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In data-driven system identification, values of parameters and not observed variables of a given model of
a dynamical system are estimated from measured time series. We address the question of estimability and
redundancy of parameters and variables, that is, whether unique results can be expected for the estimates or
whether, for example, different combinations of parameter values would provide the same measured output. This
question is answered by analyzing the null space of the linearized delay coordinates map. Examples with zero-
dimensional, one-dimensional, and two-dimensional null spaces are presented employing the Hindmarsh-Rose
model, the Colpitts oscillator, and the Rössler system.
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I. INTRODUCTION

Computer simulations based on mathematical models are
an important method for analyzing and applying dynamical
systems in physics and many other scientific fields. In many
cases, models are given by a set of ordinary or partial
differential equations (ODEs or PDEs) including parameters
which have to be specified by suitable measurements or using
estimation methods based on time series measured from the
process the model aims at describing.

The latter data-driven state and parameter estimation meth-
ods include synchronization- and observer-based methods
[1–4], different types of Kalman filters [5–7], or particle
filters [8,9]. With optimization-based methods [10,11], the
unknown states and parameters are estimated by minimizing
a cost function (for example, by using numerical optimization
or by solving the Euler-Lagrange equations [7,12]). Its
Bayesian probabilistic background is described, for example,
in Refs. [7,13,14]. In the geosciences these data-assimilation
methods are known as 4D-Var [15,16].

All the above-mentioned methods provide estimates for
the model variables and parameters. However, it is also
important to know how accurate and unique these estimates
are. If there are different solutions for certain model variables
and parameters which describe the measured data with a
comparable accuracy, then this is a hint that the data do
not contain enough information for achieving (almost) unique
estimates or that some parameters are redundant for specifying
the dynamics. In many cases, it is therefore desirable to identify
those quantities which cannot uniquely be estimated from the
available time series, a topic which is closely related to the
concept of observability [17–26]. While this task is completely
solved for linear systems, it remains a challenge for nonlinear
models [21,22]. In general, in control theory one considers
models given by nonlinear ODEs

ẋ(t) = F[x(t),p,u(t)], (1)

with the model state x = (x1,x2, . . . ,xD)tr, the in-
put (control variable) u(t), and the parameter vector
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p = (p1,p2, . . . ,pNp )tr. Furthermore, a scalar measurement
function is defined by

y(t) = h[x(t)], (2)

whose output signal y(t) represents measured data.
Often in this context one is interested in the identifiability

of the model Eq. (1) for some specific parameter values. For
a definition of identifiability we follow Ref. [27] and consider
two solutions x1(t) and x2(t), t � t0, of Eq. (1) generated
using the same initial state x(t0), the same input u(t), and the
parameter vectors p1 and p2, respectively. If an initial state
x(t0) and an input u(t) exists such that the trajectories coincide
[x1(t) = x2(t) ∀ t � t0] only if p1 = p2, then the model is
identifiable at p1. Note that the identifiability is a property
independent of the measurement function.

An important issue for identifiability is the existence of a
suitable input u(t). It has to apply an excitation to the system
that produces different responses for different parameter values
for some suitable initial value of the system; i.e., the input has
to be informative.

In contrast to the identifiability, the observability is a
property of the system consisting of the model Eq. (1) and the
measurement function Eq. (2). Let us consider two solutions
x1(t) and x2(t), t � t0, of Eq. (1), each generated with the
same input u(t) and having the same output y(t). If this
implies that the initial states of both solutions have to be
equal, x1(t0) = x2(t0), then the system is observable at x1. This
means that a system is observable at x(t0) if and only if x(t0)
can be uniquely reconstructed from the output y(t) and the
input u(t), t � t0. If two different outputs y1(t) and y2(t) are
available (resulting from two different measuring functions)
for a solution x(t) with initial value x(t0) and we are able
to determine x(t0) from both sets of finite data [u(t),y1(t)]
and [u(t),y2(t)], then the system is observable from both
chosen outputs. In general, one can interpret model parameters
p as (additional) state variables with trivial dynamics ṗ =
0. In this sense not only the state variables but also the
parameters of an observable (extended) system can be uniquely
estimated.

Often nonlinear dynamical models are formulated without
an input, for example when investigating systems that cannot
be (arbitrarily) driven or where only a measurement is available
without external input u(t). Therefore, in this article we
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consider this special case and focus on the input-free model

ẋ(t) = F[x(t),p] (3)

instead of Eq. (1). Furthermore, we consider the common
situation that only the output y(t) [Eq. (2)] instead of the
full state vector x(t) is experimentally accessible.

For a given model and a given measurement function it
is possible that some state variables or parameters can be
uniquely estimated from the given time series and others not.
So the full state vector cannot be determined and the system is
nonobservable. In this article we address this case and propose
a method for identifying estimable quantities which can, in
principle, be determined uniquely from the available time
series and groups of redundant quantities (parameters) whose
values cannot uniquely be determined from the given data.

To achieve this goal we make use of time-delay coordinates
[28–32] of y(t) and consider the K-dimensional forward delay
coordinates map G,

G : RD × RNp → RK, (x(t),p) �→ G[x(t),p], (4)

with

g = G[x(t),p]

= [y(t),y(t + τ ), . . . ,y[t + (K − 1)τ ]]tr
, (5)

where τ is the delay time. In general, the delay reconstruction
vector G[x(t),p] consists of a time series of K samples. Here
G[x(t),p] is computed based on the measurement function
Eq. (2), the model Eq. (3), and an initial state. For that, the
output y(t + iτ ), i = 0, . . . ,K − 1, of the system [see Eq. (2)]
is computed from the full state x(t + iτ ), which, in turn, is
computed by integrating the model Eq. (3) from t to t + iτ

using the initial state x(t).
According to [33] it is sufficient to choose K � 2(D +

Np) + 1 to make statements about the estimability of model
parameters and variables. For smaller K the correctness of the
statements is, in general, not guaranteed.

If the map G is locally invertible at given x and p, then x
and p can be uniquely reconstructed given y(t) at present and
delayed times. That is, x and p are locally estimable. This is the
case if the K × (D + Np) Jacobian matrix DG = DG(x(t),p),
computed with respect to x(t) and p, is locally invertible at
(x(t),p), i.e., has full rank.

To compute DG we consider the flow

φτ ′
: RD ⊗ RNp → RD, (x(t),p) �→ x(t + τ ′) (6)

generated by Eq. (3), such that y(t + τ ′) = h[φτ ′
(x(t),p)]. The

components of DG consist of derivatives of y(t + τ ′), τ ′ =
0,τ,2τ, . . . , computed with respect to xj (t) and pk which,
in turn, contain derivatives of the form ∂φτ ′

i (x(t),p)/∂xj (t)
and ∂φτ ′

i (x(t),p)/∂pk (φτ ′
i is the ith component of φτ ′

) and are
solutions of the linearized model equations (see, e.g., Ref. [34]
for details).

Instead of considering the observability of the full system,
here we focus on identifying the (local) estimability of
individual variables and parameters. If some of these unknown
quantities (parameters and variables) are not locally estimable,
we investigate their relationships and address the question of
which parameters may be fixed to obtain local estimability for
all (remaining) quantities. The approach discussed in detail

in Sec. II A is based on investigating the null space of the
Jacobian matrix DG of the map G. Not estimable quantities
and their relationships are identified by a suitable choice of the
basis of the null space using methods adopted from Ref. [35].

In Refs. [34,36] it is investigated how small perturbations
of the delay reconstruction vector g are mapped to small
perturbations in the state and parameter space. This approach
is extended in Sec. II B to find out how the unknown quantities
are locally correlated.

In Sec. III the optimization-based (weak-4D-Var type)
state and parameter estimation algorithm from Refs. [37,38]
is revisited. This estimation method is then used in the
subsequent examples to evaluate the results obtained by the
application of the previously suggested analyses. In particular,
we make use of the concept of a profile likelihood [39,40],
where one model parameter is manually tuned and all others
are estimated (beside the model variables) by minimizing a
cost function.

Three examples, the Colpitts oscillator [41], the Rössler
model [42–44], and the Hindmarsh-Rose neuron model [45],
are discussed in Sec. IV. In Refs. [43,44], based on derivative
coordinates, an algebraic method was presented which can be
used to find functional relationships between model parame-
ters of polynomial models [the right-hand side of Eq. (3) is a
polynomial vector field] so that the measured variable (and its
higher-order time derivatives) remains unchanged. We demon-
strate for the Rössler model that our (more general) approach
for identifying not estimable variables and parameters and their
relations provides the same results as the method presented in
Refs. [43,44].

II. THEORY

We investigate the local estimability of model variables
and parameters of a model, Eq. (3), with a scalar measurement
function, Eq. (2), by means of a delay reconstruction map,
Eq. (5).

Following the approach presented in Refs. [34,36] we
consider how small perturbations of the reconstructed state
g are related to variations of the state vector x and the
parameters p. This approach can be easily extended to
multivariate measurement functions [46]. To simplify the dis-
cussion we introduce a vector of all Nw = D + Np unknowns
w = (w1,w2, . . . ,wNw )tr = (x,p)tr ∈ RNw . If perturbations
�g = g̃ − g are (infinitesimally) small, then the unknowns
w = G−1(g) and the perturbed unknowns w̃ = G−1(g̃) can be
used in the linearization

G−1(g̃) = G−1(g) + DG−1(g̃ − g) (7)

⇒ w̃ − w = DG−1(g̃ − g) (8)

to compute the (resulting) perturbation of unknown quantities,

�w = w̃ − w = DG−1�g, (9)

with �w = (�w1,�w2, . . . ,�wNw ). The Jacobian matrix
DG−1 of G−1 is the (pseudo) inverse of the Jacobian DG(w) =
DG(x,p) and can be computed by inversion of its singular
value decomposition [35,47] (SVD),

DG = USVtr, (10)
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where the K × Nw matrix U is column orthonormal and
the Nw × Nw matrix V is orthonormal; i.e., Vtr = V−1. The
elements of the Nw × Nw diagonal matrix

S = diag(σ1,σ2, . . . ,σNw ) (11)

are the singular values σ1 � σ2 � · · · � σNw � 0 and the
pseudoinverse of DG is then given by

DG−1 = VS−1Utr . (12)

A. Dependency analysis of variables and parameters

The Jacobian matrix DG contains information about the
local estimability of variables and parameters. To obtain this
information, we rewrite Eq. (9) as

DG�w = �g. (13)

If there exists a �w 	= 0 for which �g = 0, then we know
that there exist perturbations of w which do not lead to
perturbations of g; that is, they do not affect the output signal
y(t). Since they have no impact on the measured signal,
the values of all quantities wi which are involved in such
perturbations cannot be uniquely estimated from a y time
series. To identify nonestimable quantities, we therefore want
to find out whether any �w 	= 0 exists, which fulfills

DG�w = 0; (14)

that is, we want to compute the null space (or kernel) null(DG)
of the matrix DG. If the dimension of null(DG), the nullity, is
DN = 0, then the null space contains only the null vector and
we know that any small variation of w leads to a perturbation of
g and, hence, all quantities in w are locally estimable. If DN >

0, then certain elements wi of w can be varied by �wi 	= 0
without a corresponding perturbation of g (i.e., with �g = 0).
Therefore, these quantities wi are not locally estimable from
measurements given by h, and in the following they are also
called locally redundant. For all i for which it is �wi 	= 0 the
associated columns DG(i) of DG are linearly dependent, as
one can see when expanding Eq. (14) to

DG(1)�w1 + · · · + DG(Nw)�wNw = 0. (15)

To investigate the null space, we exploit the SVD [35,47]
of DG, Eq. (10). The nullity DN is given by the number of
vanishing singular values (σi = 0). In cases where DN > 0
the null space of DG can be spanned by DN basis vectors.
For ordered singular values σ1 � σ2 � · · · � σNw−DN+1 =
· · · = σNw = 0 a set of DN orthonormal basis vectors v(i)

B ,
i = 1, . . . ,DN, spanning null(DG) is given by the last DN

columns of V. Then every perturbation �w ∈ null(DG) can
be expressed as a linear combination of these basis vectors,

�w = a1v(1)
B + · · · + aDN v(DN)

B , (16)

with the real coefficients a = (a1, . . . ,aDN )tr. If the ith compo-
nents of all basis vectors are zero, then a perturbation �wi 	= 0
is not possible within null(DG). This means that any (small)
perturbation of wi leads to a perturbation �g 	= 0 of the
measured time series represented by g and, therefore, wi can
be uniquely reconstructed from g.

To summarize the basis vectors, we introduce a Nw × DN

basis matrix VB = [v(1)
B , . . . ,v(DN)

B ] whose columns are the last

DN columns of V. Then, Eq. (16) can be rewritten as

�w = VBa. (17)

If the ith row of VB contains zeros only, then this implies
�wi = 0 and a perturbation of wi within null(DG) is not
possible. As mentioned before, this means that the variable or
parameter wi can be uniquely reconstructed from g.

Since the SVD is typically computed numerically (as in the
examples in Sec. IV), the singular values may be very small
but not exactly zero. Therefore, in the following a singular
value σi is considered as “zero” (or vanishing) if the ratio of σi

and the maximal singular value σ1 is of the order of magnitude
of the machine precision, σi/σ1 ≈ 10−15.

A situation which may occur (but is not considered in this
article) is that the spectrum of singular values can show a
smooth transition to very small singular values (of orders of
magnitude 10−15). In this case, one may not clearly distinguish
between vanishing and nonvanishing singular values and an
additional criterion for specifying “vanishing” singular values
would be required. In the examples we consider in Sec. IV,
however, that this difficulty does not occur and vanishing
singular values can clearly be identified because nonvanishing
singular values are orders of magnitude larger than vanishing
ones.

1. Investigating the null space

In the case when locally not estimable variables and
parameters are recognized, the question arises as to which
of them may be removed from the analysis or the estimation
problem so that, as a result, all remaining quantities are locally
estimable. We address this issue by considering the situation
for a one- and a multidimensional null space separately.

If the null space of DG is DN = 1 dimensional only and,
hence, can be spanned by the basis vector vB (last column of
V), then it contains any variation

�w = a · vB, (18)

where a ∈ R.
The pattern of zero and nonzero elements of vB determines

which quantities wi are locally estimable and which are not.
This is illustrated in Fig. 1. In Fig. 1(a) only the first component
of vB is different from zero and any perturbation �wi 	= 0 of
w2 or w3 would leave the null space and have an impact of
the reconstructed state (�g 	= 0). Therefore, in this case w2

and w3 are estimable from the given time series. Figure 1(b)
illustrates a case where the basis vector vB contains only
a single vanishing component and w3 is estimable. If all
components of vB are different from zero [Fig. 1(c)], then
all quantities wi are not locally estimable. In this case one
of the quantities has to be fixed to a specific value such that
no perturbations of this quantity are possible any longer. For
the three-dimensional example shown in Fig. 1 this means
that perturbations are restricted to a two-dimensional plane
which intersects the line representing the null space spanned
by vB in a point. The additional constraint (here �w2 = 0)
thus reduces the dimension of the null space from one to zero
such that both remaining quantities (here w1 and w3) become
locally estimable.
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FIG. 1. Illustration of different orientations of a one-dimensional
null space.

Fixing wi by prohibiting its variation via �wi = 0 by
setting wi to a fixed value instead of estimating it in an
estimation problem immediately sets a = 0 in Eq. (18) if
vB,i 	= 0. Therefore, variations of all other quantities are also
prohibited because of �w = 0. In other words, setting any
variable wi whose corresponding component of the basis
vector vB does not vanish (vB,i 	= 0) to a fixed value makes
all other quantities locally estimable.

Next we consider the situation where the null space of
DG is DN > 1 dimensional. That means that at least DN

quantities have to be fixed by prohibiting their variation to
make all quantities locally estimable. The variation within the
null space can be expressed as a linear combination of the
basis vectors v(i)

B constituting the basis matrix VB (obtained
via SVD; see Sec. II A) and the real coefficients summarized
in a; see Eqs. (16) and (17).

The question is now which quantities are to be fixed so
that all remaining quantities become locally estimable, i.e.,
�w = 0. Component �wi vanishes if the corresponding ith
row of the basis matrix VB contains only vanishing elements.
If this is not the case, the corresponding prefactor ai has to
be set to zero by fixing another quantity wj . This depends on
the pattern of zero elements of the basis matrix VB. If, for
example, for three unknowns and DN = 2 the basis matrix has
the form

VB =
[
v(1)

B ,v(2)
B

]
=

⎛⎜⎜⎝
v

(1)
B,1 0

v
(1)
B,2 v

(2)
B,2

v
(1)
B,3 v

(2)
B,3

⎞⎟⎟⎠, (19)

then Eq. (17) implies that fixing (w1,w2) or (w1,w3)
makes all quantities locally estimable [(�w1,�w2) = (0,0)
or (�w1,�w3) = (0,0) imply �w = 0], while fixing (w2,w3)
does not imply a1 = 0 and �w = 0.

The occurrence of zero elements of the basis matrix VB

may have two possible reasons. (i) If quantity wi is locally
estimable, then the ith row of VB is occupied by zero elements
(and thus �wi = 0). This pattern of zeros occurs whenever a
SVD of a Jacobian matrix is computed at a state vector where
the local estimability condition is fulfilled and since this is
typically the case for (almost) all states, it is also characteristic

Δw1

Δw2

Δw3

v(1)
B

v(2)
B

ṽ(1)
B

ṽ(2)
B

FIG. 2. Illustration of different bases of a two-dimensional null
space. v(1)

B and v(2)
B denote the orthonormal basis vectors obtained with

the SVD, while ṽ(1)
B and ṽ(2)

B are the nonorthogonal basis vectors with
vanishing components computed using Eq. (22).

for the distribution of the corresponding component computed
with a representative set of states on the attractor. In this sense,
(locally) estimable quantities wi are immediately visible in
the basis matrix VB as rows with zero elements. (ii) The
second type of vanishing element of the basis matrix VB is
less obvious, because it depends on the (proper) orientation
of the basis vectors of the null space. This issue is illustrated
in Fig. 2 for the case DN = 2. The numerical SVD provides
a pair of orthonormal vectors v(1)

B and v(2)
B which span the

null space but contain no vanishing elements. On the other
hand, there exist (in general, nonorthogonal) basis vectors
which are partly aligned with the axes of the quantities to be
estimated and thus possess vanishing elements as shown for
a particular example (̃v(1)

B and ṽ(2)
B ) in Fig. 2. In the following

we introduce a systematic change and choice of the basis of
the null-space that leads to additional vanishing components of
the basis vectors. An important feature of the resulting patterns
of vanishing components in the basis matrix is that they are
the same at different locations in state space (if the local
estimability does not change on the attractor). To compute this
basis transformation, we follow the approach from Ref. [35]
for finding linear dependent columns of a matrix. For any basis
of the null space the following holds:

DG · VB = 0. (20)

First, we choose DN quantities and define the square DN × DN

matrix VB,1 to contain the DN rows of VB which are
associated with these quantities, with the restriction that
VB,1 is nonsingular. This implies that the nullity of VB,1

is zero. Prohibiting the variations of the chosen quantities
wi via �wi = 0 immediately sets all coefficients aj = 0,
which makes every quantity locally estimable and, therefore,
is already an answer to the question of which quantities to fix.
Nevertheless, the new basis to construct also allows to read
off which other quantities may be fixed instead to obtain local
estimability.

One possible strategy to choose DN quantities is to try
different sets of chosen quantities, compute the singular values
of VB,1, and choose the combination with the largest ratio
σmin/σmax. VB,2 contains all rows of VB not contained in VB,1.
Similarly, we define DG1 which contains the DN columns of
DG which are associated with the chosen quantities. DG2
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contains all remaining columns of DG. Next, as suggested in
Ref. [35], we rewrite Eq. (20) to

[DG1 DG2]

[
VB,1

VB,2

]
= DG1 · VB,1 + DG2 · VB,2

= 0, (21)

multiply with V−1
B,1 from the right, and obtain

DG1 · 1(DN) + DG2 · VB,2V−1
B,1

= [DG1 DG2]

[
1(DN)

VB,2V−1
B,1

]
︸ ︷︷ ︸

Ṽ′
B

= 0, (22)

where 1(DN) is the DN × DN identity matrix. Now, we reorder
the columns of [DG1 DG2] to obtain DG again. If we apply
the same reordering to the rows of Ṽ′

B, then we obtain the
Nw × DN matrix ṼB and therefore the newly ordered version
of Eq. (22) is

DG · ṼB = 0. (23)

Due to the identity matrix in Ṽ′
B the columns of Ṽ′

B, and
hence the columns of ṼB, are linearly independent. Since the
number of columns of ṼB, DN, is equal to the dimension of
the null space of DG, the columns of ṼB = [̃v(1)

B , . . . ,̃v(DN)
B ]

form another basis (beside the orthogonal basis VB) of the null
space of DG. Depending on the selection of DN rows of VB,
this new basis is unique and there are no (rotational) degrees
of freedom left for the basis vectors. This feature is crucial
for comparing results at different states and for computing
histograms of relevant quantities as it will be done for the
examples presented in Sec. IV.

Furthermore, all basis vectors have a mutually different
pattern of nonzero elements. Every variation of w within the
null space of DG can then be expressed in terms of the new
basis vectors with the real coefficients ãi ,

�w = ã1̃v(1)
B + · · · + ãDN ṽ(DN)

B . (24)

How the information about possible perturbations along the
new basis vectors can be used to find local relationships
between variables and parameters is discussed in the next
section.

2. Local relationships

To reveal some local relationships between quantities,
we consider variations �w(i) along each basis vector ṽ(i)

B =
[̃v(i)

B,1, . . . ,̃v
(i)
B,Nw

]
tr
, which are given by

�w(i) = ãi ṽ
(i)
B (25)

and can be obtained by setting ãj = 0 for all j 	= i in Eq. (24).
In the case of a one-dimensional null space it is ṽ(i)

B = vB; see
Eq. (18). This illustrates that simultaneous variations of all
quantities wk , where the corresponding components v

(i)
B,k are

nonzero, are possible without affecting the output of the system
at present and delayed times, �g = 0. All other quantities are
kept unchanged. That indicates a local dependency between
these quantities. A set of locally dependent quantities exists

for every basis vector and contains all quantities where the
corresponding component of the basis vector is nonzero.
Note that such a set is not unique because the patterns of
nonzero elements of ṽ(i)

B depend of the choice of quantities to
construct VB,1.

Furthermore, to investigate how quantities wj and wk

locally depend on each other (still assuming variations along
ṽ(i)

B only), dividing the j th row of Eq. (25) by the kth row, we
consider

�w
(i)
j = ṽ

(i)
B,j

ṽ
(i)
B,k

�w
(i)
k . (26)

Whether an increase of wk leads to an increase or a decrease of
wj depends on the signs of the components of the basis vectors.
This point is illustrated in greater detail in the examples
discussed in Sec. IV. It should be noted that computing Eq. (26)
based on another basis vector than ṽ(i)

B may lead to a different
dependency, but that would not be a contradiction (see the
example with the Rössler system, Sec. IV B).

B. Correlation analysis

In Sec. II A we described a way to detect locally dependent
quantities (variables and parameters) by investigating the null
space of DG for cases where the null space is one- or higher
dimensional. There, no assumptions were made about the
distribution of perturbations �g in Eq. (13). Here we follow
Refs. [34,36] and make the assumption that the perturbations
�g are multivariate normal distributed with a covariance
matrix �g and a mean of zero,

�g ∼ N (0,�g). (27)

Since �g is locally mapped to �w via the linear function
Eq. (9), �w is also multivariate normal distributed [13,
Theorem 2.11] with a mean of zero and a covariance matrix
�w,

�w ∼ N (0,�w), (28)

where the covariance matrix is given by [13, Theorem 2.11]:

�w = DG−1�g[DG−1]tr. (29)

Furthermore, the perturbed state w̃ [see Eq. (9)] is also
normally distributed [13, Theorem 2.11],

w̃ ∼ N (w,�w), (30)

and has the same covariance matrix.
In Refs. [34,36] it was assumed that the perturbations of

the delay reconstruction vector g are uncorrelated and have
the same variance ζ 2 (a typical assumption for measurement
noise). That is, its covariance matrix is diagonal, �g = ζ 2 ·
1, where 1 denotes the identity matrix. Using Eq. (12) the
standard deviation of single parameters or variables is given
by the diagonal elements of√

�w = ζ
√

DG−1[DG−1]tr (31)

= ζ
√

[VS−2Vtr], (32)

where the square roots are meant to be computed
componentwise. Since ζ is a factor only, we set ζ = 1 and
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have defined the measure of uncertainty [34,36] for wk:

νk = ν(wk) =
√

[VS−2Vtr]kk. (33)

The larger νk is, the larger is the uncertainty when estimating
wk and the worse wk can be estimated.

In contrast to Refs. [34,36], we now consider the non-
diagonal elements to investigate the correlation between
two different quantities. This is done by considering the
Nw × Nw linear Pearson’s correlation matrix ρ consisting of
the correlation coefficients

ρij = ρ(wi,wj ) = �w,ij√
var(wi)

√
var(wj )

∈ [−1,1] (34)

and containing the variances var(wk) = �w,kk . Since �w is the
covariance matrix of both �w and w̃, their correlation matrix
ρ is also equal. For the diagonal elements, the following holds:
ρkk = 1. Now let us consider the following cases.

ρij = ±1. There is a perfect positive (�wi > 0 ⇒
�wj > 0) or negative (�wi > 0 ⇒ �wj < 0) correlation
between both perturbations. In this case there is a locally linear
relationship between both quantities.

ρij = 0. Since �w and w̃ are multivariate normal dis-
tributed, this implies that �wi and �wj , as well as w̃i and w̃j ,
are statistically independent (see [13, Theorem 2.10]).

0 < |ρij | < 1. The larger |ρij | is, the stronger is the
correlation between �wi and �wj .

To analyze the correlations between quantities, one can
compute ρ for different states and generate histograms
showing the distributions of the correlation coefficients ρij .
If, for example, ρij ≈ −1 for most of the analyzed states,
then this is a hint that it is difficult to estimate quantities wi

and wj simultaneously when performing state and parameter
estimation based on experimentally measured data from a
dynamical process. One can expect that the anticorrelation
between wi and wj reflects in the estimated values of wi

and wj . If wi is estimated to a larger value than the (usually
unknown) “true”’ value in the dynamical process, then it
is likely that wj is estimated to a smaller value than the
corresponding “true” value.

It is known (see Ref. [35]) that a large correlation coefficient
|ρij | ≈ 1 implies an (almost) linear relationship between
�wi and �wj , but a linear dependency between more than
two perturbations does not necessarily lead to a correlation
coefficient |ρij | ≈ 1. Therefore, we suggest to apply the
dependency analysis from Sec. II A 2 first to detect locally
dependent quantities and quantities which are, in principle,
locally estimable. If DG is nonsingular (DN = 0), or if one
fixes quantities in the analysis until every variation �w 	= 0
leads to �g 	= 0, then we suggest to apply the correlation
analysis.

However, even in the case of a nonsingular DG a weak
dependency might not be revealed by the correlation analysis
[35]. Another way to quantify weak dependencies is the
collinearity diagnostics suggested in Ref. [35].

III. STATE AND PARAMETER ESTIMATION ALGORITHM

The task of state and parameter estimation is to find
a trajectory for the model variables {x(n)}, x(n) = x(tn) ∈
RD , with tn = n�t and n = 0, . . . ,N − 1 and a vector of

model parameters in such a way that the trajectory fits
an (here univariate) experimental data time series {η(n)},
η(n) = η(tn) ∈ R, with tn = n�t and n = 0, . . . ,N − 1 [via a
measurement function Eq. (2)], on the one hand and fulfills the
model equations on the other hand. The approach chosen here
[37,38] is similar to weak constraint 4D-VAR [7,10,13,48,49]
and is based on minimizing a cost function. Here models in
the form of ODE Eq. (3) are used. Approximating the time
derivative by a finite difference �x(n)/�t and introducing an
error term u(n) = u(tn) in the model, the discretized equations
read

�x(n)

�t
= F [x(n),p] + u(n). (35)

To estimate a trajectory {x(n)} and model parameters p the
cost function

C({x(n)},p) =
N∑

n=0

{
α

N
[η(n) − h(x(n))]2

+ α − 1

ND
u(n)trBu(n)

}
+ C3 + C4 (36)

has to be minimized with respect to the entire trajectory {x(n)}
and the parameters p. The trajectory and parameters which
minimize C({x(n)},p) are then considered as the solution of the
estimation problem. To estimate a smooth trajectory, a Hermite
interpolation is performed by the additional sum C3 and to
force variables and parameters to stay in predefined boundaries
the sum C4 is required. Both terms are described in more detail
in Ref. [37,38]. Furthermore, a homotopy parameter α ∈ (0,1)
is used to cope with local minima in the cost function [12]. If
α ≈ 1, the estimated trajectory is very close to the data [large
modeling errors u(n) are allowed], and if α ≈ 0, the estimated
trajectory fulfills the model equations very well, but might not
match the data. Additionally, a matrix B is introduced for an
individual weighting of the error u(n). In the weak constraint
4D-Var formulation B is the inverse covariance matrix of the
modeling error u(n). In the examples we consider in Sec. IV,
however, B is chosen to be a diagonal D × D matrix. The
diagonal elements bii are set heuristically so that the estimated
solutions for the model variables are smooth. We observed
that too-small bii may lead to relatively large errors ui(n) and,
therefore, to a nonsmooth estimated trajectory of xi (at least
in the case of noisy data). The exact forms of B used in the
examples are provided in Sec. IV.

For optimization the Levenberg-Marquard [50–52] algo-
rithm is used, where derivatives and sparsity structures are
computed by means of the automatic differentiation software
ADOL-C [53–55].

IV. EXAMPLES

The aim of the examples is to demonstrate how the
dependency and correlation analysis of model states and
parameters discussed in Secs. II A and II B can be applied.

In case of the Colpitts oscillator (Sec. IV A) the null
space of DG, Eq. (13), is one dimensional and both the
dependency and correlation analysis are applied. The results
are then compared to results obtained by applying the state
and parameter estimation algorithm from Sec. III.
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In Sec. IV B the dependency analysis from Sec. II A is
applied to the Rössler model. A two-dimensional null space
of DG was found. Furthermore, it is demonstrated how sets
of dependent variables and parameters can be found. These
results are then compared to results presented in Ref. [44],
where relationships between model parameters were identified
in polynomial vector fields.

In the third example the Hindmarsh-Rose model is studied.
It was found that the null space of DG is zero dimensional.
In theory, this means that all variables and parameters should
be estimable. Applying the correlation analysis from Sec. II B,
however, shows that there is still a strong correlation between
certain model parameters. This correlation was also observed
when the state and parameter estimation algorithm from
Sec. III is applied.

A. Colpitts oscillator

In this section we use the model of the chaotic Colpitts
oscillator [41] to investigate local dependencies of model
parameters and variables. The system is given by D = 3 model
equations

ẋ1 = p1x2,

ẋ2 = −p2(x1 + x3) − p3x2, (37)

ẋ3 = p4(x2 + 1 − e−x1 ),

with the Np = 4 parameters p = (5,0.08,0.7,6.3) (equations
and parameter values are taken from Ref. [56]) and the
measurement function

h(x) = x1. (38)

To generate states for the analysis the model Eq. (37) is
integrated 106 steps with a step size of 0.1 (no transient
included) using the parameters p = (5,0.08,0.7,6.3). Then,
every 100th point from the trajectory is used for the analysis
resulting in 104 states. The dimension of the delay coordinate
vector, Eq. (5), is set to K = 20 so that with K > 2(D + Np) +
1 = 15 the sufficient condition from Ref. [33] is fulfilled and
wrong statements regarding the estimability due to too-small
K are not to be expected. Then the delay reconstruction map
Eq. (5) used for the following analysis is given by

G[x(t),p]

= [x1(t),x1(t + τ ), . . . ,x1[t + (K − 1)τ ]]tr
. (39)

Next, its K × D + Np Jacobian matrix DG is evaluated for
the 104 states. How DG can be evaluated for a specific state
and parameter vector is discussed in Sec. I.

First, we compute histograms for the singular values
σi , i = 1, . . . ,7 of DG, Eq. (11), including all four model
parameters in the analysis; see Fig. 3. The histograms are
computed in the following way. (i) The delay time τ is set to
the smallest considered value τ = 0.1. (ii) Then all normalized
singular values σi/σ1 (i = 1, . . . ,7) are computed for each of
the 104 different states on the attractor using the fixed τ . (iii)
A histogram for each σi/σ1 is computed and plotted vertically
(color coded) in the corresponding subplot. (iv) This process
is repeated with a slightly increased τ . We can see that for
all investigated states and independent on τ only the smallest
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FIG. 3. Histograms (color coded) of the normalized singular val-
ues σi/σ1, Eq. (11) (computed with delay reconstruction dimension
K = 20; log denotes the logarithm with base 10), of DG computed
with respect to all variables (D = 3) and parameters (Np = 4) of
the Colpitts oscillator, Eq. (37), where x1 is assumed to be measured,
Eq. (38). For each τ the singular values σi are computed for 104 points
on the attractor using p = (5,0.08,0.7,6.3). The smallest normalized
singular values σ7/σ1 is of magnitude smaller than 10−15 for (almost)
all states and τ and, hence, is numerically very close to zero, indicating
a one-dimensional null space of DG, Eq. (13).

normalized singular values σ7/σ1 are very close to zero. This
indicates a one-dimensional null space (DN = 1) of DG and
means that there exist �w 	= 0 with �g = 0; see Eqs. (13) and
(14). Therefore, some of the model variables or parameters are
locally not estimable because its variation does not lead to a
perturbation �g 	= 0 of the measured signal y(t) at present
time t and delayed times.

Since DN = 1, the last column of V [see Eq. (10)], vB =
v(7), is a basis vector of the null space of DG (see Sec. II A).
To simplify the association of the components of vB, the
associated variable or parameter is mentioned in brackets.
Since both vB and −vB are valid basis vectors (and both
variants may be obtained by the SVD of DG), vB is normalized
by the sign of an arbitrary nonvanishing component vB(pi)
associated with the parameter pi . We have chosen vB(p4) and
normalize vB via vB → sgn(vB(p4)) · vB.

To check whether some variables or parameters are locally
estimable, we consider histograms of the components of vB,
vB(wi), for the same 104 states and delay times τ used
previously; see Fig. 4. Only |vB(x1)| < 10−10 and |vB(p3)| <

10−10 are close to zero for all 104 states and all considered
τ . This means that it is (almost) impossible to vary x1 and p3

without changing g. Hence, x1 and p3 are as locally estimable.
All other quantities are locally redundant.

Local variations of the redundant quantities keeping g
unchanged are only simultaneously possible; see Eq. (18). To

032221-7



J. SCHUMANN-BISCHOFF, S. LUTHER, AND U. PARLITZ PHYSICAL REVIEW E 94, 032221 (2016)

−100
−10−6

0
10−6
100

v B
(x
1)

in %(a)

0
25
50
75
100

v B
(x
2)

in %(b)

0
5
10
15

−100
−10−6

0
10−6
100

v B
(x
3)

(c)

0
8
16
24

v B
(p
1)

(d)

0
10
20
30

−100
−10−6

0
10−6
100

v B
( p
2)

(e)

0
10
20
30

0.1 2.1 4.1 6.1 8.1
τ

v B
( p
3)

(f)

0
25
50
75
100

0.1 2.1 4.1 6.1 8.1
τ

−100
−10−6

0
10−6
100

v B
(p
4)

(g)

0
15
30
45

FIG. 4. Histograms (color coded) of the components vB(wi) of a
basis vector spanning the one-dimensional (see Fig. 3) null space
of DG (computed with delay reconstruction dimension K = 20)
computed with respect to all variables (D = 3) and parameters
(Np = 4) of the Colpitts oscillator, Eq. (37), where x1 is assumed to be
measured, Eq. (38). For each τ the components vB(wi) are computed
for 104 points from the attractor using p = (5,0.08,0.7,6.3). Only
vB(x1) and vB(p3) are within the interval [−10−10,10−10] for (almost)
all states and delay times τ and numerically very close to zero,
indicating that only x1 and p3 are locally estimable.

find out how these quantities pairwise depend on each other
[see Eq. (26)], we consider the ratio of the signs of vB(wi)
read off from Fig. 4. The histograms associated with the model
parameters show that there the signs of vB(wi) are independent
on the state and the delay time τ . According to Eq. (26) we see
the following. (i) A positive variation of p4, �p4 > 0, leads
to a negative variation of p1 and p2, �p1,�p2 < 0, because
of vB(p4)/vB(p1) < 0 and vB(p4)/vB(p2) < 0 and vice versa.
(ii) A variation �p4 	= 0 leads to no change of p3.

To confirm that only x1 and p3 are locally estimable, the
measure of uncertainty ν(wi), Eq. (33), was computed for
the same 104 points from the attractor and delay times τ as
previously with K = 20. First, ν(wi) was computed, including
all four model parameters in the analysis. Histograms for all
ν(wi) are shown in Fig. 5.

One can see that, on average, ν(wi) is very large (magnitude
1010 to 1015) for all i, except ν(x1) and ν(p3). This indicates a
high uncertainty for x2, x3, p1, p2, and p4. However, estimating
x1 and p3 should give accurate results due to much smaller
ν(wi) (on average). This coincides with the results from
investigating the null space of DG, which also indicated a
good local estimability of x1 and p3 since variations of these
quantities lead to variations of g.

To check this result a twin experiment is performed where
all model parameters are estimated beside the model variables
from a x1 time series using the estimation method from
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FIG. 5. Histograms (color coded) of the measure of uncertainty
ν(wi), Eq. (33) (computed with delay reconstruction dimension K =
20; log denotes the logarithm with base 10), of all variables (D = 3)
and parameters Np = 4 of the Colpitts oscillator where x1 is assumed
to be measured, Eq. (38). For each delay time τ the measure of
uncertainty ν(wi) [see Eq. (33)] is computed for 104 points on the
attractor using p = (5,0.08,0.7,6.3). On average, ν(wi) is quite large
for x2, x3, p1, p2, and p4, and much smaller for x1 and p3, indicating
a good local estimability only for x1 and p3.

Sec. III. To obtain the data time series, the model Eq. (37)
was integrated and the true solution z(t) is used to generate the
time series {η(tn)} (tn = n · 0.01, n = 0, . . . ,6000) with

η(tn) = z1(tn). (40)

The corresponding measurement function, Eq. (38), is then
used for the estimation of all model variables and all
parameters by minimizing the cost function, Eq. (36). The
weighting matrix B is chosen to be a 3 × 3 identity matrix.
Figure 6 shows the estimated solution. In panel (a) one can
see that the output of h(x) (blue line) perfectly matches
the data (light green line). In panels (b), (d), and (e) one
can see that the estimated solution of the corresponding
model variable xi (blue line) matches the true solution zi

(red dashed line) only for the first variable x1. Furthermore,
one can see in panel (c), a magnified version of panel (b),
that the magnitude of the estimated solution of x2 is much
smaller than the true solution zi . The model parameters are
estimated to p = (5573.7, 1.62 × 10−4, 0.700, 2.79). Only
p3 was estimated to the correct value used to generate the
data. These results were correctly predicted by the previously
computed measure of uncertainty [ν(p3) is much smaller
compared to the uncertainties of the other parameters] (Fig. 5)
and the components vB(wi) of a basis vector of the null space
of DG (Fig. 4). The component vB(p3) is very close to zero,
indicating that a variation of p3 is (almost) impossible without
a change of g.
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FIG. 6. State and parameter estimation of the Colpitts oscillator
Eq. (37) via measurement function h(x(t)), Eq. (38), from the
data time series {η(tn)}, Eq. (40). (a) Output of h(x(t)) (blue line)
matches the data {η(tn)} (light green line). (b),(d),(e) Estimated model
variables xi (blue line) and the true solutions zi , i = 1,2,3, (red
dashed line) used to generate {η(tn)}. (c) Zoomed version of (b).
Only x1 matches its true solution z1. Parameters are estimated to
p = (5573.7,1.62 · 10−4,0.700,2.79). That is, only p3 was estimated
to the value used to generate the data.

There exists one set of locally dependent quantities (since
DN = 1) consisting of x2, x3, p1, p2, and p4. Prohibiting
variations of one of these quantities via �wi = 0 in Eq. (18),
for example by setting wi to a fixed value instead of estimating
it in an estimation problem, sets a = 0. As a result, variations
of all other quantities are not possible within the null space
of DG, which means that all other quantities became locally
estimable. For example, fixing p3 does not set a to zero in
Eq. (18) because, according to Fig. 4, vB(p3) is (very close to)
zero. Therefore, fixing p3 would not make all other quantities
locally estimable.

We decided to remove p4 from the analysis by setting
it to the true value p4 = 6.3. One can verify that the null

space of DG, with the column associated with p4 removed,
is zero dimensional by considering the singular values of DG
(not shown here). Then we considered the correlation coeffi-
cients ρ(wi,wj ), Eq. (34), which describes local correlations
between quantities. The correlation analysis from Sec. II B
was performed for all model variables x1, x2, and x3 and the
model parameters p1, p2, and p3. The computation of the
correlation coefficients is based on the same 104 states from
the Colpitts attractor and the measurement function Eq. (38),
as previously. Figure 7 shows the histograms of all correlation
coefficients (without the diagonal elements of ρ, because they
are 1 anyway) for different τ and a reconstruction dimension
of K = 20. The plots (a) to (o) show histograms of ρ(wi,wj )
for different quantities wi and wj using different delay times
τ . In all plots the correlation coefficients are, independent of τ ,
distributed over the whole interval [−1,1]. One can see that no
perfect correlations occur because there is no histogram with
ρ(wi,wj ) ≈ ±1 for all investigated states and delay times τ .
Therefore, state and parameter estimation should give accurate
results.

In a twin experiment in Ref. [37] the parameters p1, p2, and
p3 of the Colpitts oscillator were estimated from a noisy time
series of the first model variable x1. All estimated parameter
values coincide with the values used to generate the data and
are hence estimated correctly. This also coincides with results
obtained when computing the measure of uncertainty only with
the first three, instead of all four, model parameters. To obtain
this result the previous computation of ν(wi) was repeated
including only x1, x2, x3, p1, p2, and p3 in the analysis.
Histograms of ν(wi) are shown in Fig. 8. We can see that
the uncertainties are of magnitude 1 (for larger τ ) and, hence,
much smaller than in Fig. 5 (where all four parameters are
included in the analysis).

To confirm that the set of locally dependent quantities
is correctly predicted by the dependency analysis, the twin
experiment from the beginning of this section is repeated.
There, the model of the Colpitts oscillator, Eq. (37), was
adapted to a x1 time series (no measurement noise) and all
four parameters were estimated. Instead of estimating all
four parameters simultaneously, we adapt the concept of a
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FIG. 7. Histograms (color coded) of the correlation coefficients ρ(wi,wj ), Eq. (34) (computed with reconstruction dimension of K = 20),
of all variables and the parameters p1, p2, and p3 of the Colpitts oscillator, Eq. (37), where x1 is assumed to be measured, Eq. (38). For each
delay time τ the coefficients ρ(wi,wj ) are computed for 104 points on the attractor. In all plots it is −1 < ρ(wi,wj ) < 1 for many states and τ

indicating not very strong local dependencies between the quantities.
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FIG. 8. Similar to Fig. 5, but the measure of uncertainty, ν(wi),
was only computed for x1, x2, x3, p1, p2, and p3 (without p4). For
all quantities ν(wi) is very small (on average), indicating that states
and parameters can be estimated correctly. log denotes the logarithm
with base 10.

profile likelihood [39,40]. Only the first three parameters are
estimated and p4 is set to different values. The dependency of
the estimated values of p1, p2, and p3 on the parameter p4 is
shown in Fig. 9. In more detail, the simulation was performed
in the following steps. (i) p4 is fixed to p4 = 4.0. (ii) Beside the
model variables, the parameters p1, p2, and p3 are estimated, as
shown (blue dots) in plots (a), (b), and (c). The corresponding
value of the cost function C, Eq. (36), for the estimated solution
is shown in panel (d). (iii) p4 is slightly increased and the
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FIG. 9. State and parameter estimation (using the algorithm from
Sec. III) of the Colpitts oscillator, Eq. (37), from a clean x1 time
series, Eq. (38). (a)–(c) To generate the data, the parameter values
p1, p2, p3, indicated by the red dashed lines, and p4 = 6.3 [black
vertical line in (a)–(d)] were used. For each fixed p4 the other
parameters (blue dots) and the model variables were estimated
(concept of profile likelihood [39,40]). (a),(b) The local dependency
of p1 and p2 on p4 around p4 = 6.3 is consistent with the dependency
analysis (see Fig. 4) since �p4 > 0 ⇒ �p1,�p2 < 0 and vice versa.
(c) p3 is estimated correctly independent of p4 (consistent with the
dependency analysis). (d) Cost function C, Eq. (36), is very small
at the estimated solutions, indicating a relatively flat valley in the
minimum.

estimation is repeated. The red dashed lines in panels (a)–(c)
show the value of the corresponding parameter used to generate
the data. In plots (a)–(d) the vertical black line at p4 = 6.3
shows the value of p4 used to generate the data.

First of all, one can see that for all values of p4 the cost
at the estimated solution is very small (order of magnitude of
10−8) so that it is likely that the estimated solutions are in a
global minimum of the cost function. A possible reason why
C is not exactly constant for different p4 might be truncation
errors. Further, for p4 = 6.3 the estimated values of all other
parameters coincide with the values used to generate the data.
If p4 is fixed to a value slightly smaller than 6.3 (for example
p4 = 5.5), then the estimated values for p1 and p2 are larger
than the values used to generate the data (therefore �p1,�p2 >

0), as shown in Figs. 9(a) and 9(b), respectively. If now p4 is
fixed to a value slightly larger than 6.3 (for example, p4 = 7.0),
then p1 and p2 are estimated to too-small values. In Fig. 9(b)
one can see that the dependencies are only locally correct
(around p4 = 6.3) because for p4 < 5 the parameter p2 is
estimated to too-small values. Furthermore, p3 is independent
of p4.

These results coincide with the local dependencies found
in the dependency analysis when considering the ratio of the
components of the basis vectors (see Fig. 4).

B. Rössler model

In this section we use the D = 3 dimensional Rössler model
[42] in a form presented in Refs. [43,44]. The model equations
read

ẋ1 = p1x2 + p2x3,

ẋ2 = p3x1 + p4x2, (41)

ẋ3 = p5 + p6x3 + p7x1x3,

where in the following the Np = 7 dimensional parameter
vector p = (−1,−1, 1, 0.1, 0.1,−14, 1) is used. To compare
our results with Ref. [44], we also assume that x2 is measured,

h(x) = x2. (42)

To investigate the estimability, we first integrate the Rössler
model, Eq. (41), for 104 time steps with a step size of 0.1.
Then, every 10th state (1000 different states in total) is used
for the following analysis. For each state and for different
delay times τ the Jacobian DG, Eq. (10), and its SVD of the
K = 50 dimensional delay reconstruction map Eq. (5) were
computed with respect to all three model states and all seven
model parameters. Therefore, DG is a 50 × 10 matrix. Note,
that K > 2(D + Np) + 1 = 21 and therefore the condition of
Ref. [33] is fulfilled, as discussed in Sec. I.

Histograms of the normalized singular values σi/σ1, i =
1, . . . ,10, Eq. (11), of DG are shown in Fig. 10. We can see
that the smallest normalized singular values, σ9/σ1 and σ10/σ1

are, for almost all states and τ , smaller than 10−15 and, hence,
are very close to zero. This means that the null space of DG
is DN = 2 dimensional for all investigated states and all τ ,
and it can be spanned by the two basis vectors v(1)

B = v(9)

and v(2)
B = v(10) (two last columns of V); see Sec. II A. Both

vectors are orthogonal and constitute the 10 × 2 basis matrix
VB = [v(1)

B ,v(2)
B ]; see Eq. (20). If the ith row of VB contains
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FIG. 10. Histograms (color coded) of the normalized singular values σi/σ1, Eq. (11) (computed with delay reconstruction dimension
K = 50; log denotes the logarithm with base 10), using all variables (D = 3) and parameters (Np = 7) of the Rössler-model, Eq. (41), where
x2 is assumed to be measured, Eq. (42). For each delay time τ the normalized singular values σi/σ1 of DG are computed for 1000 states from
the attractor. The two smallest normalized singular values σ9/σ1 and σ10/σ1 are of magnitude smaller than 10−15 for (almost) all states and τ

and, hence, are numerically very close to zero. This indicates a two-dimensional null space of DG and, therefore, the existence of redundant
variables or parameters.

zeros only, then the quantity wi is locally estimable because a
perturbation of this quantity is not possible inside the null space
of DG and, therefore, would lead to a perturbation �g 	= 0;
see Eq. (13).

In this example, all quantities are ordered by w =
[x1,x2,x3,p1,p2,p3,p4,p5,p6,p7]. Hence, the quantity wi is
associated with the components v

(1)
B,i and v

(2)
B,i of the basis

vectors. For example, v
(1)
B,5 and v

(2)
B,5 are associated with p2.

To simplify the notation in the following discussion, the
associated quantities will be provided in brackets, e.g., v

(1)
B,5 =

v
(1)
B (p2) and v

(2)
B,5 = v

(2)
B (p2). Then, the basis matrix is

VB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v
(1)
B (x1) v

(2)
B (x1)

v
(1)
B (x2) v

(2)
B (x2)

v
(1)
B (x3) v

(2)
B (x3)

v
(1)
B (p1) v

(2)
B (p1)

v
(1)
B (p2) v

(2)
B (p2)

v
(1)
B (p3) v

(2)
B (p3)

v
(1)
B (p4) v

(2)
B (p4)

v
(1)
B (p5) v

(2)
B (p5)

v
(1)
B (p6) v

(2)
B (p6)

v
(1)
B (p7) v

(2)
B (p7)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (43)

To identify quantities where prohibiting its variation, for
example, fixing them in an estimation problem, makes all
quantities locally estimable, we apply the dependency analysis
suggested in Sec. II A. In general, for multidimensional null
spaces (DN > 1) basis vectors obtained via SVD contain zero
elements only for estimable quantities, but not the maximal
number of vanishing components that could be achieved with
a suitable basis as illustrated in Fig. 2. Furthermore, due to
their (rotational) degree of freedom, these basis vectors are
not unique such that results obtained at different states are
difficult to compare. Therefore, we construct a new basis of
the null space of DG (as introduced in Sec. II A 1) where all

basis vectors will have mutually different patterns of nonzero
elements. In the first step we have to choose two arbitrary
quantities (two, because here we have a two-dimensional null
space of DG) so that VB,1, Eq. (44), will be nonsingular and its
inverse exists so that Eq. (22) can be evaluated. In this example
we have chosen the two quantities p5 and p7 and split VB into

VB,1 =
(

v
(1)
B (p5) v

(2)
B (p5)

v
(1)
B (p7) v

(2)
B (p7)

)
(44)

and

VB,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v
(1)
B (x1) v

(2)
B (x1)

v
(1)
B (x2) v

(2)
B (x2)

v
(1)
B (x3) v

(2)
B (x3)

v
(1)
B (p1) v

(2)
B (p1)

v
(1)
B (p2) v

(2)
B (p2)

v
(1)
B (p3) v

(2)
B (p3)

v
(1)
B (p4) v

(2)
B (p4)

v
(1)
B (p6) v

(2)
B (p6)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (45)

Next we split DG into the 50 × 2 matrix DG1 =
[DG(8),DG(10)] containing the eighth and the tenth column
of DG (the first column is associated with p5 and the second
column is associated with p7) and the 50 × 8 matrix DG2

containing the remaining columns of DG.
Histograms of both normalized singular values σi/σ1 of

VB,1, computed based on the same states and delay times τ as
previously, are shown in Fig. 11. Since the smallest singular
value is relatively large (larger than 10−2) for all states and τ ,
V−1

b,1 exists and is unique.
Therefore, we can compute Ṽ′

B in Eq. (22) for each
considered state and τ . In the next step we reorder the columns
of [DG1,DG2] in a way such that we obtain DG again.
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FIG. 11. Histograms (color coded) of the normalized singular
values σi/σ1 of the square matrix VB,1, Eq. (44), using all variables
(D = 3) and parameters (Np = 7) of the Rössler model, Eq. (41)
(based on the same states, delay times τ , etc., as in Fig. 10; log
denotes the logarithm with base 10). Since for all states and τ the
smallest normalized singular values σ2/σ1 are relatively large, VB,1

is not singular and has, therefore, a unique inverse.

Performing the same reordering on the rows of Ṽ′
B yields

ṼB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṽ
(1)
B (x1) ṽ

(2)
B (x1)

ṽ
(1)
B (x2) ṽ

(2)
B (x2)

ṽ
(1)
B (x3) ṽ

(2)
B (x3)

ṽ
(1)
B (p1) ṽ

(2)
B (p1)

ṽ
(1)
B (p2) ṽ

(2)
B (p2)

ṽ
(1)
B (p3) ṽ

(2)
B (p3)

ṽ
(1)
B (p4) ṽ

(2)
B (p4)

1 0

ṽ
(1)
B (p6) ṽ

(2)
B (p6)

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= [̃
v(1)

B ṽ(2)
B

]
(46)

and fulfills Eq. (23). The vectors ṽ(1)
B and ṽ(2)

B contain the
components of the first and the second column of ṼB,
respectively. Due to the ones and zeros in ṼB both vectors
are linear independent and, since the null space of DG
is DN = 2, form a basis of DG with different patterns of
nonzero elements. In this basis it is ṽ

(1)
B (p5) = ṽ

(2)
B (p7) = 1

and ṽ
(2)
B (p5) = ṽ

(1)
B (p7) = 0.

To further investigate the structure of the null space of DG,
we consider histograms of all components of ṽ(1)

B (Fig. 12) and
ṽ(2)

B (Fig. 13) computed using the same states and delay times
τ as previously. Every variation �w within the null space of
DG can be expressed as

�w = ã1̃v(1)
B + ã2̃v(2)

B ; (47)

see Eq. (24). �w is thus controlled by two scalars ã1 and ã2.
By reading off the patterns of zero and nonzero elements of
ṽ(1)

B and ṽ(2)
B from Figs. 12 and 13, the structure of Eq. (47) is

�w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�x1

�x2

�x3

�p1

�p2

�p3

�p4

�p5

�p6

�p7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ã1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
∗
0
∗
0
0
∗
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ã2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
0
0
∗
∗
∗
0
0
0
∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (48)

A “0” means that this component is zero and “∗” means that
this component is nonzero for (almost) all investigated states
and τ .

One can read off from Eq. (48) that variations
�x2,�p4,�p6 	= 0 are not possible without leaving the null
space of DG. Therefore, variations of x2, p4, and p6 lead to
a perturbation �g 	= 0 and, thereby, to a perturbation of g in
Eq. (5), that is, of the output of the system at present and
delayed times. This means that these quantities are locally
estimable.

One can also read off from Eq. (48) how all other unknown
quantities can be made locally estimable by prohibiting the
variation of only two quantities. In a state and parameter
estimation problem these two quantities would then be set
to fixed values and not be estimated. The goal is to prohibit
variations of quantities until ã1 = ã2 = 0. To accomplish that,
in this example there exist several ways. For examples, fixing
p1 and p5 by �p1 = �p5 = 0 implies ã1 = ã2 = 0 because
ṽ

(1)
B (p5) and ṽ

(2)
B (p1) are nonzero. Or by setting �p3 = 0,

which sets ã2 = 0, and �p2 = 0, which then sets ã1 = 0.
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ṽ( 1
)

B
(p
5)

(h)

0
25
50
75
100

0.1 0.6 1.1 1.6
τ
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FIG. 12. Histograms (color coded) of the components of the first basis vector ṽ(1)
B (logarithm with base 10), Eq. (46), of the two-dimensional

null space of DG using all variables (D = 3) and parameters (Np = 7) of the Rössler model, Eq. (41) (based on the same states, delay times τ ,
etc., as in Fig. 10). (c),(e),(h) Only the components associated with x3, p2, and p5 are nonzero for all states and τ . (a),(b),(d),(f),(g),(i),(j) All
other components are within the interval [−10−10,10−10] for (almost) all states and delay times τ and, hence, numerically very close to zero.
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FIG. 13. As Fig 12, but histograms of the components of ṽ(2)
B , Eq. (46), are shown. (a),(c),(d),(e),(f),(j) Only the components associated

with x1, x3, p1, p2, p3, and p7 are nonzero for all states and τ . (b),(c),(g),(h),(i) All other components are within the interval [−10−10,10−10]
and, hence, numerically very close to zero for (almost) all states and delay times τ .

This shows the advantage of considering the basis vectors
ṽ(1)

B and ṽ(1)
B instead of v(1)

B and v(2)
B (directly obtained via SVD).

The basis vectors ṽ(1)
B and ṽ(1)

B contain a maximal number
of zero elements and their pattern of zeros is unique, which
makes it possible to consider histograms of particular elements
obtained from different states of an attractor.

In Refs. [43,44] the authors also assumed that x2 is
measured and they used an analytical calculation based on
derivative coordinates to show that Eq. (41) can be rewritten
as

ẋ1 = 1

b
p1x2 + 1

ab
p2x3,

ẋ2 = bp3x1 + p4x2, (49)

ẋ3 = ap5 + p6x3 + bp7x1x3,

with the (introduced) scaling parameters a,b ∈ R. This model
can produce the same dynamics of the second model variable
for arbitrary a and b. Therefore, a and b have a role comparable
to that of ã1 and ã2 in Eqs. (47) and (48). It is only possible to
uniquely recover the parameters p4 and p6 from a x2 time
series (only these parameters have no scaling factors). This
coincides with our results from the dependency analysis that
the only locally estimable parameters are p4 and p6.

With the scaling parameter a in Eq. (49) the same model
parameters can be varied as with ã1 in Eq. (48). The same
holds for b in Eq. (49) and ã2 in Eq. (48).

Furthermore, the way that parameters pairwise locally
depend on each other is predicted correctly by the depen-
dency analysis when using the same parameter values also
used in the model Eq. (41) for the previous analysis, p =
(−1, −1, 1, 0.1, 0.1, −14, 1). Let us start with
a = b = 1 and slightly change a �→ a > 1. This leads to the
following variations: p5 �→ ap5 > p5 because p5 > 0, and
p2 �→ p2/a > p2 because p2 < 0. Hence, an increase of p5

goes along with an increase of p2. Since, according to Fig. 12,
the ratio of the associated components of the basis vector ṽ(1)

B

is ṽ
(1)
B (p2)/̃v(1)

B (p5) > 0 for all states and delay times τ , a small
variation �p5 > leads to a variation �p2 > 0; see Eq. (26). In
the same way one can verify, by considering a small variation
of b and the components of ṽ(2)

B in Fig. 13, that the pairwise
local dependency between the other model parameters is
equally predicted by Eq. (49) and by the dependency analysis.

It should be noted that choosing p5 and p7 is not the only
possible combination to construct VB,1, Eq. (44), and with
that a different ṼB. We repeated the dependency analysis by
choosing p2 and p7, checking that VB,1 is nonsingular for
the investigated states and delay times τ , and were able to
verify that the results of the analysis are consistent with a
transformation of the model Eq. (49). For that, we introduced
new scaling parameters e and f , where setting a = e/f and
b = f in Eq. (49) yields

ẋ1 = 1

f
p1x2 + 1

e
p2x3,

ẋ2 = fp3x1 + p4x2, (50)

ẋ3 = e

f
p5 + p6x3 + fp7x1x3.

Equation (50) was then used for the verification.

C. Hindmarsh-Rose model

In this example we use the Hindmarsh-Rose (HR) neuron
model [45], which generates typical neuronal activity such as
spiking and bursting governed by dynamics on separated time
scales. The system consists of the model equations

ẋ1 = −x3
1 + p1x

2
1 + x2 − x3,

ẋ2 = 1 − p2x
2
1 − x2,

ẋ3 = p3[x1 + p5(p4 − x3)],

(51)

and a measurement function

h(x) = x1, (52)

where x1 denotes the membrane potential. x2 and x3 describe
slow and fast ion current rates, respectively, and the values of
the model parameters are p = (3,5,0.004,3.19,0.25).

To obtain representative states of the system, we first
integrate the model Eq. (51) for 106 steps with a step size
of 0.1. Then, every 100th state was used for the analysis
resulting in 104 states from the attractor. For each state
the Jacobian matrix DG of the delay reconstruction map
Eq. (5) was computed with respect to all D = 3 model
variables and all Np = 5 model parameters for different delay
times τ using a reconstruction dimension of K = 20. Since
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FIG. 14. Histograms (color coded) of the normalized singular
values σi/σ1, Eq. (11) (computed with delay reconstruction dimen-
sion K = 20; log denotes the logarithm with base 10), using all
variables (D = 3) and parameters Np = 5 of the HR model, Eq. (51),
where x1 is assumed to be measured, Eq. (52). For each τ the
singular values σi are computed for 104 points on the attractor using
p = (3,5,0.004,3.19,0.25). The smallest normalized singular value
σ8/σ1 is of magnitude σ8/σ1 ≈ 10−7 and, hence, numerically greater
than zero.

K > 2(D + Np) = 17, the sufficient condition from Ref. [33]
is fulfilled.

Histograms of the normalized singular values σi/σ1 of DG,
Eq. (11), computed based on all states and for different τ , are
shown in Fig. 14. We can see that even the smallest singular
value σ8/σ1 is of magnitude σ8/σ1 ≈ 10−7 > 0 for increasing
τ . Because the example using the Colpitts oscillator shows
that in this context singular values can numerically also be
much closer to zero (σ7/σ1 in Fig. 3 converges to values of
magnitude 10−16), we consider all singular values of this result
to be nonzero. Therefore, the dimension of the null space
of DG, see Eqs. (13) and (14), is DN = 0. This means that
for all investigated states and delay times τ there exist no
variation of model parameters or variables �w 	= 0 such that
the output of the system at present and delayed times is kept
unchanged, �g = 0. Therefore, in principle, all quantities are
locally estimable.

Next we consider histograms of the uncertainties, Eq. (33),
for all three model variables and all five parameters based on
the same 104 states, K , measurement function Eq. (52) and τ as
previously; see Fig. 15. For large τ on average ν(p4) and ν(p5)
are relatively large. This is a hint that the estimation of p4 and
p5 from a x1 time series is difficult. In Ref. [36] comparable
histograms of ν(wi) were considered for a fixed delay time
and different reconstruction dimensions K (up to K ≈ 2000)
giving the same result that ν(p4) and ν(p5) converge to large
values.
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FIG. 15. Histograms (color coded) of the measure of uncertainty
ν(wi), Eq. (33) (computed with delay reconstruction dimension
K = 20; log denotes the logarithm with base 10), of all D = 3
variables and all Np = 5 parameters for the HR-model, Eq. (51),
where x1 is assumed to be measured, Eq. (52). For each delay
time τ , ν(wi) are computed for 104 points on the attractor using
p = (3,5,0.004,3.19,0.25). (a)–(f) Uncertainties of x1, x2, x3, p1,
p2, and p3 converge (on average) to comparatively small values for
larger τ . (g),(h) Uncertainties of p4 and p5 converge (on average)
to comparatively larger values, indicating a worse local estimability
compared to the other quantities.

In the following we consider histograms of the correlation
coefficients ρ(wi,wj ), Eq. (34), computed for all D = 3 model
variables and all Np = 5 model parameters based on the
same 104 states, K , measurement function Eq. (52), and τ as
previously; see Fig. 16. In Figs. 16(a)–16(g) the distributions
of correlation coefficients between all quantities and x1 are
shown. One can see that for most states and delay times
τ the correlation coefficients are numerically close to zero,
indicating only a weak correlation between x1 and the other
quantities. Taking into account that the uncertainty of x1 is
comparably small (see Fig. 15), it should be relatively easy to
estimate x1 from a x1 time series.

In Figs. 16(h)–16(a1) the distributions of the correlation
coefficients are spread over the whole interval ρ(wi,wj ) ∈
[−1,1], almost independent of τ . Since for many states and
τ it is 1 < ρ(wi,wj ) < 1, correlations between the quantities
exist, but are not all too strong (on average).

Special attention should be payed to the distributions of
ρ(p4,p5) shown in Fig. 16(b1). ρ(p4,p5) is (close to) − 1 for
almost all of the analyzed states and τ , indicating a relatively
strong negative correlation between p4 and p5. This is a hint
of an almost linear relation between both quantities. It is very
likely that an increase of p4 leads to a decrease of p5 by keeping
the delay reconstruction vector g in Eq. (5), which is the output
of the system at present and delayed times, almost unchanged.
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FIG. 16. Histograms (color coded) of the correlation coefficients ρij (computed with K = 20) of all variables and parameters of the HR
model, Eq. (51), where x1 is assumed to be measured, Eq. (52). For each τ the correlation matrix ρ, Eq. (34) is computed for 104 points on the
attractor using p = (3,5,0.004,3.19,0.25). (a)–(a1) The quantities are not very correlated, indicating that they should be estimable from a x1

time series. (b1) There is a strong, but not perfect, negative correlation between p4 and p5.

However, there are still analyzed states where ρ(p4,p5) is
not (close to) − 1 (especially for smaller τ ), indicating that
the negative correlation is not perfect. Hence, in principle, it
should be possible to estimate p4 and p5 from a x1 time series,
although the estimation might be difficult and error prone.

Thus, one can expect that the simultaneous estimation of
all variables and all parameters should give good results, but
it is likely that the estimated values of p4 and p5 are sensitive
with respect to small numerical (truncation) errors or small
variations in the data (for example, the length of the time
series, its underlying dynamics, or a slightly different noise
level).

To illustrate this effect, a twin experiment is performed
where all variables and parameters of the HR model Eq. (51)
are estimated from noisy artificial data of the first model
variable x1 using the estimation method described in Sec. III.
The diagonal weighting matrix in the cost function Eq. (36) to
minimize is chosen to be B = diag(1,1,10).

To generate the data, the model was integrated using
the parameters p = (3,5,0.004,3.19,0.25). The solution z(t)
(denoted as the “true solution”) is then used to create the noisy
data time series {η(tn)}, tn = 0,0.5, . . . 1500, with

η(tn) = z1(tn) + ξ (tn), ξ (tn) ∼ N (0,0.004) (53)

(SNR = 18.3 dB). All model variables have to be estimated
at the times tm = 0,0.05, . . . ,1500 using the measurement
function Eq. (52) together with all five model parameters.
Hence, data are available only at every tenth time step.
Figures 17(b), 17(c), and 17(d) show that estimated solutions
of xi (blue lines) for the model variables and the corresponding

true solution zi (red dashed lines) match quite well. In
Fig. 17(a) one can see that the output of the measurement
function h(x(t)) (blue line) coincides with the noisy data
{η(tn)} (green circles). As predicted by the correlation analysis,
the estimated values of the first three parameters (p1 = 3.00,
p2 = 4.99, and p3 = 0.004 02) are very close to the values
used to generate the data. However, p4 and p5 are estimated to
p4 = 4.19 and p5 = 0.191, which is a much larger deviation
to the values used to generate the data. This is in coincidence
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FIG. 17. State and parameter estimation (using the method from
Sec. III) of all D = 3 variables and all Np = 5 parameters of the
HR-model, Eq. (51), from a noisy x1 time series {η(tn)}, Eq. (53),
using the measurement function h(x), Eq. (52). (a) Output h(x) (blue
line) matches the data {η(tn)} (green circles). (b),(c),(d) Estimated
model variables xi (blue lines) match the true solutions zi (red
dashed lines; used to generate {η(tn)}). Parameters are estimated
to p = (3.00,4.99,0.00402,4.19,0.191). That is, p1, p2, and p3 are
estimated to values similar to those used to generate the data. p4 and
p5 are estimated to much less accurate values.
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FIG. 18. State and parameter estimation (using algorithm in
Sec. III) of the HR model, Eq. (51), from a clean x1 time series. (a)–(d)
The parameter values shown by the red dashed lines were used, beside
p4 = 3.19 [black vertical line in (a)–(e)], to generate the data. For
each fixed p4 all other parameters were estimated (blue dots) beside
the model variables (profile likelihood approach [39,40]). That p5 is
estimated to a too-small value, if p4 is too large, is consistent with
the negative correlation between both parameters; see Fig. 16(b1).
Nevertheless, p1, p2, and p3 are estimated (almost) correctly to values
used to generate the data, (almost) independent of the value of p4.
(e) Although cost function C, Eq. (36), is very small for all p4, C

exhibits a minimum around p4 ≈ 3.19 (used to generate the data).

with that the uncertainties of p4 and p5 are larger compared to
uncertainties of the other parameters (on average); see Fig. 15.

The parameter p4 is estimated to a too-large value and p5

to a too-small value. This relation coincides with the negative
correlation found in the correlation analysis; see Fig. (16).

Although p4 and p5 are not estimated close to the correct
values, its estimates are not completely wrong. Another twin
experiment showed that it is possible to estimate all five
parameters close to the values used to generate the data if
one removes the measurement noise in Eq. (53) and provides
data at every time step the variables will be estimated. This
confirms the hypothesis that the simultaneous estimation of p4

and p5 should, in principle, be possible, but it will not be very
robust.

To confirm the predicted negative correlation of p4 and p5,
the twin experiment is repeated without measurement noise
in the data. Furthermore, data are available at every time step
where the model variables are estimated. p4 is fixed to different
values and p1, p2, p3, and p5 are estimated beside the model
variables. The dependency of the estimated parameter values
on p4 (profile likelihood approach [39,40]) is shown in Fig. 18.

The horizontal red dashed lines in Figs. 18(a) to 18(d) show
the parameter values p1, p2, p3, and p5, respectively, used to
generate the data. The value of p4 used for generating the
data is shown in Figs. 18(a) to 18(e) by the vertical black
line at p4 = 3.19. In Figs. 18(a) to 18(c) one can see that
the estimated values of p1 and p2 coincide with true values
(red dashed lines) used to generate the data sufficiently well,
independently of the value of p4. Only a very weak dependency
of p3 on p4 was observed. Figure 18(d) shows that an increase
of p4 > 3.19 goes along with estimated values of p5 < 0.25

which are smaller than the value used to generate the data. This
dependency between both parameters was predicted correctly
by the negative correlation ρ(p4,p5) ≈ −1 for most states and
τ ; see Fig. 16(b1).

Figure 18(e) shows that the value of the cost function,
Eq. (36), at the estimated solution is relatively small for
all considered values of p4. Nevertheless, the cost function
exhibits a minimum around p4 = 3.19. The fact that it is not
very steep makes the estimation process not very robust. Errors
in the estimation problem (measurement noise, truncation
errors, . . . ) may easily shift the minimum to a different value
of p4 and, hence, lead to a wrong estimation of p4 and p5.
This is likely to be the reason why the state and parameter
estimation from a noisy time series with fewer data points (see
Fig. 17) gives worse results for p4 and p5.

V. CONCLUSION

When estimating parameters and trajectories of variables of
a dynamical model from time series, often the used estimation
method does not provide information about the accuracy and
uniqueness of the estimates.

In this article we address this problem and exploit features
of the null space of the Jacobian matrix of the delay coordinates
map to identify parameters and variables of a dynamical model
which cannot be uniquely estimated from a measured time
series (generated by the same model of a process the model
aims at describing). The proposed method is applicable to state
and parameter vectors obtained, for example, as estimated
solutions from a state- and parameter-estimation algorithm.
This analysis not only identifies those unknown quantities
which are not estimable (in a strict sense), but also information
about their relations. Using this information, one can specify
the impact of setting one (or more) of the nonestimable
quantities to fixed values. If the dimension of the null space of
the Jacobian matrix of the delay coordinates map is DN , then
setting a suitable set of DN non-estimable unknowns to fixed
values makes all remaining unknowns estimable. Criteria for
selecting these DN unknowns are obtained from the orientation
of the null space and the pattern of vanishing elements of its
basis matrix. These aspects were illustrated with (time series
from) the Colpitts oscillator and the Rössler system. Even if all
parameters and not measured variables are locally estimable,
there may still be unknowns which are strongly correlated.
This case can be identified by a suitable correlation analysis,
as shown with the Hindmarsh-Rose model. All concepts
presented and discussed can be generalized to multivariate time
series and spatially extended systems or dynamical networks.
Furthermore, they may also serve to answer the question as to
whether two identical systems can be synchronized by a given
unidirectional coupling signal.
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