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We investigate nonlinear localized magnetic excitations in a one-dimensional bicomponent magnonic crystal
under a periodic magnetic field of spatially varying strength. The governing Landau-Lifshitz equation is
transformed into a variable coefficient nonlinear Schrödinger (VCNLS) equation using stereographic projection.
In general, the VCNLS equation is nonintegrable and by using Painlevé analysis, we obtain necessary conditions
for the VCNLS equation to pass the Weiss-Tabor-Carnevale Painlevé test. A sufficient integrability condition
is obtained by further exploring a transformation, which can map the VCNLS equation into the well-known
standard nonlinear Schrödinger equation. The transformation builds a systematic connection between the solution
of the standard nonlinear Schrödinger equation and VCNLS equation. The results show that the excitation of
magnetization in the form of a soliton exists on the oscillatory background with a structure similar to the form
of spin Bloch waves. Such a solution exists only when certain conditions on the coefficient of the VCNLS
equation are satisfied. To corroborate the analytical results, we performed the numerical simulation by solving
the governing VCNLS equation with integrability conditions using the split step Fourier method and the result
agrees well with analytical results, and it suggests a way to control the dynamics of magnetization in the form of
solitons by an appropriate spatial modulation of the nonlinearity coefficient in the governing VCNLS equation,
which depends on the ferromagnetic materials which form the bicomponent magnonic crystal.
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I. INTRODUCTION

The study of nonlinear excitation of magnetization in
ferromagnetic nanostructures in terms of solitary waves and
solitons has attracted much interest in the past few decades
[1–6]. The results reveal that the dynamics is governed
by the Landau-Lifshitz equation which can be mapped to
the nonlinear Schrödinger (NLS) family of equations [7].
Recently, the investigation on the formation and propagation of
a soliton in nonlinear systems with spatial periodicity became
a great topic of interest [8]. Bose-Einstein condensate (BEC)
in optical lattices [9,10], soliton in photonic lattices [11],
and so on are the typical models among them. Motivated by
these considerations, in the present paper, we investigate the
nature of excitation of magnetization in a one-dimensional
bicomponent magnonic crystal. Magnonic crystal is a ferro-
magnetic medium in which magnetic properties are spatially
varying in a periodic way along a definite direction [12]. In
the linear studies, the observation and studies on frequency
band-gap formation in magnonic crystals is well studied.
The special feature of the composite ferromagnetic structure
is the formation of an energy band gap in their spectrum
of spin waves. The band gap represents a range of energy
values in which the spin-wave excitations are forbidden
from propagation [13]. The theoretical and experimental
investigations on these periodic ferromagnetic structures are
mostly devoted to linear phenomena [14]. The studies on the
propagation of a soliton in a magnonic crystal are insufficient;
there are only a few specific studies in the field that show
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the experimental and numerical simulation results based on a
one-dimensional NLS equation. The bright and dark solitons
were observed in yittrium iron garnet films with artificial
periodicity [15–17]. Morozova et al. investigated the features
of the formation of the soliton that are similar to Bragg solitons
in the ferromagnetic one-dimensional periodic structure using
coupled mode theory [18]. He et al. studied the modulation
instability and gap solitons in ferromagnetic films under a
periodic magnetic field using a multiscale expansion method
[19]. The earlier studies are based on homogeneous ferromag-
netic films and achieve periodicity by varying the thickness of
the films or by applying a spatially varying periodic magnetic
field [18,19]. In this present study, we consider an infinite
one-dimensional magnonic crystal formed by a periodic
array of distinct elements and investigate the nature of the
excitation of magnetization in a one-dimensional bicomponent
magnonic crystal and also study the impact of material
parameters variation on the excitation of magnetization under
a periodic magnetic field of spatially varying strength. The
paper is organized as follows. In Sec. II, the one-dimensional
magnonic crystal model under a periodic magnetic field of
spatially varying strength is discussed and the dynamical
equation is derived. The governing variable coefficient non-
linear Schrödinger (VCNLS) equation is analyzed through
Painlevé analysis to obtain integrability conditions, and it
is mapped into the standard NLS equation using a suitable
transformation in Sec. III. In Sec. IV, the soliton solutions
for a one-dimensional (1-D) magnonic crystal with a different
ferromagnetic material combination is constructed, and the
impact of material parameters on the localized excitation
of magnetization is discussed. In Sec. V the analytical
results are compared with the numerical simulation of the
governing VCNLS equation using the split step Fourier
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FIG. 1. Schematic drawing of a one-dimensional bicomponent
magnonic crystal and its coordinate system. A and B are two
ferromagnetic materials.

method (SSFM). Conclusions of the work are summarized in
Sec. VI.

II. MODEL AND DYNAMICAL EQUATION

We consider an infinite one-dimensional bicomponent
magnonic crystal represented by a system of alternating
uniform ferromagnetic layers of two different materials A and
B as shown in Fig. 1. The layers have different values of
exchange length parameter Jex and saturation magnetization
MS throughout the sample. Let Jex,A and Jex,B be the exchange
lengths for the ferromagnetic materials A and B, respectively.
Let MS,A and MS,B be the saturation magnetizations for the
ferromagnetic materials A and B, respectively. The equation of
motion of the magnetization in the 1-D bicomponent magnonic
crystal is governed by the following Landau-Lifshitz (LL)
equation [20]:

∂ �M(�r,t)
∂t

= −γ �M(�r,t) × �Heff(�r,t), (1)

where γ is the gyromagnetic ratio, �M(�r,t) is the direction
of magnetization, and �Heff denotes the effective field. In
general, the effective field is the sum of several components
that includes the applied field, the anisotropy field, the
demagnetization field, and the exchange field which are all
dependent on space, and we assume the magnetization is
nonuniform along the x direction:

�Heff = �H0 + �Hani + �Hd + �Hex. (2)

The first component �H0 is the applied magnetic field of
spatially varying strength which is inhomogeneous in space
along the x direction and applied along the z direction. �Hani

represents the anisotropy field, which is given by

�Hani = β(x)Mzẑ, (3)

where β(x) represents the anisotropy constant.
The third component �Hd arises entirely from the demag-

netizing field that corresponds to the shape anisotropy. In the
case of a film in x-y plane, the demagnetization field is given
by

�Hd = λMzẑ, (4)

where λ = −1. The exchange field �Hex given by [21]

�Hex = Jex(x) �∇2 �M(�r,t). (5)

Here Jex(x) is the exchange length. Thus, the total effective
field �Heff takes the form of

�Heff = H0(x)ẑ + β(x)Mzẑ + λMzẑ + Jex(x) �∇2 �M(�r,t). (6)

Upon using the above expression for the effective field,
Eq. (6) in Eq. (1), we get

∂ �M(�r,t)
∂t

= − γ �M × [H0(x)ẑ + β(x)Mzẑ + λMzẑ

+ Jex(x) �∇2 �M(�r,t)], (7a)

M2
x + M2

y + M2
z = MS(x)2, (7b)

where Jex(x), MS(x), and β(x) are material parameters which
are periodic functions with a period equal to the magnonic
crystal lattice constant a.

The exchange length Jex(x) is represented as

Jex(x + a) = Jex(x) =
{
Jex,A 0 � x < a/2,

Jex,B a/2 � x < a.

The saturation magnetization MS(x) is represented as

MS(x + a) = MS(x) =
{
MS,A 0 � x < a/2,

MS,B a/2 � x < a.

Similarly, the anisotropy constant β(x) is represented as

β(x + a) = β(x) =
{
βA 0 � x < a/2,

βB a/2 � x < a.

Since the Landau-Lifshitz equation is a continuous equation,
the material parameters should be represented in continuous
form. To make its continuous which are expanded in the form
of the Fourier series

Jex(x) = Jav +
∑
n=1

(
�J

nπ

)
[1 − (−1)n] sin

(
2nπx

a

)
. (8)

The saturation magnetization MS(x) is represented as

MS(x) = MS,av +
∑
n=1

(
�MS

nπ

)
[1 − (−1)n] sin

(
2nπx

a

)
.

(9)
Similarly, the anisotropy constant β(x) is represented as

β(x) = βav +
∑
n=1

(
�β

nπ

)
[1 − (−1)n] sin

(
2nπx

a

)
, (10)

where �J = Jex,A − Jex,B, �M = MS,A − MS,B , and �β =
βA − βB. Jav, MS,av, and βav represent the average exchange
length, saturation magnetization, and anisotropy constant
value of two ferromagnetic materials A and B, respectively. In
this composite ferromagnetic structure the material parameters
are varying gradually at the interface between the two
ferromagnetic materials, and the average values of the material
parameters represent a value of the material parameter of
the periodic ferromagnetic system at the exact center of the
interface between the two ferromagnetic materials.

The LL equation is a vector nonlinear partial differential
equation and it is difficult to solve in its original form. By
using stereographic projection, we transform the LL equation
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into a nonlinear equation of a complex function. Here assume
that the magnetization is nonuniform along the x direction. In
the component form Eq. (7) becomes

∂Mx

∂t
= − γ

{
H0(x)My + β(x)MzMy + λMzMy

+ Jex(x)

(
My

∂2

∂x2
Mz − Mz

∂2

∂x2
My

)}
, (11)

∂My

∂t
= −γ

{
−H0(x)Mx − β(x)MzMx − λMzMx

− Jex(x)

(
Mx

∂2

∂x2
Mz − Mz

∂2

∂x2
Mx

)}
, (12)

∂Mz

∂t
= − γ

{
Jex(x)

(
Mx

∂2

∂x2
My − My

∂2

∂x2
Mx

)}
. (13)

We define

ψ(x,t) = Mx + iMy

MS(x)
, (14)

ψ∗(x,t) = Mx − iMy

MS(x)
, (15)

where ψ is a complex variable, and then we have

mz(x,t) = (1 − |ψ |2)1/2. (16)

Consider a small deviations of magnetization from the equi-
librium direction corresponding to |ψ |2 � 1 and under the
long wavelength approximation by keeping only the nonlinear
terms of magnitude |ψ |2ψ [22]. Substituting Eqs. (14) to (16)
into the component form of Eq. (7), we get

i
∂ψ

∂t
=

(
Jex(x)

Jav

MS(x)

MS,av

)
∂2ψ

∂x2
− 1

2
[1 − β(x)]

(
MS(x)

MS,av

)
|ψ |2ψ

−
[(

H0(x)

MS,av

)
− [1 − β(x)]

(
MS(x)

MS,av

)]
ψ. (17)

Here, the temporal and spatial coordinates are rescaled by
to = 1/(γMS,av) and lo = √

(Jav), respectively. Let

f (x) =
(

Jex(x)

Jav

)(
MS(x)

MS,av

)
,

g(x) = [1 − β(x)]

(
MS(x)

MS,av

)
,

h(x) =
(

H0(x)

MS,av

)
− [1 − β(x)]

(
MS(x)

MS,av

)
.

Equation (17) becomes

i
∂ψ

∂t
− f (x)

∂2ψ

∂x2
+ 1

2
g(x)|ψ |2ψ + h(x)ψ = 0. (18)

Equation (18) is the nonlinear Schrödinger equation with
variable coefficients.

When f (x) = g(x) = h(x) = constant, Eq. (18) reduces
to the completely integrable nonlinear Schrödinger equation
which admits N-soliton solutions [23]. In the absence of a
cubic term, the above Eq. (18) is a linear periodic system
which admits Bloch wave solutions and in the presence of a
cubic term, it is a completely nonlinear problem. In general,
the above VCNLS equation is nonintegrable and by using

Painlevé analysis, we obtain necessary conditions for the
VCNLS equation to be integrable and which is discussed in
forthcoming section.

III. PAINLEVÉ ANALYSIS AND INTEGRABILITY
CONDITIONS

Several tools such as Painlevé analysis [24], Lax pair [25],
and similarity transformation techniques [26] are available to
solve a VCNLS equation to obtain analytical solutions. Our
analysis is based on the Painlevé test for partial differential
equations, i.e., the Weiss-Tabor-Carnevale (WTC) test, which
has been found to be a successful tool for investigating the
integrability of partial differential equations. In this section,
we use the WTC test to obtain an integrability condition for
the VCNLS equation and then under this condition, we look for
a transformation which converts the Eq. (18) to the standard
NLS equation. In order to perform conveniently, we rewrite
the Eq. (18) and its complex conjugate by replacing ψ by a

and ψ∗ by b we obtain

i
∂a

∂t
− f (x)

∂2a

∂x2
+ 1

2
g(x)a2b + h(x)a = 0, (19a)

−i
∂b

∂t
− f (x)

∂2b

∂x2
+ 1

2
g(x)b2a + h(x)b = 0, (19b)

where f (x), g(x), and h(x) are real functions.
The next step is to seek the solution in the form of the

Laurent series

a(x,t) =
∞∑

j=0

aj (x,t)φα+j (x,t), (20a)

b(x,t) =
∞∑

j=0

bj (x,t)φβ+j (x,t), (20b)

where aj , bj , and φ(x,t) are analytic functions. α and β are
negative integers to be determined from the leading order
analysis.

A. Leading order analysis

By the standard procedure, to determine the leading orders
we substitute a ∼ a0φ

α and b ∼ b0φ
β in Eq. (19) and compare

the terms of smallest order

α + β = −2,

which gives integer α = −1 and β = −1, and in addition one
can obtain the following relations:

2f (x)a0φ
2
x − 1

2
g(x)a2

0b0 = 0, (21a)

2f (x)b0φ
2
x − 1

2
g(x)b2

0a0 = 0, (21b)

and it gives

a0b0 = 4

(
f (x)

g(x)

)
φ2

x . (22)
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B. Resonance and arbitrary functions

Substituting Eq. (20) into Eq. (19) and for j = 0 equating
the coefficients φ−3, we obtain equations Eq. (21). For j � 1
equating the coefficients φj−3 we get the following relations:

[f (x)(j 2 − 3j + 2)φ2
x − a0b0g(x)]ar −

(
g(x)

2

)
a2

0br = 0,

(23a)

−
(

g(x)

2

)
b2

0ar + [f (x)(j 2 − 3j + 2)φ2
x − a0b0g(x)]br = 0

(23b)

where ar and br are the analytic functions at resonance and
obtain resonance level at j = −1,0,3,4. The resonance point
at j = −1 corresponds to the arbitrariness of the singular
manifold φ(x,t).

For j = 0 we have only one relation

a0b0 = 4

(
f (x)

g(x)

)
φ2

x . (24)

There are two unknown functions a0 and b0 but we have only
one relation. So, one of the functions can be taken as arbitrary.

For j = 1, we obtain

a1 =
(

1

12f φ2
x

){−8f a0xφ
3
x + 6ia0φtφ

2
x − 2f a0φ

2
xφxx

+ ga2
0b0xφx

}
, (25a)

b1 =
(

1

12f φ2
x

){−8f b0xφ
3
x − 6ib0φtφ

2
x − 2f b0φ

2
xφxx

+ gb2
0a0xφx

}
. (25b)

For j = 2 we obtain

a2 =
(

4

3

)(
1

ga2
0b

2
0

){
−ia0b0a0t −

(g

2

)
a2

0b0a1b1

−
(g

2

)
a0b

2
0a

2
1+f a0b0a0xx −

(
i

2

)
a2

0b0t−
(

1

2

)
a2

0f b0xx

−
(

1

2

)
ha2

0b0 +
(g

4

)
a3

0b
2
1

}
, (26a)

b2 =
(

4

3

)(
1

ga2
0b

2
0

){
ia0b0b0t −

(g

2

)
b2

0a0a1b1

−
(g

2

)
b0a

2
0b

2
1+f a0b0b0xx+

(
i

2

)
b2

0a0t −
(

1

2

)
b2

0f a0xx

−
(

1

2

)
hb2

0a0 +
(g

4

)
b3

0a
2
1

}
. (26b)

At j = 3, we get a linear relation between a3 and b3 and
one of them is arbitrary:

b0a3 + a0b3 =
( −2

a0g

){
−f (2a2xφx + a2φxx)

+ g
[
a0a1b2 + b0a1a2 + b1

2

(
2a0a2 + a2

1

)]
+ i(a2φt + a1t ) − f a1xx + ha1

}
, (27a)

b0a3 + a0b3 =
( −2

b0g

){
−f (2b2xφx + b2φxx)

+ g
[
b0b1a2 + a0b1b2 + a1

2

(
2b0b2 + b2

1

)]
− i(b2φt + b1t ) − f b1xx + hb1

}
. (27b)

Equating (27a) and (27b) and substituting Eqs. (24) to (26),
we obtain a compatibility equation at j = 3:

2f φx(b0a2x − a0b2x) + f φxx(b0a2 − a0b2)

− g
(
b2

0a1a2 − a2
0b1b2

) −
(

g

2

)
a1b1(b0a1 − a0b1)

− iφt (b0a2 + a0b2) − i(b0a1t + a0b1t )

+ f (b0a1xx − a0b1xx) − h(b0a1 − a0b1) = 0. (28)

The above Eq. (28) is satisfied if and only if(
fx

f

)2

+
(

fxgx

fg

)
+ 4

(
gx

g

)2

−
(

fxx

f

)
− 2

(
gxx

g

)
= 0.

(29)

From Eq. (29), we do not obtain clear explicit integrability
conditions for the VCNLS equation in terms of its coefficients
f (x) and g(x). So, we extend our analysis to the next resonance
level.

At j = 4, we get a linear relation between a4 and b4 and
one of them is arbitrary:

−b0a4 + a0b4 =
( −2

a0g

){
ia2t + 2ia3φt − f [a2xx + 4a3xφx

+ 2φxxa3] + g

[
a0a1b3+

(
b2

2

)(
a2

1 + 2a0a2
)

+
(

b1

2

)
(2a0a3 + 2a1a2)

+
(

1

2

)
b0

(
2a1a3 + a2

2

)] + ha2

}
, (30a)

−b0a4 + a0b4 =
(

2

b0g

){
−ib2t − 2ib3φt−f [b2xx + 4b3xφx

+ 2φxxb3] + g

[
b0b1a3+

(
a2

2

)(
b2

1 + 2b0b2
)

+
(

a1

2

)
(2b0b3 + 2b1b2)

+
(

1

2

)
a0

(
2b1b3 + b2

2

)] + hb2

}
. (30b)

Equating (30a) and (30b) and substituting Eqs. (24) to
(26) and also a3 and b3 of the resonance at j = 3. we get
a compatibility equation at j = 4:

4φxf (b0a3x + a0b3x) + 2f φxx(b0a3 + a0b3)

+ f (b0a2xx + a0b2xx) − g
[
2a0b0a1b3 + 2a0b0a2b2

+ 2a0b0b1a3 + b0a1b1a2 + a0a1b1b2 + b2
0a1a3 + a2

0b1b3

+ 1
2b0b2a

2
1 + 1

2a0a2b
2
1 + 1

2b2
0a

2
2 + 1

2a2
0b

2
2

] − i(b0a2t − a0b2t )

− 2iφt (b0a3 − a0b3) − h(b0a2 + a0b2) = 0. (31)
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The above equation is satisfied if and only if the following
conditions are satisfied:(

fx

f
+ 2

gx

g

)
= 0, (32)

which integrates to give

f (x) = k

g(x)2
, (33)

h(x) =
(

k

2

)[
gxx

g3
− 3

2

g2
x

g4

]
, (34)

where k is an integration constant. By employing the Painlevé
method for the governing VCNLS Eq. (18), the integrability
conditions are obtained. Here,

f (x) =
(

Jex(x)

Jav

)(
MS(x)

MS,av

)
,

g(x) = [1 − β(x)]

(
MS(x)

MS,av

)
,

h(x) =
(

H0(x)

MS,av

)
− [1 − β(x)]

(
MS(x)

MS,av

)
.

The difference in anisotropy constant values β between the
constituent materials tends to be low and the effect of this
inhomogeneity is minimum. Hence assume this component to
be negligible. Then,

f (x) =
(

Jex(x)

Jav

)(
MS(x)

MS,av

)
,

g(x) =
(

MS(x)

MS,av

)
,

h(x) =
(

H0(x)

MS,av

)
−

(
MS(x)

MS,av

)
.

Substituting f (x), g(x), and h(x) in Eqs. (33) and (34) we get
the integrability conditions as(

Jex(x)

Jav

)
=

(
k

M3
S,av

M3
S(x)

)
, (35)

and (
H0(x)

MS,av

)
−

(
MS(x)

MS,av

)

= M2
S,av

(
−3M

′2
S (x) + 2MS(x)M

′′
S(x)

4M4
S(x)

)
, (36)

i.e.,

H0(x)

MS,av
=

(
MS(x)

MS,av

)
+ M2

S,av

(
−3M

′2
S (x) + 2MS(x)M

′′
S(x)

4M4
S(x)

)
.

(37)

The above integrability conditions are consistent with [9] and
[24]. The material parameter exchange constant Jex(x), which
is inhomogeneous in space related to the saturation magnetiza-
tion MS(x) is given by Eq. (35). The material combination of
two different ferromagnetic materials that we have chosen to
form a magnonic crystal is such that the material combination

satisfies the above integrability condition, Eq. (35). From
Eq. (37) it is noted that the form of the periodic applied
magnetic field is determined by the ferromagnetic materials
which form the magnonic crystal. The applied magnetic field is
periodic in space and its periodicity forms a periodic potential
for the spin waves. The form of the potential is related to
saturation magnetization MS(x) which is given by Eq. (37).

Further, we have to construct the solution of the VCNLS
equation by using a transformation which converts Eq. (18)
into a standard NLS equation. We look for the transformation
of the form [9],

ψ(x,t) = r(x)q(X(x),T (t)), (38)

where X = X(x) and T = T (t) and r(x) are the real functions
to be determined.

Substituting Eq. (38) into Eq. (18), we obtain set of
following equations:

f (x)rxx + h(x)r(x) = 0, (39)

2rxXx + r(x)Xxx = 0, (40)

Tt = f (x)X2
x = g(x)r(x)2, (41)

and

iqT − qXX + 1
2 |q|2q = 0. (42)

By using the integrability conditions, the above constraint
equations are solved and give

r(x) =
√

1

g(x)
, (43)

X(x) =
∫

g(x)dx, and T (t) = t. (44)

Then, we obtain the solution of Eq. (18) by the known solution
of the standard NLS equation, q(X,T ),

ψ(x,t) =
√

1

g(x)
q(X(x),T (t)). (45)

Here, q(X,T ) is the solution of the standard NLS equation,
Eq. (42), and there exists several methods to solve the
standard NLS equation, such as the classical inverse scattering
transform (IST), the Darboux transformation (DBT), the
Hirota bilinear method, and so on. In this article, the Hirota
bilinear method is used to construct the dark one soliton
solution:

q(X(x),T (t)) = 1√
2
{c − 2id tanh[d(X − cT )]}

× exp

[−i

2
(c2 + 4d2)T

]
. (46)

IV. RESULTS AND DISCUSSION

From Eq. (45), we obtain

ψ(x,t) = 1√
2g(x)

{
c − 2id tanh

[
d

(∫
g(x)dx − ct

)]}

× exp

[−i

2
(c2 + 4d2)t

]
, (47)

032222-5



D. GIRIDHARAN, P. SABAREESAN, AND M. DANIEL PHYSICAL REVIEW E 94, 032222 (2016)

where the parameters c and d correspond to the velocity and
depth of the dark soliton, respectively, and

g(x) = 1 +
∑
n=1

(
MS,A − MS,B

MS,avnπ

)
[1 − (−1)n] sin

(
2nπx

a

)
,

(48)

which is written as

g(x) = 1 +
∑
n=1

ln sin

(
2nπx

a

)
, (49)

ln =
(

MS,A − MS,B

MS,avnπ

)
[1 − (−1)n], (50)

where ln is the control parameter which determines the nature
of the magnonic crystal. MS,A and MS,B are the saturation
magnetizations for the ferromagnetic materials A and B,
respectively. MS,av is the average saturation magnetization
value of two ferromagnetic materials A and B. The material
parameter MS(x) varies smoothly at the interface between the
two ferromagnetic materials, and the average value represents
the saturation magnetization value of the periodic ferromag-
netic system at the exact center interface point between the
two ferromagnetic materials.

As we mentioned earlier, the Landau-Lifshitz equation
is a continuous equation which describes the equation of
motion of magnetization in a ferromagnetic medium. Here we
consider a periodic ferromagnetic system in which the material
parameter varies periodically. In order to make it continuous
and incorporate it into the LL equation, we use Fourier series
to represent the periodic material variation into continuous
form. In the above equation, g(x) represents continuous form
for the variation of saturation magnetization value at all points
in the periodic ferromagnetic system having equal widths. By
using two different ferromagnetic materials to form a periodic
ferromagnetic structure, the form of g(x) changes accordingly.
The results show that the amplitude of the soliton solution
depends on the nonlinearity coefficient g(x), which means
that the soliton can be spatially modulated and admits several
interesting phenomena.

TABLE I. Experimentally observed material parameters for
analytical and numerical calculations [20].

Saturation Magnetization Exchange Length
Material MS (106 A/m) Jex (nm)

Fe 1.752 3.30
Co 1.445 4.78
Py 0.860 7.64

From ψ , we obtain the components of magnetization as

mx(x,t) =
(

ψ + ψ∗
2

)
, (51)

my(x,t) =
(

ψ − ψ∗
2i

)
, (52)

mz(x,t) = (1 − |�|2)
1
2 . (53)

A magnonic crystal system formed by a periodic array of
distinct ferromagnetic elements and its structure is formed
with lattice constant a = 500 nm, by choosing the width
of the each layer as 250 nm. The magnon density profile
|�|2 = 1

2g(x) [c
2 + 4d2 tanh2 {d[

∫
g(x)dx − ct]}], for the two

materials (a) 250Fe-250Co and (b) 250Co-250Py is shown in
Fig. 2. The material parameters used for calculations are taken
from Ref. [20] shown in Table I.

The excitation of magnetization in the composite magnonic
crystal structure with the above mentioned integrability con-
ditions is in the form of a soliton that exists in the oscillatory
background with a structure similar to the form of spin Bloch
waves [27]. The periodic applied magnetic field of spatially
varying strength of the form given in Eq. (37) which is the
condition for integrability of the governing VCNLS equation
is shown in Fig. 3 for the combination of (a) 250Fe-250Co and
(b) 250Co-250Py. The parameter g(x) determines the nature of
the magnonic crystal and periodic applied magnetic field which
act as a periodic potential for spin waves. The periodic potential
has different depths for the different combinations of the
magnonic crystal structure and form of the potential given in
Eq. (37) and shown in Fig. 3. Experimentally it is achieved by
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FIG. 2. The profile of magnon density |�|2 = m2
x + m2

y , in the form of a soliton with a background of spin Bloch waves in three dimensions
with parameters c = 0.03 and d = 0.3 for the two materials (a) 250Fe-250Co and (b) 250Co-250Py.
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FIG. 3. Periodic applied magnetic field of spatially varying strength which is the condition for integrability from Eq. (37) for the combination
of (a) 250Fe-250Co and (b) 250Co-250Py.

periodically screening the uniform field [28]. Figure 4 shows
the propagation of the magnon density profile in the form of
a soliton on the background of spin Bloch waves at different
times: Figs. 4(a) and 4(b) for the combination of 250Fe-250Co
at times t = 1 and t = 7 ns, respectively; and Figs. 4(c) and
4(d) for 250Co-250Py at times t = 1 and t = 7 ns, respectively.
For time t = 1 ns, the soliton position is located at 62 and 78
nm for 250Fe-250Co and 250Co-250Py, respectively. At time
t = 7 ns, the position of the localized soliton profile varies and
is located at 420 and 438 nm, respectively, for 250Fe-250Co
and 250Co-250Py. Thus, the Fig. 4 clearly shows that the
velocity of the soliton propagating in the composite magnonic
crystal structure varies with respect to different combinations.
Also one can utilize the composite structure effect to control
and change the velocity of the soliton accordingly.

V. NUMERICAL RESULTS

In order to corroborate our analytical results, the numerical
computation of the soliton profile is carried out by solving
the governing VCNLS equation, Eq. (18), with integrability
conditions using the SSFM [29]. The split step Fourier method
is a pseudospectral numerical method, to solve nonlinear
partial differential equations and it relies on computing the
solution in small steps. In the SSFM, the corresponding
nonlinear partial differential equation is split into linear and
nonlinear parts. The nonlinear part is solved in the time domain
and the linear part solved in the frequency domain by means of
a Fourier transform. In this section, we have solved the Eq. (18)
with integrability conditions and the corresponding soliton
profiles are plotted in Fig. 5. The material parameters used for
calculations are taken from Ref. [20] shown in Table I. Figure 5
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FIG. 4. The spatial profile of magnon density |�|2 = m2
x + m2

y , in the form of a soliton on the background of spin Bloch waves in two
dimensions (2D) with parameters c = 0.03 and d = 0.3, at different times (a) t = 1 and (b) t = 7 for 250Fe-250Co, and (c) t = 1 and (d)
t = 7 ns for 250Co-250Py. The localized soliton position varies with respect to time for the combinations of 250Fe-250Co and 250Co-250Py.
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FIG. 5. Profile of magnon density |�|2 = m2
x + m2

y , in the form of a soliton on the background of spin Bloch waves in 2D with parameters
c = 0.03 and d = 0.3 based on a numerical study, for the material combination 250Fe-250Co at different times (a) t = 1 and (b) t = 7 ns, and
for the material combination 250Co-250Py at times (c) t = 1 and (d) t = 7 ns.

shows numerical computation of the propagation of magnon
density profile |�|2 in the form of a soliton on the background
of spin Bloch waves at different times: Figs. 5(a) and 5(b)
for the combination of 250Fe-250Co at times t = 1 and t = 7
ns, respectively; and Figs. 5(c) and 5(d) for 250Co-250Py
at times t = 1 and t = 7 ns, respectively. For t = 1 ns, the
soliton profile located at 59 and 74 nm and for t = 7 ns,
it moves and located at 418 and 436 nm for materials with
combinations 250Fe-250Co and 250Co-250Py, respectively.
The numerical solution of the Eq. (18) given in Fig. 5 agrees
well with the analytical solution of the soliton profile which is
presented in Fig. 4. The stability nature of the soliton solution
depends on parameters which are material dependent and it’s
completely under our control. By choosing the ferromagnetic
materials which forms the magnonic crystal of our interest, it
is possible to tune the spatially modulated amplitude soliton.
These spatially modulated amplitude soliton solutions with
oscillatory background describe the nonlinear localized exci-
tation of magnetization in a one-dimensional magnonic crystal.

VI. CONCLUSIONS

In this paper, we have investigated the dynamics of
magnetization in a one-dimensional magnonic crystal by
transforming the governing Landau-Lifshitz equation into the
VCNLS equation, and with the aid of Painlevé analysis we

constructed the soliton solution that exists on the oscillatory
background with a structure similar to the form of spin Bloch
waves. Such solutions exists in certain constraint conditions
on the coefficients of the VCNLS equation. The results show
that the amplitude of the soliton solution has a spatial period
on the background of spin Bloch waves. For the different
combinations of the magnonic crystal structure, the position
of the localized soliton profile varies with respect to time. It
clearly shows that the velocity of the soliton propagates in
the composite magnonic crystal structure varies with respect
to different material combinations. Thus it gives an additional
degree of freedom to control the propagation of the soliton in
this composite ferromagnetic structure provided it must satisfy
the integrability conditions. We have verified the analytical
results with a numerical simulation by solving the governing
VCNLS equation with integrability conditions using the split
step Fourier method. The result of the numerical simulation
agrees well with the analytical results. The spatial distribution
of the soliton profile is determined by the free parameter g(x),
which is dependent on the saturation magnetization MS values
of the two ferromagnetic materials which are used to form
the magnonic crystal. For different combination of magnonic
crystal, the form of nonlinear coefficient g(x) varies and also
the form of the periodic applied magnetic field can be changed
to satisfy the integrability conditions. Hence the desirable
amplitude modulation of the soliton can be achieved.
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