⎞
⎠ ∏

aβ∈∂iβ

mt=2
aβ→iβ

= st=1
iα

⎛
⎝1 −

∏
aα∈∂iα

mt=1
aα→iα

⎞
⎠ = σ t=1

iα
. (A2)

2. Case F

Substituting Eq. (43) into Eq. (24), we describe st=4
iβ

(F) in detail,

st=4
iβ

(F) = 1 − s∗t=3
iα

(F)

⎛
⎝1 −

∏
aα∈∂iα

mt=3
aα→iα

⎞
⎠ + st=1

iα

⎛
⎝ ∏

aα∈∂iα

mt=1
aα→iα

−
∏

aα∈∂iα

mt=3
aα→iα

⎞
⎠

⎛
⎝1 −

∏
aβ∈∂iβ

mt=2
aβ→iβ

⎞
⎠. (A3)

Note that
∏

aα∈∂iα
mt=1

aα→iα

∏
aα∈∂iα

mt=3
aα→iα

is replaced with
∏

aα∈∂iα
mt=3

aα→iα
because of Table I. Supposing that

∏
aβ∈∂iβ

mt=2
aβ→iβ

vanishes in Eq. (A3), which also replaces s∗t=3
iα

with st=1
iα

because of Eq. (44), we define

s∗t=4
iβ

(F) ≡ 1 − st=1
iα

⎛
⎝1 −

∏
aα∈∂iα

mt=3
aα→iα

⎞
⎠ + st=1

iα

⎛
⎝ ∏

aα∈∂iα

mt=1
aα→iα

−
∏

aα∈∂iα

mt=3
aα→iα

⎞
⎠ = 1 − st=1

iα
+ st=1

iα

∏
aα∈∂iα

mt=1
aα→iα

= st=2
iβ

, (A4)
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where the last equal sign is because of Eq. (13). Employing s∗t=4
iβ

(F) instead of st=2
iβ

in Eqs. (14) and (15), we derive the provisional

message at t = 4 and m∗t=4
aβ→iβ

, which completely accords with mt=2
aβ→iβ

because of Eq. (A4).

The label of the GC at t = 4 is derived using the original interlayer message st=4
iβ

(F) and the provisional message m∗t=4
aβ→iβ

,
namely,

σ t=4
iβ

≈ st=4
iβ

(F)

⎛
⎝1 −

∏
aβ∈∂iβ

m∗t=4
aβ→iβ

⎞
⎠ = st=4

iβ
(F)

⎛
⎝1 −

∏
aβ∈∂iβ

mt=2
aβ→iβ

⎞
⎠ = st=2

iα

⎛
⎝1 −

∏
aβ∈∂iβ

mt=2
aβ→iβ

⎞
⎠

− (
1 − st=1

iα

)
⎛
⎝1 −

∏
aα∈∂iα

mt=3
aα→iα

⎞
⎠ ∏

aβ∈∂iβ

mt=2
aβ→iβ

⎛
⎝1 −

∏
aβ∈∂iβ

mt=2
aβ→iβ

⎞
⎠ = σ t=2

iβ
, (A5)

where the last equal sign is derived because
∏

aβ∈∂iβ
mt=2

aβ→iβ
(1 − ∏

aβ∈∂iβ
mt=2

aβ→iβ
) always vanishes. We also note that the label of

the provisional GC, which is defined as σ ∗t=4
iβ

≡ s∗t=4
iβ

(F)(1 − ∏
aβ∈∂iβ

m∗t=4
aβ→iβ

) = σ t=2
iβ

, also correctly evaluates the GC at t = 4,

because there exist no nodes that incorrectly belong to the GC at t = 4 even if we set s∗t=4
iβ

(F) instead of st=4
iβ

(F).
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