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Multiplex networks describe a large variety of complex systems, including infrastructures, transportation
networks, and biological systems. Most of these networks feature a significant link overlap. It is therefore of
particular importance to characterize the mutually connected giant component in these networks. Here we provide
a message passing theory for characterizing the percolation transition in multiplex networks with link overlap
and an arbitrary number of layers M . Specifically we propose and compare two message passing algorithms
that generalize the algorithm widely used to study the percolation transition in multiplex networks without
link overlap. The first algorithm describes a directed percolation transition and admits an epidemic spreading
interpretation. The second algorithm describes the emergence of the mutually connected giant component, that
is the percolation transition, but does not preserve the epidemic spreading interpretation. We obtain the phase
diagrams for the percolation and directed percolation transition in simple representative cases. We demonstrate
that for the same multiplex network structure, in which the directed percolation transition has nontrivial tricritical
points, the percolation transition has a discontinuous phase transition, with the exception of the trivial case in
which all the layers completely overlap.
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I. INTRODUCTION

Multilayer networks [1–3] describe complex systems
formed by different interacting networks. Examples of mul-
tilayer networks are ubiquitous, ranging from infrastructures
and transportation networks to cellular and brain networks
[4–10]. Characterizing the robustness of multilayer networks
is important for predicting the response to damage of infras-
tructures, transportation networks, and biological networks.
In multilayer networks, nodes from different layers are often
interdependent. The interdependence between nodes implies
that a node is damaged if its interdependent nodes are
damaged. Recently, a generalized percolation process has been
proposed to study the robustness of multilayer networks in
the presence of interdependencies [11–13]. This model allows
us to understand and to control the fragility of interconnected
infrastructures. It also enables us to describe possible scenarios
for generalized percolation processes.

Percolation on single random (locally treelike) networks
can be treated with tools exploiting the locally treelike
approximation [14] familiar to statistical mechanics and, alter-
natively, with message passing algorithms [15–17]. Notably,
the challenge of going beyond the treelike approximations has
been addressed in complex networks either by considering
percolation on self-similar networks [18] or, more recently, by
modifying and generalizing message passing algorithms [19].

In single networks, the percolation transition, leading to the
emergence of the giant connected component in a network,
is a continuous phase transition. A generalization of the
giant connected component for multilayer networks with

interdependencies between the nodes is called a mutually
connected giant component (MCGC) [11–13]. As the fraction
of damaged nodes increases, a discontinuous, hybrid phase
transition occurs, after which the MCGS emerges, and the
response of the system to perturbation is characterized by
large avalanches of failure events that propagate back and forth
between different layers [11]. Interestingly, the hybrid phase
transition combines a discontinuity and a critical singularity.
The nature of this phase transition is a clear sign that multilayer
networks with interdependencies display a significant fragility
with respect to random damage. Several other generalized
percolation problems on multiplex networks have been also
proposed, including competition between the layers [20,21],
weak percolation [22,23], generalized k-core percolation [24],
percolation on directed multiplex networks [25], spanning
connectivity [26], and bond percolation [27].

The emergence of the MCGC has been studied on a variety
of multilayer structures including multiplex networks [11–
13,28–32] and networks of networks [33–35]. Networks
of networks are multilayer networks formed by different
networks (layers), where the nodes of different networks might
be related by interdependencies. The percolation transition in
these networks is significantly affected by the way the links
implying interdependencies are placed, and, moreover, instead
of single, there may be multiple transitions [34,35].

Multiplex networks describe a large variety of complex
systems and constitute a well-controlled setting to study
the interplay between structure and dynamics in multilayer
networks. They are formed by a set of N nodes interacting
via M different layers. Each node has a replica node in each
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layer, and each layer is a distinct network for the replica nodes
in that layer. The interdependencies in multiplex networks
are usually placed between the replica nodes from differ-
ent layers. The percolation phase transition describing the
emergence of the MCGC in multilayer networks, with layers
formed by random networks with given degree distributions,
has been fully characterized as a discontinuous and hybrid
transition [11,12]. The phase transition remains hybrid and
discontinuous in the presence of correlations in the degrees of
replica nodes [28] but can become a continuous in the case of
partial interdependence [29–31] or if some nodes are not active
(not connected) in each layer [10,32]. Interestingly, these
results can be obtained using a locally treelike approximation,
or equivalently, a message passing algorithm that admits an
epidemic spreading interpretation [13,36].

Numerous multilayer networks have a significant link
overlap [4,7,9,37], which explains the need to explore the
percolation transition on this type of correlated multilayer
structures [38]. Recently, two approaches were used to de-
scribe the transition in duplex networks (i.e.,, networks formed
by M = 2 layers) with link overlap. The first approach consists
of a coarse-grained description of the multiplex network in
terms of supernodes [39,40]. The second approach is instead
based only on a traditional local treelike approximation [41].
Interestingly, it turns out that a message passing algorithm that
admits an epidemic spreading interpretation [42,43], inspired
by the algorithm originally proposed for multiplex network
without link overlap, does not capture the MCGC [39–41],
but instead characterizes a new type of directed percolation.
This process can be interpreted as a variation of a bootstrap
percolation dynamics [22,44] or as the viability percolation
problem [40] in the limit in which the resource nodes are
vanishing. Here we call this dynamical process directed per-
colation and its order parameter directed mutually connected
giant component (DMCGC) to distinguish it from the MCGC.
The choice of this terminology is due to the fact that we want to
highlight the directed nature of the underlying process, and the
connection to epidemic spreading [45] processes; nevertheless,
we want to clarify that the links of the underlying multiplex
network do not have an intrinsic directionality.

Our unified approach to percolation and directed perco-
lation is directly applicable to multiplex network with link
overlap and arbitrary number of layers M . This approach
is used to fully characterize and compare the percolation
transitions and the directed percolation transitions on ensem-
bles of random multiplex networks. We show that while the
directed percolation transition in multiplex networks with link
overlap can have nontrivial tricritical points, the percolation
transition on this type of multiplex networks is always hybrid
and discontinuous with the sole trivial exception in that all the
layers of a multiplex network completely overlap with each
other.

Message passing algorithms are attracting increasing atten-
tion in network theory. They were used to characterize the
structure of single networks [43] or epidemic spreading in
temporal multislices networks [46], and to detect the driver
nodes controlling a network [47]. This work shows that a new
class of message passing algorithms can be used to investigate
the structure of multiplex networks with link overlap, allowing

us to characterize both the MCGC and DMCGC in locally
treelike networks.

Interestingly, the DMCGC is related to directed cooperative
epidemic spreading in multiplex networks, while the MCGC
characterizes the response of the interdependent multiplex
network structure to external damage.

The DMCGC model could provide therefore an ideal setting
to extend models of cooperative contagion studied on single
networks [48] to multilayer networks.

In Secs. II and III we recall the configuration model for
multiplex networks and the definition of mutually connected
giant component (MCGC). In Sec. IV we report the message
passing theory for calculating the MCGC in multiplex net-
works without link overlap, using the formalism of Ref. [37].
In Sec. V we present the multilink definitions in the case of link
overlap, using the formalism of Ref. [42]. In Sec. VI, we clarify
the extension of the message passing approach to multiplex
networks with link overlap. We distinguish between two
possible extensions, leading to a directed mutually connected
giant component (DMCGC) and a mutually connected giant
component (MCGC), respectively. In Sec. VII we briefly
describe the results obtained with DMCGC. The main novel
contribution of this paper is in Sec. VIII, where we define the
message passing approach for MCGC in the presence of link
overlap, and present results for a few particular cases. Finally,
Sec. IX reports our conclusions.

II. MULTIPLEX NETWORKS WITHOUT LINK OVERLAP

A multiplex network �G = (G1,G2, . . . GM ) is formed by a
set of N nodes i = 1,2, . . . ,N interacting through M layers
with each layer α = 1,2, . . . ,M formed by a distinct network
Gα . Every node i has M replica nodes, one for each layer
α, indicating the node identity in layer α. Replica nodes are
connected pairwise by interlinks. Figure 1 shows an example
of a multiplex network with M = 3 layers. A network Gα in
layer α connects the N replica nodes in this layer. This network
is fully described by the adjacency matrix a[α]. The matrix
element a

[α]
ij = 0,1 of the adjacency matrix a[α] indicates

FIG. 1. A multiplex network with M = 3 layers and link overlap
is shown in panel (a). In panel (b) the different types of nontrivial
multilinks connecting the nodes are listed.
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whether node i is connected to node j in layer α (a[α]
ij = 1) or

not (a[α]
ij = 0).

In a multiplex network, we define the total overlap
O[α,α′] [37] of the links in layer α and layer α′ as the total
number of pairs of nodes connected both in layer α and layer
α′; i.e.,

O[α,α′] =
∑
i,j

a
[α]
ij a

[α′]
ij . (1)

Additionally we define [37] for each node i the local overlap
of the links in layer α and layer α′ as the total number of
neighbors of node i, which are simultaneously neighbors in
layer α and in layer α′; i.e.,

o
[α,α′]
i =

N∑
j=1

a
[α]
ij a

[α′]
ij . (2)

We stress that most real multiplex networks have a significant
total and local overlap of their links [4,7,9].

The first natural approach to construct an ensemble of
random multiplex networks is to generate each layer inde-
pendently. For this, we draw the sequence of the degrees
{k[1]

i ,k
[2]
i , . . . ,k

[M]
i } of each node i from a given degree

distribution P ({k[α]}). If the degrees of each individual node
in different layers are uncorrelated, the degree distribution
P ({k[α]}) factorizes as

P ({k[α]}) =
∏
α

P [α](k[α]), (3)

where P [α](k[α]) is the degree distribution in layer α. Finally,
having assigned to each node i the degree kα

i in every layer α,
we can construct a multiplex network in which each layer is a
random graph with given degree sequence {k[α]

1 ,k
[α]
2 . . . ,k

[α]
N };

i.e., we consider a random multiplex �G chosen with
probability

P ( �G) =
M∏

α=1

N∏
i=1

δ

⎛
⎝k

[α]
i ,

∑
j

a
[α]
ij

⎞
⎠, (4)

where δ(x,y) here and in the following indicates the Kronecker
δ. As long as the layers are formed by sparse networks, and the
number of layers is much smaller than the number of nodes,
i.e., M � N , the multiplex network constructed in this way has
a negligible total link overlap O[α,α′] between any two layers α

and α′, and a negligible local overlap o
[α,α′]
i also [37]. Since the

link overlap is a general property of multiplex networks, one
should consider multiplex network models able to reproduce
this structural feature. Such models have been introduced in
Ref. [37] and will be discussed in Sec. V.

For the sake of simplicity we will assume throughout the
paper that each node is active (i.e., connected) in every layer.
This assumption can be relaxed. We refer the interested reader
to Refs. [10,26,32] where this case and its implications for the
percolation transition, including asymptotic behavior in case
of a large number of layers, are discussed in detail.

III. PERCOLATION ON MULTIPLEX NETWORKS AND
MUTUALLY CONNECTED GIANT COMPONENT

In this paper we consider the robustness of multiplex
networks in the presence of interdependencies.

Following Ref. [11] we assume that each interlink indicates
an interdependency between the linked replica nodes. This
interdependencies imply that if a replica node is damaged,
then all the interdependent replica nodes in the other layers
are damaged. The robustness of the multiplex network is
monitored by the response to an external initial damage
performed on a set of nodes of the network. The variables {si},
where i = 1,2, . . . ,N , fully characterize the initial damage
to the network, as each variable si indicates whether node
i has been initially damaged (si = 0) or not (si = 1). The
multiplex network responds nonlinearly to this damage as
it can be quantified by the size of its mutually connected
giant component (MCGC). The MCGC has been defined in
Ref. [11] as a generalization of the giant component of single
networks. This is the component that remains after the damage
propagates back and forth between the layers. The original
algorithm that defines the MCGC is the following:

(i) the giant component of each layer α is determined,
evaluating the effect of the damaged nodes in each single
layer;

(ii) each node that has at least a replica node not in the
giant component of its proper layer is damaged, i.e., all
its replica nodes are damaged due to the interdependencies
existing between them;

(iii) if there are no new damaged nodes the algorithm stops,
otherwise it proceed, starting again from step (i).

At the end of the iteration the nodes that are not damaged
by the iterative process form the MCGC. The size NS of the
MCGC is given by the number of nodes remaining undamaged
by this process. If the initial damage {si} has probability
distribution,

π ({si}) =
N∏

i=1

[psi + (1 − p)(1 − si)], (5)

i.e., initially each node is damaged independently with
probability 1 − p, we observe a phase transition with the order
parameter S and the control parameter p.

IV. PERCOLATION IN MULTIPLEX NETWORKS
WITHOUT LINK OVERLAP

A. The message passing algorithm

On a locally treelike multiplex network without link
overlap, the MCGC can be found by using a suitable message
passing algorithm. This algorithm has been first proposed
by Son et al. [13]. According to this algorithm, nodes send
messages along their links to neighbor nodes. Each message
sent by a node i to a node j indicates whether node i belongs
to the MCGC also in absence of the link (i,j ). In particular the
message σα

i→j that node i send to a neighbor node j in layer
α is equal to one (σα

i→j = 1) if the following conditions are
met:

(a) node i is not initially damaged, i.e., si = 1;
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(b) node i belongs to the mutually connected giant com-
ponent even if the link between node j and node i is removed
from the multiplex, i.e., for every layer α′ = 1,2 . . . ,M node
i receives at least one positive message σ�→i = 1 from nodes
� �= j that are neighbors of node i in layer α′.

If these conditions are not met, then σα
i→j = 0. These

messages determine whether a node i belongs (σi = 1) or not
(σi = 0) to the MCGC. In fact node i belongs to the MCGC
(σi = 1) if and only if

(a) node i is not initially damaged;
(b) node i receives at least one positive message σ�→i = 1

from a neighbor � of node i in every layer α.
These two algorithms directly translate in the message

passing equations

σα
i→j = si

⎡
⎣1 −

∏
�∈Nα (i)\j

(
1 − σα

�→i

)⎤⎦

×
∏
α′ �=α

⎡
⎣1 −

∏
�∈Nα′ (i)

(
1 − σα′

�→i

)⎤⎦,

σi = si

M∏
α=1

⎡
⎣1 −

∏
�∈Nα(i)

(
1 − σα

�→i

)⎤⎦, (6)

where Nα(i) indicates the set of neighbors of node i in layer
α. Let us consider a random multiplex network taken with
probability given by Eq. (4) and a random realization of the
initial damage described by the probability given by Eq. (5).
The average message in layer α,S ′

α = 〈σi→j 〉 and the (relative)
average number of nodes in the MCGC, S = 〈σi〉 are given by

S = p
∑
{kα}

P ({kα})
M∏

α=1

[1 − (1 − S ′
α)kα ],

S ′
α = p

∑
{kβ }

kα

〈kα〉P ({kβ})[1 − (1 − S ′
α)k

α−1]

×
∏
α′ �=α

[1 − (1 − S ′
α′ )k

α′
]. (7)

If there are no correlations between the degrees of a node
in different layers, and so the degree distribution P ({k[α]})
follows Eq. (3), then we have

S = p

M∏
α=1

[
1 − G

[α]
0 (1 − S ′

α)
]
,

S ′
α = p

[
1 − G

[α]
1 (1 − S ′

α)
] ∏

α′ �=α

[
1 − G

[α′]
0 (1 − S ′

α′ )
]
. (8)

Here the generating functions G
[α]
0 (z) and G

[α]
1 (z) of the degree

distribution P [α](k) of layer α are given by

G
[α]
0 (z) =

∑
k

P [α](k)zk,

G
[α]
1 (z) =

∑
k

k

〈k[α]〉P
[α](k)zk−1. (9)

B. The case of equally distributed Poisson layers

In the case of equally distributed Poisson layers with average
degree c, we have

P [α](k) = 1

k!
cke−c, (10)

for every layer α = 1,2, . . . ,M . Then, using Eqs. (8), one can
show that S ′

α = S for every layer α, and S is determined by
the equation

S = p(1 − e−cS)M. (11)

By setting S/p = x, this equation reduces to hcp(x) = 0,
where the function hcp(x) is

hcp(x) = x − (1 − e−cpx)M = 0. (12)

This equation has always the trivial solution x = 0. In addition,
a nontrivial solution x > 0, indicating the presence of the
MCGC, emerges at a hybrid discontinuous transition at x =
xc,cp = cpc determined by the equations

hcp(xc) = 0,
dhcp(x)

dx

∣∣∣∣
x=xc

= 0. (13)

For M = 2 this yields the discontinuous hybrid transition
for cpc 
 2.4554,xc = Sc/p 
 0.5117 [11–13]. For M = 3
this yields the discontinuous hybrid transition for cpc 

3.0891, xc = Sc/p 
 0.6163.

V. MULTIPLEX NETWORKS WITH LINK OVERLAP

The vast majority of multiplex networks in infrastructures,
transport, social, and collaboration networks are characterized
by significant link overlap [4,7,9]. Therefore, it is of crucial
importance to determine the robustness of multiplex networks
in the presence of this structural feature. In order to model
multiplex networks with link overlap, the notion of multi-
links [9,37,42] turns out to be extremely useful. Two nodes
i and j are connected by a multilink �m = (m1,m2, . . . ,mM )
with mα = 0,1, if and only if they are linked in every layer
α for which mα = 1 and they are not linked in every layer α

for which mα = 0 (see Fig. 1 for a graphical description of
multilinks). We distinguish between the nontrivial multilinks
�m �= �0 and the trivial multilink �m = �0, indicating the absence
of any sort of link between the two nodes.

Using the concept of multilinks one can define multiad-
jacency matrices A �m whose element A �m

ij indicates whether

node i is connected to node j by a multilink �m (A �m
ij = 1)

or not (A �m
ij = 0). The multiadjacency matrices encode the

same information encoded in the adjacency matrices aα and
the matrix elements A �m

ij can consequently be expressed as a

function of the matrix elements a
[α]
ij as

A �m
ij =

M∏
α=1

[
mαa

[α]
ij + (1 − mα)

(
1 − a

[α]
ij

)]
. (14)

The multiadjacency matrices are not independent in the sense
that they satisfy ∑

�m
A �m

ij = 1 (15)

032301-4



MESSAGE PASSING THEORY FOR PERCOLATION MODELS . . . PHYSICAL REVIEW E 94, 032301 (2016)

for every pair of nodes (i,j ) of the multiplex network. Having
introduced the multiadjacency matrices it is straightforward
to define the multidegrees [9,37,42]. The multidegree �m of
node i indicated as k �m

i is the sum of rows (or column) of the
multiadjacency matrix A �m; i.e.,

k �m
i =

∑
j

A �m
ij . (16)

Therefore, the multidegree k �m
i indicates the number of nodes

linked to node i by a multilink �m. As an example, consider a
multiplex network (duplex) formed by two layers. Using the
adjacency matrices of elements a

[α]
ij , the multidegrees of node

i are given by

k
(1,1)
i =

∑
j

a
[1]
ij a

[2]
ij ,

k
(1,0)
i =

∑
j

a
[1]
ij

(
1 − a

[2]
ij

)
,

k
(0,1)
i =

∑
j

(
1 − a

[1]
ij

)
a

[2]
ij ,

k
(0,0)
i =

∑
j

(
1 − a

[1]
ij

)(
1 − a

[2]
ij

)
. (17)

From the explicit expression of the multidegree k
(1,1)
i it is

evident that this quantity is given by the local overlap o
[1,2]
i

defined in Eq. (2); i.e.,

k
[1,1]
i = o

[1,2]
i . (18)

Therefore, k
[1,1]
i indicates the number of neighbors of node i

that are simultaneously neighbor in layer 1 and layer 2. On the
contrary, the multidegree k

[1,0]
i ,/k

[0,1]
i indicate, respectively,

the number of neighbors of node i that are neighbor in layer
1/(layer 2) but not in layer 2/(layer 1). Finally, the multidegree
k

[0,0]
i indicates the total number of nodes that are not connected

to node i in any layer.
In general, for arbitrary (but finite) number of layer M ,

the multidegrees of a node give a complete, local information
about the link overlap in different layers.

Naturally, since the multiadjacency matrices are not in-
dependent, also the multidegrees of a node are not all
independent, and we have∑

�m
k �m
i = N, (19)

for every node i, which can also be written as

k
�0
i = N −

∑
�m�=�0

k �m
i . (20)

In a sparse multiplex network the nontrivial multidegrees k �m

with �m �= �0 have finite average 〈k �m〉.
Random multiplex networks with a given distribution of

the multidegree sequence P ({k �m}) provide the easiest way to
generate multiplex networks with a controlled link overlap. In
order to do this we first draw the sequence {k �m

i } of multidegrees
of each node i from the multidegree distribution P ({k �m}). To

each node i we associate k �m
i stubs of type �m and, finally, we

match pairwise stubs of the same multilink type. In this way
the probability that node i and node j are connected by a
multilink �m �= �0 is given by [37]

p �m
ij = k �m

i k �m
j

〈k �m〉N , (21)

as long as the multidegrees have the natural structural cutoff,
i.e.,

k �m
i <

√〈
k �m
i

〉
N, (22)

for every multilink �m �= �0. In this ensemble the probability
P ( �G) of a multiplex �G is given by

P ( �G) =
∏
ij

∏
�m�=�0

δ

⎛
⎝k �m

i ,
∑

j

A �m
ij

⎞
⎠. (23)

Eventually, the multidegrees of a given node can be uncorre-
lated, i.e., the multidegree distribution factorizes

P ({k �m}) =
∏
�m �=�0

P �m(k �m), (24)

where P �m(k) is the distribution of multidegrees k �m = k with
�m �= �0.

VI. MUTUALLY CONNECTED COMPONENT AND
DIRECTED MUTUALLY CONNECTED COMPONENT IN

MULTIPLEX NETWORKS WITH LINK OVERLAP

The message passing algorithm discussed in Sec. IV can
be extended and used to explore the structure of locally
treelike multiplex networks with link overlap in different
ways. We consider two extensions. With the first algorithm
(Sec. VII), one characterizes the directed mutually connected
giant component (DMCGC), with the second algorithm
(Sec. VIII) one characterizes the mutually connected giant
component (MCGC). Both algorithms reduce to the algorithm
studied in Sec. IV in the absence of link overlap. Moreover,
both algorithms reduce to percolation on a single network
in the presence of complete overlap of all the layers. The
algorithm [42] that calculates the DMCGC has an epidemic
spreading interpretation and an inherent directed character.
In this epidemic spreading interpretation, we assume that a
different disease propagate in each layer of the multiplex
networks and that a node is infected (i.e., it sends a positive
message to a downstream node) only if it is in contact to at least
an infected upstream neighbor in every layer α = 1,2, . . . ,M .
The set of nodes that become infected are the nodes in the
DMCGC. It has been shown that this algorithm determines
a proper subset of the nodes that are in the MCGC as
soon as there is link overlap [40]. For example, for the
network in Fig. 2, all the nodes of the drawn networks
belong to the MCGC, but, according to the message passing
algorithm with the epidemic spreading interpretation, two
nodes remain uninfected. That is, while these two nodes
belong to the MCGC, they do not belong to the DMCGC
[40].
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FIG. 2. A multiplex network with link overlap demonstrating that
the DMCGC is not equivalent to the MCGC. Here the multiplex
network has M = 2 layers corresponding to the networks formed by
links indicated, respectively, with solid and dashed lines. In panel (a)
we assume that one node is connected to the DMCGC. By applying
the message passing algorithm described in Sec. VII, we observe that
two nodes of the network do not belong to the DMCGC. In panel (b)
we consider the same multiplex network configuration but this time
we assume that a single node is connected to the MCGC. By applying
the message passing algorithm described in Sec. VIII we observe that
all the nodes of this network belong to the MCGC.

It has been debated if a message passing algorithm allows
us to describe the mutually connected giant component in
multiplex networks with an arbitrary number of layers M .
Recently a traditional treelike approximation was successfully
used to characterize the mutually connected giant component
in a multiplex network with link overlap and M = 2 [41]. Here
we show that it is possible to extend these results to multiplex
network with arbitrary number of layers M and link overlap
by using a message passing algorithm combined with the use
of multilinks.

In the following we treat and compare two different types of
message passing algorithms: one for directed percolation and
the other for percolation, which can detect the nodes belonging,
respectively, to the DMCGC and to the MCGC. Applying these
algorithms one can study the critical properties of the two
percolation transitions and observe significant changes in the
phase diagrams of these problems. In Sec. VII, we describe
directed percolation and then, in Sec. VIII, we calculate the
size of the MCGC with the message passing approach, in
multiplex networks with link overlap.

VII. DIRECTED PERCOLATION OF MULTIPLEX
NETWORKS

A. The message passing algorithm

In a locally treelike multiplex with link overlap a simple
extension of the message passing from Sec. IV determines
the set of nodes belonging to the directed mutually connected
giant component (DMCGC) [42]. Let si = 0,1 indicate if a
node i is removed or not from the network and let σi = 0,1
be the indicator function that the node i is in the DMCGC.
The value of σi is determined by the “messages” that the
neighboring nodes send to node i. We denote the message sent

from node i to node j as σ �mij

i→j . The value of this is set to

one σ �mij

i→j = 1 if and only if the following three conditions are
satisfied:

(a) node j is a neighbor of node i with a multilink �mij

connecting them such that
∑

α m
ij
α > 0;

(b) node i is not initially damaged, i.e., si = 1;
(c) node i belongs to the directed mutually connected giant

component even if the multilink �mij between node i and node
j is removed from the multiplex, i.e., node i receives at least
one positive message σ �m�i

�→i = 1 from a nearest neighbor � �= j

in every layer α.
If any of these conditions is not satisfied then the messages

is zero, i.e., σ �mij

i→j = 0.
Additionally, node i is in the DMCGC (σi = 1) if the

following conditions are satisfied:
(a) node i is not initially damaged;
(b) for every layer α node i receives at least one positive

message σ �m�i

�→i = 1 from a neighbors � in layer α.
This algorithm directly translates into the following mes-

sage passing equations for σi and σ �mij

i→j :

σi = si

M∏
α=1

⎡
⎣1 −

∏
j∈Nα (i)

(
1 − σ �mij

j→i

)⎤⎦, (25)

σ �mij

i→j = si

M∏
α=1

⎡
⎣1 −

∏
�∈Nα (i)\j

(
1 − σ �m�i

�→i

)⎤⎦, (26)

where Nα(i) indicates the set of neighboring nodes of node
i in layer α. Let us consider a random realization of the
initial damage drawn from the probability distribution given
by Eq. (5) and a random realization of the multiplex network
with link overlap chosen with probability given by Eq. (23).
The average message S�n = 〈σ �mij

i→j 〉 along a generic multilink
�mij = �n and the average number of nodes in the DMCGC
S = 〈σi〉 are, respectively, given by (see Ref. [42] for the
details of the derivation)

S�n = p
∑
{k �m}

k�n

〈k�n〉P ({k �m})
∑

�r
(−1)

∑M
α=1 rα [(1 − S�n)k

�n−1]f (�n,�r)

×
∏
�m|∑

α mαrα > 0
�m �= �m

(1 − S �m)k
�m
,

S = p
∑
{k �m}

P ({k �m})
∑

�r
(−1)

∑M
α=1 rα

×
∏

�m∑
α mαrα > 0

(1 − S �m)k
�m
, (27)

where �r = (r1,r2, . . . ,rα, . . . rM ) with rα = 0,1 and f (�n,�r) =
1 if

∑
α rαnα > 0 and f (�n,�r) = 0 otherwise (see Ref. [42] for

the details of the derivation). For uncorrelated multidegrees
of the nodes, when the distribution P ({k �m}) follows Eq. (24),
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these equations read

S�n = p
∑
{k �m}

∑
�r

(−1)
∑M

α=1 rα
[
G1

�n(1 − S�n)
]f (�n,�r)

×
∏

�m∑
α mαrα > 0

�m �= �n

G0
�m(1 − S �m),

S = p
∑
{k �m}

∑
�r

(−1)
∑M

α=1 rα

∏
�m∑

α mαrα > 0

G0
�m(1 − S �m).

(28)

where �r and f (�n,�r) have the same definition as above, and the
generating function G �m

0 (z) and G �m
1 (z) are given by

G �m
0 (z) =

∑
k

P �m(k)zk, G �m
1 (z) =

∑
k

k

〈k �m〉P
�m(k)zk−1.

(29)

Note that this algorithm and therefore Eqs. (28) reduce to
the Eqs. (9) found in Sec. IV in the absence of link overlap,
i.e., where the only nontrivial multilinks are the ones with∑

α mα = 1.
Here we show two simple examples of how this scheme

works in practice. These examples have been already discussed
in Ref. [42] and checked against simulation results in Ref. [40],
but we report them here to demonstrate the difference between
the equation determining the DMCGC and the one for the
MCGC that we calculate for the same multiplex ensembles in
Sec. VIII C and Sec. VIII D.

B. Two Poisson layers with overlap

We consider now the case of a duplex M = 2 in which the
multidegree distributions are Poisson with 〈k(1,1)〉 = c2, and
〈k(0,1)〉 = 〈k(1,0)〉 = c1. Due to the properties of the Poisson
distribution, we have S = S �m, for every �m �= �0, where S

satisfies the equation

S = p[1 − 2e−(c1+c2)S + e−(2c1+c2)S]. (30)

By setting x = S/p and ĉ1 = c1p,ĉ2 = c2p we can study the
solutions of the equivalent equation

f (x) = x − [1 − 2e−(ĉ1+ĉ2)x + e−(2ĉ1+ĉ2)x] = 0 (31)

in the (ĉ1,ĉ2) parameter plane. The critical line of discon-
tinuous hybrid transition is found by solving the system of
equations

f (xc) = 0,
df (x)

dx

∣∣∣∣
x=xc

= 0. (32)

The critical line of second-order phase transition is found by
solving the equation

df (x)

dx

∣∣∣∣
x=0

= 0. (33)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

pc1

pc
2

FIG. 3. The critical lines of discontinuous hybrid phase transition
(red dashed line) and of continuous phase transition (blue solid line)
describing the emergence of the DMCGC are shown for the case of
a multiplex networks with two layers and the Poisson multidegree
distribution with 〈k(1,0)〉 = 〈k(0,1)〉 = c1 and 〈k(1,1)〉 = c2.

We notice that there is a nontrivial critical point for c2p =
1, c2/c1 = √

2 for which

df (x)

dx

∣∣∣∣
x=0

= d2f (x)

dx2

∣∣∣∣
x=0

0. (34)

The full phase diagram of the model is displayed in Fig. 3. We
note that for c2 = 0 the transition is hybrid and discontinuous
and reduces to the know transition in duplex network with no
link overlap, while for c1 = 0 of complete overlap of the layers
the transition is continuous and reduces to the percolation
transition on a single Poisson network.

C. Three Poisson layers with overlap

As a second example, we consider the ensemble of a
three-layer multiplex network (M = 3) with a Poisson mul-
tidegree distribution and 〈k(1,0,0)〉 = 〈k(0,0,1)〉 = 〈k(0,1,0)〉 =
c1,〈k(1,1,0)〉 = 〈k(1,0,1)〉 = 〈k(0,1,1)〉 = c2 and 〈k(1,1,1)〉 = c3. As
in the previous case, we have one order parameter S =
S �m ∀ �m �= �0, and S satisfies the equation

S = p[1 − 3e−(c1+2c2+c3)S

+ 3e−(2c1+3c2+c3)S − e−(3c1+3c2+c3)S]. (35)

By setting x = S/p, and ĉ1 = c1p, ĉ2 = c2p, ĉ3 = c3p we can
define a function g(x) as

g(x) = x − [1 − 3e−(ĉ1+2ĉ2+ĉ3)x + 3e−(2ĉ1+3ĉ2+ĉ3)x

−e−(3ĉ1+3ĉ2+ĉ3)x] = 0, (36)

and we can recast the equation for S as g(x) = 0.
The phase diagram of this directed percolation problem is

very rich. It includes nontrivial tricritical points. We refer the
interested reader to the paper [42] that investigate this case
in detail. Additionally we observe here that for c2 = c3 = 0
we recover the prediction of the percolation transition in
interdependent multiplex network with no link overlap, while
for c1 = c2 = 0 we recover the results of the percolation
transition on a single Poisson network.
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VIII. PERCOLATION WITH LINK OVERLAP

A. General observations on the message passing
algorithm for the MCGC

Message passing algorithms are powerful methods, allow-
ing to solve exactly graphical models on locally treelike
networks, i.e., networks with a vanishing density of finite
cycles. These methods are versatile, as they can be applied
not only to ensembles of random networks, but also to
single network realizations. For these reasons these algorithms
are becoming increasingly popular in network science with
applications ranging from percolation on single and multi-
layer networks to controllability [13,15,34–36,43,47]. These
algorithms proceed by iteration of dynamical rules, which
determine messages or beliefs that a node sent to a neighboring
node. In general, these beliefs indicate the probability that
the neighbor node is in a given dynamical state and take
real variables between zero and one. Percolation on single
networks, as well as generalized percolation problems defined
for multiplex networks, are inherently optimization problems
in which one aims at characterizing the giant component,
which is the largest connected component satisfying a set of
conditions. In this case the messages polarize and take only
value 0,1, as we have already seen in the cases discussed so far.

Moreover, in general, messages sent from node i to a
downstream node j take into account not only the states of
the upstream nodes � �= j but also the state of node j . We
show that the message passing algorithm that determines the
nodes in the MCGC of a multiplex network with overlap has
the following properties: it is polarized (i.e., the messages take
values 0,1) and assumes that the downstream node belongs
to the MCGC. These two properties of the message passing
algorithm are in agreement with the general definition of the
message passing algorithm; nevertheless, due to the second
property, the resulting algorithm for detecting the MCGC loses
the epidemic spreading interpretation when compared to the
algorithm used to detect the DMCGC.

B. The message passing algorithm

Let si = 0,1 indicate if a node is removed or not from
the network and let σi = 0,1 be the indicator function that
the node i is in the mutually connected giant component. Let
also �n = (n1,n2, . . . ,nM ) be a fixed vector with nα = 0,1. The
rationale of introducing vector �n can be explained with the help
of Fig. 4, which highlights the difference between DMCGC
and MCGC [49]. In order to evaluate if node j is in the MCGC,

i j

h

FIG. 4. Nondirectional character of the message passing ap-
proach to compute the MCGC.

it is not sufficient to assume only the information upstream
from node i. In fact, we must encode a system of messages
that may reach node j through different paths, on different
layers. In the network of Fig. 4, node j belongs to the MCGC
because it is reached by a positive message on layer 1 (solid)
through node i and by a positive message on layer 2 (dashed)
through node h. Therefore, our aim is to define the minimal set
of layers that allows node i to connect node j to the MCGC
through node i. For a given multilink �mij , we will define below
a vector �n = �ni→j that encodes this selected set of layers.

Let us formally define our message passing algorithm that
determines if a node is in the MCGC in a locally treelike
multiplex network. The value of σi is determined by the
“messages” that the neighboring nodes send to node i. We
denote the generic “message” as σ

�mij ,�n
i→j . These messages are

defined for every possible value of �n, and only for �n = �ni→j

we will have the message σ
�mij ,�ni→j

i→j = 1, indicating that node
i connects node j to the MCGC exclusively through the links
where n

i→j
α = 1.

Let us now treat separately the cases �n �= �0 and �n = �0. For
�n �= �0 the value of the message σ

�mij ,�n
i→j is set to one, σ �mij ,�n

i→j = 1,
if and only if the following three conditions are satisfied:

(i) node j is a neighbor of node i with a multilink �mij

connecting them such that
∑

α m
ij
α > 0;

(ii) assuming node j belongs to the mutually connected
giant component, node i is in the mutually connected com-
ponent; i.e., it is not initially damaged and it has at least one
neighbor in any layer that belongs to the MCGC;

(iii) node i connects node j to the mutually connected
component exclusively through the layers α with nα = 1.
This implies that, if m

ij
α = 0, then this condition can only

be satisfied if nα = 0, because otherwise we would need a link
m

ij
α = 1 to allow for node j to be connected to the MCGC on

layer α through node i.
If these three conditions are not met, and �n �= �0, we will

have σ
�mij ,�n

i→j = 0.
An important consequence of this definition is the fol-

lowing. As per condition (iii), having a nonzero message
σ

�mij ,�n
i→j = 1 with �n �= �0 requires that node i connects node j

to the (unique) MCGC exclusively through the layers α with
nα = 1. Then, there can be at most a single vector �n �= �0 such
that σ

�mij ,�n
i→j = 1. This vector, if it exists, will encode all the

information about all the messages σ
�mij ,�n

i→j with �n �= �0 and will
indicate the set of layers that connect node j to the MCGC
through node i. In order to treat at the same level the case in
which node i connects node j to the MCGC at least in one
layer and the case in which node i does not connect node j to
the MCGC in any layer, it is convenient to define the messages

σ
�mij ,�0

i→j as it follows:

σ
�mij ,�0

i→j = δ

⎛
⎝0,

∑
�n�=�0

σ
�mij ,�n

i→j

⎞
⎠, (37)

where δ(x,y) is the Kronecker function. Using this definition,
we can define the unique vector �n = �ni→j for which

σ
�mij ,�ni→j

i→j = 1, (38)
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as

ni→j = argmax�nσ
�mij ,�n

j→i . (39)

Therefore, the vector �ni→j is uniquely defined for every linked
(ordered) pair of nodes (i,j ) and its components �ni→j

α indicate
whether node j is connected to the MCGC through node i in
layer α (�ni→j

α = 1) or not (�ni→j
α = 0).

Let us now derive the algorithm defining the messages.
We first consider condition (ii). Node i is in the MCGC if
and only if it is not initially damaged and it has at least one
nearest neighbor in each layer α that it is connected to the
MCGC. Assuming that node j is in the MCGC, this implies
that node i should have in each layer α for which m

ij
α = 0,

at least a neighbor different from node j that belongs to the
MCGC. Second, we consider condition (iii). According to this
condition node i connects node j to the MCGC exclusively
through layers α for which nα = 1. Therefore, node i should
have at least a neighbor different from node j that belongs
to the MCGC in each layer α for which nα = 1 and should
not have any neighbor different from node j belonging to
the MCGC in the layers α for which nα = 0. Therefore, the
message σ

�mij ,�n
i→j with �n �= �0 is equal to one, σ

�mij ,�n
i→j = 1, if and

only if
(a) node j is a neighbor of node i with a multilink �mij

connecting them such that
∑

α m
ij
α > 0;

(b) node i is not initially damaged;
(c) for every layer α for which either nα = 1 or m

ij
α = 0

there is at least one node � �= j , neighbor of node i in layer α,
for which n�→i

α = 1;
(d) for every layer α for which m

ij
α = 1 and nα = 0 every

node � �= j , neighbor of node i in layer α, is sending a message
with n�→i

α = 0.
An example of this algorithm is schematically sketched in

Fig. 5.
Therefore, the message passing equation for the messages

σ
�mij ,�n

i→j reads

σ
�mij ,�n

i→j = si

M∏
α=1

⎡
⎣1 −

∏
�∈N(i)\j

(
1 − n�→i

α

)⎤⎦
1−m

ij
α (1−nα )

×
⎡
⎣ ∏

�∈N(i)\j

(
1 − n�→i

α

)⎤⎦
m

ij
α (1−nα )

. (40)

mij ni j

1 1
1 0
1 1
0 0

i j

FIG. 5. Schematic representation of the message passing algo-
rithm to calculate the MCGC in the presence of link overlap. The ∞
symbols represent whether node i is connected or not to the MCGC
by a node different from j on a given layer.

The value of the indicator function σi determining if node i

belongs (σi = 1) or not (σi = 0) to the MCGC depends on the
messages σ

�mji ,�nj→i

j→i . Specifically, node i belongs to the MCGC
if the following conditions are met:

(a) node i is not initially damaged, i.e., si = 1;
(b) node i has at least one neighbor j in each layer α that

connects node i to the MCGC, i.e., for which n
j→i
α = 1.

Therefore, we arrive at the message passing equations
determining σi :

σi = si

M∏
α=1

⎡
⎣1 −

∏
j∈N(i)

(
1 − nj→i

α

)⎤⎦. (41)

The message algorithm described above, consisting in iterating
the Eqs. (40), (39), (37), and (41) allows us to predict which
nodes of a real locally treelike multiplex network with link
overlap are in the MCGC. The message passing techniques
are indeed guaranteed to converge to the correct solution only
in locally treelike networks, although empirically they may
work surprisingly well on networks with some small cycles, as
long as they have a vanishingly small clustering coefficient in
the limit N → ∞. Considering distributed algorithms that go
beyond the treelike approximation is a longstanding challenge
that has been tackled by the recent literature [19]. Therefore, it
cannot be excluded that opportune variations of the algorithm
that we have introduced here for locally treelike networks
could be applied in the future to multiplex networks with finite
clustering coefficient.

In order to derive the equations for the average messages in
ensemble of multiplex networks chosen with probability given
by Eq. (23) with random initial damage of the nodes following
Eq. (5), let us now consider Eq. (40), by using the formula

M∏
α=1

(1 − xα)pα =
∏

α|pα>0

(1 − zα)

=
∑

�r|rα=0 if pα=0

(−1)
∑

α rα z
r1
1 . . . z

rM

M , (42)

valid as long as pα = 0,1. Here, �r = (r1,r2, . . . ,rα, . . . ,rM )
with rα = 0,1, and where the sum

∑
�r is over all possible

vectors �r with rα = 0 in the layers α where pα = 0. Since
for each node � neighboring node i in layer α we should
necessarily have m�i

α = 1, we can write

σ
�mij ,�n

i→j = si

∑
�r|rα=0 if m

ij
α (1−nα )=1

(−1)
∑

α rα

×
M∏

α=1

∏
�∈N(i)\j

(
1 − n�→i

α

)[rα+m
ij
α (1−nα )]

. (43)

Since n�→i
α = 0,1 and σ

�m�i ,�n�→i

�→i = 1, we can write the above
expression as

σ
�mij ,�n

i→j = si

∑
�r|rα=0 if m

ij
α (1−nα )=1

(−1)
∑

α rα

×
M∏

α=1

∏
�∈N(i)\j

(
1 − σ

�m�i , �n�→i

�→i

)n�→i
α [rα+m

ij
α (1−nα )]

. (44)
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Finally, this expression can be written as

σ
�mij ,�n

i→j = si

∑
�r|rα=0 if m

ij
α (1−nα )=1

(−1)
∑

α rα

×
∏

�∈N(i)\j

(
1 − σ

�m�i , �n�→i

�→i

)∑
α n�→i

α [rα+m
ij
α (1−nα )]

. (45)

Averaging over the ensemble of multiplex networks where
each multiplex network is chosen with probability given by
Eq. (23) and the random initial damage with probability given
by Eq. (5), we get

S �m,�n = p
∑
{k �m}

k �m〈
k �m〉P ({k �m})

∑
�r|rα=0 if mα(1−nα )=1

(−1)
∑M

α=1 rα

×
∏
�m′ �= �m

⎛
⎝1 −

∑
�n′|∑α n′

α [rα+mα (1−nα )]>0

S �m′, �n′

⎞
⎠

k
�m′

×
⎛
⎝1 −

∑
�n′| ∑α n′

α [rα+mα (1−nα )]>0

S �m′,�n′

⎞
⎠

k �m−1

, (46)

with �m �= �0. For networks with an uncorrelated multidegree
distribution P ({k �m}) given by Eq. (24), we get

S �m,�n = p
∑

�r|rα=0 if mα(1−nα )=1

(−1)
∑M

α=1 rα

×
∏
�m′ �= �m

G0
�m′

⎛
⎝1 −

∑
�n′| ∑α n′

α [rα+mα (1−nα )]>0

S �m′, �n′

⎞
⎠

×G1
�m

⎛
⎝1 −

∑
�n′| ∑α n′

α [rα+mα (1−nα )]>0

S �m′,�n′

⎞
⎠, (47)

with �m �= �0.
Similarly, in order to derive the equation for S = 〈σi〉 let us

now transform Eq. (41) by using the formula

M∏
α=1

(1 − zα) =
∑

�r
(−1)

∑
α rα z

r1
1 . . . z

rM

M ,

where �r = (r1,r2, . . . ,rα, . . . rM ) with rα = 0,1, and where
the sum

∑
�r is over all possible vectors �r . We expand the

multiplications and write

σi = si

∑
�r

(−1)
∑

α rα

M∏
α=1

∏
j∈N(i)

(
1 − nj→i

α

)rα
. (48)

Since n
j→i
α = 0,1 and σ

�mji ,�nj→i

j→i = 1, we can write the above
expression as

σi = si

∑
�r

(−1)
∑

α rα

M∏
α=1

∏
j∈N(i)

(
1 − σ

�mji ,�nj→i

j→i

)rαn
j→i
α

= si

∑
�r

(−1)
∑

α rα

∏
j∈N(i)

(
1 − σ

�mji ,�nj→i

j→i

)∑
α rαn

j→i
α

. (49)

We average this expression over the ensemble of network
by choosing a multiplex network with probability given by
Eq. (23) and averaging over the random realization of the initial
damage according to the probability distribution in Eq. (5). In
this way we get the expression for the average number of nodes
S in the MCGC:

S = p
∑
{k �m}

P ({k �m})
∑

�r
(−1)

∑M
α=1 rα

×
∏

�m

⎛
⎝1 −

∑
�n| ∑α nαrα>0

S �m,�n

⎞
⎠

k �m

, (50)

where S �m,�n = 〈σ �mji ,�n
j→i 〉 is the probability that a node is con-

nected through a multilink �m to the mutually connected giant
component through the layers indicated by the vector �n. In
particular, in an ensemble in which the multidegree distribution
factorizes, i.e., the multidegree distribution P ({k �m}) follows
Eq. (24), we have

S = p
∑
{k �m}

∑
�r

(−1)
∑M

α=1 rα

×
∏

�m
G0

�m

⎛
⎝1 −

∑
�n| ∑α nαrα>0

S �m,�n

⎞
⎠. (51)

Notice that the Eq. (47) and Eq. (51) in the case of networks
without link overlap, i.e., where all multilinks �m �= 0 have∑

α mα = 1, reduce to the equations found in Sec. IV. In the
following we consider two cases of multiplex networks with
nontrivial link overlap formed, respectively, by two and three
layers.

C. Two layers with overlap

As a first example, we consider here a multiplex networks
formed by two layers with Poisson multidegree distribution
and 〈k(1,0)〉 = 〈k(0,1)〉 = c1 with 〈k(1,1)〉 = c2. Here we show
that the message passing approach proposed in this paper
reproduces the same equations found in Ref. [41] and in total
agreement with simulations results [39,41]. In this case the
dynamical variables that we have to consider are

S = S �m, �m = x/p, (52)

with �m �= �0
S�1,(1,0) = S�1,(0,1) = x2,1/p. (53)

Equations (51) and (47) for x and x2,1 read(
F1(x)
F2(x)

)
= F(x) = 0,

where the functions F1(x) and F2(x) are given by

F1(x) = x−(1−2e−ĉ1x−ĉ2(x+x2,1)+e−2ĉ1x−ĉ2(x+2x2,1)),
(54)

F2(x) = u−(e−ĉ1x−ĉ2(x+x2,1)−e−2ĉ1x−ĉ2(x+2x2,1)),

the vector x is given by

x =
(

x

x2,1

)
,
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FIG. 6. The critical line of a discontinuous hybrid phase transition
is shown for a multiplex networks with two layers and Poisson
multidegree distribution with 〈k(1,0)〉 = 〈k(0,1)〉 = c1 with 〈k(1,1)〉 =
c2.

and ĉ1 = c1p and ĉ2 = c2p. As expected, these equations are
equivalent to the ones derived with the treelike approximation
in Ref. [41].

The points of discontinuous hybrid phase transition can be
found by imposing the set of equations

F(x�) = 0, det J|x=x� = 0, (55)

where J is the Jacobian matrix of F(x). The critical point of
continuous phase transition can be found by imposing

det J|x=0 = 0. (56)

This equation can be expressed explicitly as

1 − 2ĉ2 + ĉ2
2 = 0 (57)

and has a unique real solution for ĉ2 = 1. Analyzing these
equations provides the full phase diagram of the model
displayed in Fig. 6. The MCGC component emerges as a
continuous phase tradition only when all links overlap, i.e.,
c2p = 1,c1 = 0 when we recover the case of percolation
in a single Poisson network. Finally we observe that for
c2 = 0 we recover the known results of percolation transition
in interdependent duplex Poisson network with no link
overlap.

D. Three layers with overlap

As a second example, we consider a multiplex network
formed by three layers with a Poisson multidegree distribu-
tion and 〈k(1,0,0)〉 = 〈k(0,1,0〉 = 〈k(0,0,1)〉 = c1 with 〈k(1,1,0)〉 =
〈k(1,0,1)〉 = 〈k(0,1,1)〉 = c2 and 〈k(1,1,1)〉 = c3. This case pro-
vides an example of a three layers multiplex network with
overlap. The MCGC on this class of networks has never been
solved with previous methods and therefore it demonstrated
that the present theory allows to go beyond the previously
available theoretical methods and techniques. In this case
the dynamical variables determining the percolation transition
are

S = S �m, �m = x/p, (58)

0 0.5 1 1.5 2 2.5 3 3.5
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1.5

pc1
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3

FIG. 7. The lines of critical points for the discontinuous hybrid
transition describing the emergence of the MCGC are shown for the
case of a multiplex networks formed layers with a Poisson mul-
tidegree distribution with 〈k(1,0,0)〉 = 〈k(0,1,0〉 = 〈k(0,0,1)〉 = c1 with
〈k(1,1,0)〉 = 〈k(1,0,1)〉 = 〈k(0,1,1)〉 = c2 and 〈k(1,1,1)〉 = c3. The lines of
the figure refer to critical lines for constant values of pc2 given,
respectively, by pc2 = 0.0 (blue dashed line), pc2 = 0.25 (red dotted
line), pc2 = 0.5 (orange dot-dashed line), and pc2 = 0.75 (green
long-dashed line).

with �m �= �0,�1=(1,1,1),

S�1,(1,1,0) = S�1,(0,1,1) = S�1,(1,0,1) = x3,2/p,

S�1,(1,0,0) = S�1,(0,1,0) = S�1,(0,0,1) = x3,1/p.

S(1,1,0),(1,0,0) = S(1,1,0),(0,1,0) = S(0,1,1),(0,1,0)

= S(0,1,1),(0,0,1) = S(1,0,1),(1,0,0) = S(1,0,1),(0,0,1)=x2,1/p.

0 0.5 1 1.5
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FIG. 8. The lines of critical points for the discontinuous hybrid
transition describing the emergence of the MCGC are shown for the
case of a multiplex network formed by three layers with a Poisson
multi degree distribution with 〈k(1,0,0)〉 = 〈k(0,1,0〉 = 〈k(0,0,1)〉 = c1

with 〈k(1,1,0)〉 = 〈k(1,0,1)〉 = 〈k(0,1,1)〉 = c2 and 〈k(1,1,1)〉 = c3. The
lines of the figure refer to critical lines for constant values of pc1

given, respectively, by pc1 = 0.0 (blue, dashed line), pc1 = 0.5 (red
dotted line), pc1 = 1.0 (orange dot-dashed line), pc1 = 1.5 (green
long-dashed line), and pc1 = 2.0 (dark green tiny-dashed line).
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FIG. 9. Simulations of the MCGC for p = 1 are shown as a
function of c3 for c1 = 1.0, c2 = 0.15 (green diamonds) and for
c1 = 0.4,c2 = 0.0 (blue triangles). The results were obtained from
simulation of three-layer multiplex networks with N = 104 nodes.
The data have been obtained for a single realization in the case of
c1 = 1.0, c2 = 0.15, and they have been averaged over 10 realizations
for c1 = 0.4,c2 = 0.0. The simulations results perfectly match the
theoretical expectations (solid lines). Notice that in both case we have
a discontinuous jump although the jump is too small to be appreciated
for c1 = 0.4, c2 = 0.0.

By setting ĉ1 = c1p,ĉ2 = c2p and ĉ3 = c3p, Eqs. (51)
and (47) for x,x3,2,x3,1,x2,1 read

⎛
⎜⎜⎝

G1(x)
G2(x)
G3(x)
G4(x)

⎞
⎟⎟⎠ = G(x) = 0,

where the functions Gμ(x) with μ = 1,2,3,4 are given by

G1(x) = x − [1 − 3e−ĉ1x−ĉ2(2x+2x2,1)−ĉ3(x+2x3,2+x3,1)

+3e−2ĉ1x−ĉ2(3x+4x2,1)−ĉ3(x+3x3,2+2x3,1)

−e−3ĉ1x−3ĉ2(x+2x2,1)−ĉ3(x+3x3,2+3x3,1)],

G2(x) = x3,2 − e−ĉ1x−ĉ2(2x+2x2,1)−ĉ3(x+2x3,2+x3,1)

× [1 − 2e−ĉ1x−ĉ2(x+2x2,1)−ĉ3(x3,2+x3,1)

+e−2ĉ1x−ĉ2(x+4x2,1)−ĉ3(x3,2+2x3,1)],

G3(x) = x3,1 − e−2ĉ1x−ĉ2(3x+4x2,1)−ĉ3(x+3x3,2+2x3,1)

× [1 − e−ĉ1x−2ĉ2x2,1−ĉ3x3,1 ],

G4(x) = x2,1 − x3,2, (59)

and

x =

⎛
⎜⎜⎝

x

x3,2

x3,1

x2,1

⎞
⎟⎟⎠.

The points of discontinuous hybrid phase transition can be
found from the set of equations

G(x�) = 0,

det J|x=x� = 0, (60)

where J is the Jacobian of G(x). The point of continuous phase
transition can be found from the condition

det J|x=0 = 0. (61)

This equation,

1 − 3ĉ3 + 3ĉ2
3 − ĉ3

3 = 0, (62)

has a unique real solution for ĉ3 = 1. Analyzing the phase
diagram one can see that this continuous phase transition
occurs only for c1 = c2 = 0,c3p = 1 recovering the result
of percolation on single Poisson network. Additionally, for
c2 = c3 = 0 we recover the known results in absence of link
overlap. In Figs. 7 and 8 we report sections of the phase
diagram at constant values of ĉ2 and at constant values of
ĉ1, respectively.

We have checked these equations against simulation results
showing that the analytical results perfectly match the simula-
tions as it is shown in Fig. 9.

IX. CONCLUSIONS

In this paper we have proposed a general unified message
passing theory to calculate analytically mutual percolation on
locally treelike multiplex networks. While recent message
passing methods had so far mostly dealt with multiplex
networks without link overlap, here we have shown that this
approach can be generalized to the latter, more difficult, case.
Our results show explicitly that one can describe the mutual
component without resorting to super-nodes [39,40], which
were used for investigating two-layer multiplexes with overlap.
Additionally, our approach allows the immediate treatment
of the percolation transition in multiplex networks with an
arbitrary number of layers M , extending greatly the variety of
multiplex networks that can be studied.

Here we have distinguished between two different perco-
lation problems—directed and classical mutual percolation.
These percolation problems both reduce to the original mutual
percolation scenario if there is no link overlap. Our formalism
shows that percolation and directed percolation in multiplex
network with link overlap present different phase diagrams.
While the directed percolation transition describing the emer-
gence of the directed mutually connect giant component
is modeled by a feed-forward message passing algorithm
that can mimic an epidemic spreading, as it was recently
investigated [42], the percolation transition is solved by a
new message passing algorithm that does not have this feed-
forward character. We explored the transitions and the giant
components in multiplex networks with two and three partially
overlapping layers, for which we derived explicit equations.
In a similar way, appropriate message passing algorithms can
be used to determine the percolation transitions for any finite
number of layers. We suggest that this version of the message
passing approach can be successfully applied to even more
complex multiplex networks.
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