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Swarming behavior continues to be a subject of immense interest because of its centrality in many naturally
occurring systems in physics and biology, as well as its importance in applications such as robotics. Here we
examine the effects on swarm pattern formation from delayed communication and topological heterogeneity,
and in particular, the inclusion of a relatively small number of highly connected nodes, or “motherships,” in a
swarm’s communication network. We find generalized forms of basic patterns for networks with general degree
distributions, and a variety of dynamic behaviors including parameter regions with multistability and hybrid
motions in bimodal networks. The latter is an interesting example of how heterogeneous networks can have
dynamics that is a mix of different states in homogeneous networks, where high- and low-degree nodes have
distinct behavior simultaneously.
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I. INTRODUCTION

Much attention has been given to the study of multiagent
swarms that can self-organize and form complex spatiotem-
poral patterns from very basic rules governing individual dy-
namics, in the manner of phase transitions in statistical physics
[1–3]. This is motivated by many fascinating phenomena such
as schooling fish, flocking birds, swarming locusts, and colo-
nizing bacteria [4–6]. Also of great interest is the application of
principles underlying such behaviors to the design of networks
of autonomous robots and mobile sensors, with the aim of
producing scalable and robust swarms that can perform com-
plicated tasks without constant human intervention [7–10].

Several recent works in swarm pattern formation have
focused on time-delay effects, which can produce new
patterns and bistability [11–13]. Delays model the finite time
required for agents to send and process information in real
systems. They are ubiquitous in both natural and engineered
settings, and often can be comparable to other relevant time
scales. Salient examples of natural systems where delays
can significantly affect the dynamical behaviors include
bat flights, predator-prey population dynamics, and blood
cell production [14–16]. Significant delays can also occur
in robotic swarms communicating over wireless networks
with low bandwidth—affecting swarm stability and task
performance [17–20].

Most studies of multiagent robotic systems with time
delay have assumed global interactions or homogeneous
topology [11,13,21]. In general, the effects of complex network
structure on swarm behavior are much less explored, partic-
ularly with time-delayed interactions, even though topology
is known to strongly influence many processes and produce
interesting new dynamics [1,22–24]. Here, we focus on delay-
coupled swarms interacting through heterogeneous networks
that have a relatively small fraction of highly connected nodes,
or “motherships.” Such nodes can mimic the influence of
leaders in social networks or the insertion of highly interacting
controllers into a network of autonomous mobile robots—
intended to alter the motion to a different form.

To understand dynamic pattern formation in swarms with
delay and heterogeneity, we consider a general model for N

interacting, self-propelled agents [25]:

r̈i (t) = (
1 − ṙ2

i

)
ṙi − J

N∑
j=1

Aij (ri (t),r j (t − τ ))∇ri U (ri (t)

− r j (t − τ )), (1)

where ri is the position of the ith agent in two dimensions,
dots denote time derivatives, Aij is the connection matrix, J

is the coupling strength between neighbors in the network,
and τ is the characteristic time delay between agent inter-
actions [12,21]. For simplicity and analytic tractability, we
assume that the mutual forces are springlike: ∇ri U (ri (t) −
r j (t − τ )) = ri (t) − r j (t − τ ), though sufficiently small re-
pulsive terms do not alter the dynamics [11].

In this work, we examine the behaviors for Eq. (1) given
simple heterogeneous topology. In addition to generalizing
the patterns from homogeneous networks to heterogeneous
networks with a specified degree distribution, we show
that heterogeneity can produce hybrid motions, where
different parts of the network have different collective
dynamics depending on the degree of local connectivity. The
production of states that are mixes of distinct behaviors for
homogeneous networks is an interesting feature of nonlinear
processes occurring on heterogeneous networks and is seen
in other systems, e.g., coupled oscillators [24], though other
mechanisms for swarm splitting are known [26,27]. Hybrid
behaviors are practically interesting in this context as well
because they offer the possibility for synthetic swarms to
perform multiple tasks simultaneously.

II. PATTERNS AND DYNAMICS

In this paper, we study dynamic pattern formation in static
networks satisfying predefined degree distributions. We first
describe how such a network can be constructed. Let pk denote
the network degree distribution, where the degree, k, is the
number of links of a node, and pk specifies the fraction of nodes
in the network with degree k. Networks can be constructed
from a prescribed pk with the configuration model (CM) by
first generating N nodes, each with a number of link “stubs”
drawn from pk , and then connecting pairs of stubs to form
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links, chosen uniformly at random [28]. For simplicity, all
links are bidirectional and unweighted, where the connection
matrix Aij = 1 if nodes i and j are linked, and zero otherwise.

Primarily, we focus on bimodal distributions, as a simple
construction for networks with both weakly and strongly
connected nodes, where pk has a simple form:

pk =
⎧⎨
⎩

p0, if k = k0,

1 − p0, if k = K,

0, otherwise,
(2)

with k0 � K . We choose p0 close to 1 so that agents with
large degree K occupy a small portion of the network,
and are called motherships, while most nodes have degree
k0 [29,30]. However, many results are generalized for any pk ,
in which case equations are given in terms of general k and pk

(additional example in Sec. III).
Given the stated assumptions, a variety of dynamical

behaviors are possible depending on the values of coupling
strength, J , and delay, τ . We first provide brief descriptions of
the basic swarming patterns in Sec. II A, and analyze their
dynamics in more detail in Sec. II B with comparisons to
simulations.

A. Dynamical behaviors

Before analyzing the dynamics in detail, it is useful to
discuss how different model parameters affect the swarm
behavior. In the limit J → 0, all agents are independent and
self-propelling, and will travel at unit speed in their initial
direction of motion. For relatively small values of J and
τ , the propulsion force dominates, and speeds remain near
unity. If the swarm has nearly uniform initial conditions, then
the coupling will tend to align the directions of motion and
favor coherent velocities. This is known as the translating
state—shown in Fig. 1(a), in which we can see that the entire
swarm moves together in the direction of the large arrow,
while agents trace out similar orbits (see Sec. II B 2). On the
other hand, if the initial directions are random, then the swarm
can organize into a state with no coherent velocity, where
propulsion keeps the agents’ speeds at unity, but the average
directions cancel. This is known as the ring state, which can be
seen in Fig. 1(b). For the bimodal network case shown, we see
that agents travel in one of four circular orbits with example
directions given by the small arrows.

In general, if J is large such that the spring force is
comparable to the self-propulsion, then the agents tend to
have coherent positions and velocities—moving together with
the swarm’s centroid. Moreover, if τ is also large, then the
motion must remain confined—any large difference between
the current and delayed positions would result in a large spring
force [Eq. (1)]. This typically leads to coherent rotation, known
as the rotating state, which is shown in Fig. 1(d). Together
the three states comprise the known dynamical modes for
swarming networks with delay [11,12]. Phase diagrams are
shown in Fig. 2 for bimodal networks. Interestingly, several
parameter regions contain three stable states. This is another
unique feature of swarms with heterogeneous networks.

If the underlying network is very heterogeneous, however,
it is possible that different parts of the network may converge
to different dynamical modes. For example, for bimodal

networks, high- and low-degree nodes can split into a state
that is a composite of ring and rotating motions—mixing the
behaviors in Fig. 1(b) and 1(d), respectively. For example, we
find that each degree class’s order parameter (e.g., its centroid)
has dynamics analogous to the distinct states [24]. Therefore,
we call this a hybrid state, which is shown in Fig. 1(c). Detailed
descriptions of each state are given in Sec. II B.

B. Analysis

In order to understand the patterns described in Sec. II A,
it is useful to treat nodes with the same degree as topo-
logically indistinguishable. Moreover, we can approximate
Aij with its expectation value in an ensemble of networks,
Aij ≈ 〈Aij 〉, which for uncorrelated networks takes the form
〈Aij 〉 = kikj /(N〈k〉) in the limit of large N . This is known
as the annealed network approximation, and represents a
mean-field theory for heterogeneous networks—allowing for
qualitatively accurate descriptions of dynamical processes on
such networks [23]. Though analyzing the motion directly
from A would result in quantitative improvement, especially
in networks with low average degree, the simple annealed
approximation is able to capture much of the behavior [33].

Let Rk denote the centroid for each degree class:

Rk =
∑

i|ki=k

r i

/
Npk. (3)

Given the annealed form for A, the equations of motion can
be expressed in terms of Rk as

r̈ i = (1− | ṙ i |2)ṙ i − Jki

(
r i −

∑
k

kpk

〈k〉 Rk(t − τ )

)
, (4)

suggesting Eq. (3) as a useful order parameter to characterize
the net motion of nodes with degree k. Comparisons between
similar patterns of CM and annealed bimodal networks are
shown in the top and bottom rows of Fig. 1, respectively. The
different motions are described in more detail below.

1. Ring state

For relatively small time delays the ring state is a stable
swarm motion pattern. In the ring state, the agents form
concentric rotating rings about a fixed center, such that the
swarm has no net motion, Rk =0. The radius and angular
velocity of the rings depends on the degrees of the constituent
agents, as we can find by substituting the ansatz: r i = (xi,yi) =
ρi[ cos(ωit + φi), sin(ωit + φi)] and Rk =0 into Eq. (4):

ρi = 1√
Jki

, ωi = ±
√

Jki. (5)

This shows that the ring state is composed of pairs of counter-
rotating currents for each degree class with unit speed and with
radii and frequencies decreasing and increasing with the square
root of the agent degree, respectively [as shown in Fig. 1(b)].
The dependence on degree generalizes homogeneous network
results, and in particular, predicts a disordered state with
large amplitude and frequency variation for networks with
broad pk , such as multimodal or power-law distributions (see
Sec. III) [21]. A comparison between Eq. (5) predictions and
simulation results for bimodal networks are shown in Fig. 3 as
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FIG. 1. Patterns for swarms with time-delayed interactions and an underlying network with a small fraction of highly connected nodes, or
“motherships.” CM and annealed network patterns are shown on the top and bottom rows, respectively, for bimodal networks with p0 = 0.95,
k0 = 5 (blue), K = 50 (red), and N = 500. Arrows indicate the direction of motion. (a) Translating (b) ring (c) hybrid (d) rotating patterns.

a function of J . Error bars correspond to the standard deviation
for each degree class.

2. Translating state

When the time delay is relatively small, many initial
conditions converge to the translating state, in which each
degree-class’s centroid, Eq. (3), travels at a constant, nonzero
velocity. Moreover, for networks with multiple degree classes
each centroid is separated in space by some constant displace-
ment from the global center of mass, dk : Rk(t) = V t + dk,
with a velocity V . Individual nodes in each degree-class trace
out periodic, “bow-tie”-like orbits, as shown in Fig. 1(a), which
is another unique feature of the heterogeneous network pattern.

We can numerically compute the speed and shape of the
orbits by inserting the ansatz

∑
k

kpk

〈k〉 Rk(t) = V t into Eq. (4)
and putting all particles in the comoving frame, z = r − V t

(for simplicity, propagation is typically assumed along the
line y = x, or V = [V t/

√
2,V t/

√
2 ]). This gives a set of

τ τ

FIG. 2. Phase diagram for bimodal networks found by adiabati-
cally changing J and τ for each pattern until it loses stability [31].
(a) Heterogeneous network: (i) translating, ring, and hybrid states,
(ii) ring state, (iii) ring and hybrid states, (iv) hybrid states, and
(v) rotating states [32], where p0 = 0.9, K = 60, k0 = 3, and N =
300. The red circle marks a degenerate-Hopf bifurcation. (b) Less
heterogeneous network: (i′) translating, ring, and hybrid states, (ii′)
ring and hybrid states, (iii′) ring, hybrid, and rotating states, (iv′)
hybrid states, (v′) hybrid and rotating states, and (vi′) rotating states,
where p0 = 0.95, K = 25, k0 = 5, and N = 1000.

single particle ODEs for each degree class, parametrized by
the swarm’s collective speed:

z̈k = (1− | żk + V |2)( żk + V ) − Jk(Vτ + zk). (6)

In practice, for random initial conditions, Eq. (6) has
a family of stable “bow-tie” solutions, with a k-dependent
period, Tk: zk(t,Tk; V ). These solutions can be used to
condition the speed if combined with the self-consistent
criterion,

∑
k

kpk

〈k〉 Rk(t) = V t or
∑

k
kpk

〈k〉 dk =0, by assuming
that the swarm density for each degree class is uniform along
the orbits, and therefore, replacing dk (the average position
from a sum over particles) with a time average of zk(t,Tk; V ):

F(V ) =
∑

k

kpk

〈k〉
∫ Tk

0

zk(t,Tk; V )dt

Tk

= 0. (7)

For instance, the prediction curve shown in Fig. 4 was found
by generating solutions to Eq. (6), zk(t,Tk; V ), from an initial
guess for V , computing the integral in Eq. (7), and updating
the guess with a simple Newton method.

Interestingly, we find that the periods are approximately
equal to the ring state values, Tk ≈ 2π/

√
Jk, as shown in the

power spectrum of Fourier modes in Fig. 6(a). This indicates

FIG. 3. Ring state rotation radii (a) and frequencies (b) for sim-
ulated CM (green) and annealed (blue) bimodal networks compared
to predictions [red, Eq. (5)]: τ =0.02, p0 =0.9, k0 =3, K =60, and
N =300. Parameters correspond to regions beneath the red line in
Fig. 2(a).
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FIG. 4. Translating state centroid speeds (a) and displacements
(b) for simulated CM (green) and annealed (blue) bimodal networks
compared to predictions [red, Eq. (7)] from region (i) in Fig. 2(a):
J =0.333, p0 =0.9, k0 =3, K =60, and N =300.

that even though networks have coherent average velocities in
the translating state, the individual node dynamics will vary
significantly for broad pk .

3. Rotating states

As explained in Sec. II A, for sufficiently large J and τ , all
nodes collapse to their respective centroids, such that r i|ki=k ≈
Rk:

R̈k = (1− | Ṙk |2)Ṙk + Jk

( ∑
k′

k′pk′

〈k〉 Rk′(t − τ ) − Rk

)
,

(8)

with confined rotations about a common center. In general,
many dynamical states can satisfy Eq. (8). However, simula-
tions from broad initial conditions with large J and τ typically
converge to a simple frequency synchronized rotation, with
amplitudes and phases that vary with degree. Substituting
the ansatz Rk(t) = ak[cos (ωRt + αk), sin (ωRt + αk)] into
Eq. (8), we find that the synchronized rotation must satisfy∑

k

kpk

〈k〉 ak cos (αk − ωRτ )

= ak

J k

[(
Jk − ω2

R

)
cos αk + ωR

(
1 − a2

kω
2
R

)
sin αk

]
, (9)

∑
k

kpk

〈k〉 ak sin (αk − ωRτ )

= ak

J k

[(
Jk − ω2

R

)
sin αk − ωR

(
1 − a2

kω
2
R

)
cos αk

]
, (10)

which generalizes a similar result for the special case of an
Erdős-Rényi network, but for arbitrary pk (see Fig. 5), and
predicts a broad range of amplitudes and phases for very
heterogeneous networks, such as multimodal or power law
pk (see Sec. III) [21]. In general, Eqs. (9) and (10) must be
solved numerically and have many solutions depending on the
parameters, though most are found to be unstable.

FIG. 5. Rotating state phase differences for simulated bimodal
CM (green) and annealed network (blue) swarms compared to
predictions [red, Eqs. (9) and (10)]: J = 0.8, p0 =0.95, k0 =5,
K =25, and N =1000. Parameters correspond to regions above the
magenta line in Fig. 2(b).

Additionally, we find that such frequency synchronized
rotations emerge through a set of Hopf bifurcations of rj = 0,
where perturbations with uniform amplitudes and k-dependent
phases, rj = ε e

i(αkj
+ωRt), are dynamically neutral to linear

order in ε with ωR 
= 0. The general pk-dependent form of the
Hopf bifurcation for synchronized rotations can be found by
taking ak → a → 0 in Eqs. (9) and (10), solving for cos αk

and sin αk , multiplying by kpk/〈k〉, summing over k, and
eliminating the k-independent constants

∑
k

kpk

〈k〉 cos αk and∑
k

kpk

〈k〉 sin αk , giving

tan(ωRτ ) = ωR

J 〈k〉 − ω2
R

, (11)

∣∣∣∣∑
k

kpk

〈k〉 eiαk

∣∣∣∣
2

=
√(

1 − ω2
R

J 〈k〉
)2

+
(

ωR

J 〈k〉
)2

. (12)

In general, Eqs. (11) and (12) specify existence conditions
for synchronized rotations, but not necessarily stability, and
therefore only bound the region above the magenta line in
Fig. 2(b), for example.

4. Hybrid states

As hinted in Sec. II A and shown in Fig. 2, for both
large and small delays hybrid motions can be stable, in
which high-degree nodes collapse to their centroid and
rotate approximately uniformly with a constant radius and
frequency, while weakly driving low-degree nodes around
a motion that is similar to the ring state. By neglecting
the small coherence from low-degree nodes and looking
for solutions of Eq. (4): Rk0 =0 and r i|ki=K = RK (t) =
R(h)[cos(ω(h)t), sin(ω(h)t)], we find the hybrid rotation satisfies

ω(h)2 = JK

(
1 − K(1 − p0)

〈k〉 cos ω(h)τ

)
, (13)

ω(h)(1 − R(h)2
ω(h)2

) = JK2(1 − p0)

〈k〉 sin ω(h)τ , (14)
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FIG. 6. Fourier (ω) power spectra of low-degree nodes for
simulated CM (green) and annealed (blue) bimodal networks.
(a) Translating state spectrum for τ = 0.05 compared to predictions
[red, Eq. (7)]. (b) Hybrid state spectrum for τ = 0.65 compared to
predictions [red, Eq. (15)]. Large peaks in (a) and (b) correspond to
the ring frequency. J =0.333, p0 =0.9, k0 =3, K =60, and N =300.

where the two centroids have dynamics analogous to the ring
and rotating states simultaneously. Like the rotating state,
many solutions are possible to Eqs. (13) and (14) in general,
depending on the parameter values, including multiple stable
branches. This can lead to discontinuous jumps between hybrid
states with different frequencies (as shown in Fig. 7).

On the other hand, the low-degree node dynamics can be
found by substituting the mothership rotation from Eqs. (13)
and (14) into Eq. (4). This gives a four-dimensional set of
single-particle ODEs to be integrated:

r̈ − (1− | ṙ |2)ṙ + Jk0r = Jk0
K(1 − p0)

〈k〉 R(h)(t − τ ). (15)

The expected form of the dynamics—a ringlike motion driven
by a periodic force—is found by examining the left and
right hand sides of Eq. (15). In particular, when RK → 0,
the equations of motion for a ring state are recovered. Both
dynamical signatures can be seen clearly in the power spectrum
of Fourier modes of Eq. (15), which has a large peak at the ring
frequency, ωi , and a small peak at the hybrid frequency, ω(h).
Comparisons between the predicted and simulated dynamics
for the hybrid state are shown in Figs. 6(b) and Fig. 7. In
general, two rotation directions are possible simultaneously
depending on the initial conditions for Eq. (15)—similar to
the ring state.

In addition, we can find approximately where hybrid states
emerge, and thus bound their stability regions in Fig. 2,

FIG. 7. Mothership rotation radius (a) and frequency (b) in the
hybrid state for simulated CM (green) and annealed (blue) bimodal
networks compared to predictions [red, Eqs. (13) and (14)]: J =
0.333, p0 =0.9, k0 =3, K =60, and N =300. Parameters correspond
to regions (iii) and (iv) in Fig. 2(a).

by taking R(h) → 0 in Eq. (14). This is coincident with
another set of Hopf bifurcations of rj = 0 (in addition to
those corresponding to rotating states), where perturbations
rj = ε e(iω(h)t)δkj ,K are dynamically neutral to linear order in
ε with ω(h) 
= 0. Eliminating τ in Eqs. (13) and (14) gives a
polynomial expression for the bifurcation frequency, ω

(h)
∗ ,

(
1 − ω

(h)
∗

2

JK

)2

+
(

ω
(h)
∗

JK

)2

=
(

K(1 − p0)

〈k〉
)2

, (16)

that can be combined with Eq. (13) to predict the black curves
in Fig. 2(a).

Interestingly, Eq. (16) has degenerate solutions for ω
(h)
∗ , if

1 = 4JK

[
1 − JK

(
K(1 − p0)

〈k〉
)2]

, (17)

corresponding to degenerate-Hopf bifurcations, shown in
Fig. 2, where the Hopf bifurcations meet.

III. DISCUSSION

For many swarm models in biology, emergent behavior due
to the coupling of mobile agents includes a basis of dynamical
patterns, such as translation and ring dynamics about a
stationary center of mass [25]. Moreover, it is known that time
delays in the agent interactions can produce a rotating state in
which a swarm becomes highly aligned and localized [12,13].
The current research builds on the previous results for
homogeneous networks, by generalizing the network topology.
In particular, in contrast to all-to-all coupling, we consider
communication networks with a finite degree for all agents
chosen from a given distribution. One interesting distribution
we considered in detail was bimodal, in which the network was
constructed with a few high-degree nodes and a large number
of low-degree nodes. The topology is a cross between a star
network in which all agents communicate through a single
mothership and all-to-all communication with no special
nodes. For the bimodal topology, we described hybrid patterns,
both numerically and analytically, consisting of a nonlinear
combination of basis modes from homogeneous networks. In
particular, we found a state where high- and low-degree nodes
have simultaneous dynamics that are analogous to the rotating
and ring states, respectively. Though relatively simple in this
case, we suggest that hybrid behaviors may be a general feature
of nonlinear processes on networks with highly heterogeneous
communication topologies, where the local order parameters
for parts of a network have qualitative differences in their
dynamics, corresponding to separate states in homogeneous
networks.

In addition, we demonstrated how to generalize several
known patterns for networks with general degree distributions,
including the translating, ring, and rotating states. This
was done by applying a mean-field approximation scheme,
which enabled us to develop lower-dimensional analytic and
numerical procedures for capturing the swarming patterns,
such as the amplitudes, phases, and frequencies of rotation,
and the velocities of translating states. Similar techniques may
be generally useful for other nonlinear problems on networks
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with delay. Predictions were compared to both quenched and
annealed network simulations with good agreement. We note
that, in addition to those states predicted here, there exist
several other complex states which appear as a result of the
infinite dimensional dynamics of the delay coupled network.
The full unfolding of these states is beyond the scope of this
work, but is of interest when considering basins of attraction
of the states discussed.

Since we can port our model to a real experimental
workspace, as a next step we plan to realize the pre-
dicted patterns in both two-wheeled and quad-rotor robotic
swarms [21]. Further experiments will lead to interesting
questions, such as how to design parametric controls that can
steer a swarm among targeted behaviors in real environments
by exploiting topology. Since fluctuations and uncertainty are
an inevitable feature of most environments, it will be necessary
to understand the effects of noise on swarming dynamics,
and how different networks respond to fluctuations [13,25,34].
Controlling networks with stochastic dynamics is a rich area
for practical and theoretical research [30,35].
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FIG. 8. Spatial patterns for a power-law network in the ring
(a) and rotating (b) states. (a) Ring state where clockwise and
counterclockwise rotation are shown with red circles and squares,
respectively, and with colors darkening with increasing k [legend in
(b)]. Predictions from Eq. (5) are shown in blue for degree classes
in multiples of 5, i.e., k = 10,15, . . . ,100. Simulation parameters are
N = 1000, J = 0.15, and τ = 1.5. (b) Rotating state with the same
legend as (a). Prediction from Eqs. (9) and (10) are shown in blue for
all k. Simulation parameters are N = 1000, J = 0.15, and τ = 4.0.

APPENDIX

The above comparisons between mean-field predictions and
network simulations focused on bimodal networks for clarity,
though many results were stated for general distributions.
As an example, we show a CM network with a truncated
power-law degree distribution, pk = k−2.5/

∑100
k′=10 k′−2.5, in

the ring and rotating states in Fig. 8. A similar comparison can
be done for the translating state, and there is some numerical
evidence for the existence of hybrid motion, but a more
complete analysis remains for future work.
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