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Determining the interactions and causal relationships between nodes in an unknown networked dynamical
system from measurement data alone is a challenging, contemporary task across the physical, biological, and
engineering sciences. Statistical methods, such as the increasingly popular Granger causality, are being broadly
applied for data-driven discovery of connectivity in fields from economics to neuroscience. A common version
of the algorithm is called pairwise-conditional Granger causality, which we systematically test on data generated
from a nonlinear model with known causal network structure. Specifically, we simulate networked systems of
Kuramoto oscillators and use the Multivariate Granger Causality Toolbox to discover the underlying coupling
structure of the system. We compare the inferred results to the original connectivity for a wide range of parameters
such as initial conditions, connection strengths, community structures, and natural frequencies. Our results show
a significant systematic disparity between the original and inferred network, unless the true structure is extremely
sparse or dense. Specifically, the inferred networks have significant discrepancies in the number of edges and the
eigenvalues of the connectivity matrix, demonstrating that they typically generate dynamics which are inconsistent
with the ground truth. We provide a detailed account of the dynamics for the Erdős-Rényi network model due
to its importance in random graph theory and network science. We conclude that Granger causal methods for
inferring network structure are highly suspect and should always be checked against a ground truth model. The
results also advocate the need to perform such comparisons with any network inference method since the inferred
connectivity results appear to have very little to do with the ground truth system.
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I. INTRODUCTION

In 1956, Norbert Wiener proposed a statistical notion of
causality [1]: Y causes X if knowing the past of Y improves
the prediction of X (as compared to using the past of X

alone). In 1969, the Nobel Prize winning econometrician
Clive Granger formalized this concept in the context of
linear autoregressive modeling [2]. The resulting method is
now commonly referred to as Granger causality (GC). The
importance of understanding causal relationships in complex,
dynamical networks from time-series measurements alone is
clear: it becomes a fundamental tool for data-driven scientific
discovery [3–5]. Methods to infer causality are the source of
much debate and require entirely different statistical models
from those used in associational inference [6]. Complicating
the methodology is the fact that correlation does not imply
causation. So, despite numerous methods for computing
correlation, they only serve a limited role in understanding if
there is an underlying causal relationship. In this manuscript,
we consider a popular and commonly used form of GC to infer
the connectivity in a known, networked system of Kuramoto
oscillators. Our goal is to evaluate GC as a tool for data-
driven scientific discovery. We demonstrate that the method
is highly suspect, inferring connectivity and dynamics that
are significantly different than the known ground truth model.
With the ever-increasing demand to understand connectivity
in dynamic networks, we hope that the results from this study
will serve as a strong cautionary note to the broader scientific
community using such statistical techniques for data-driven
network inference.

Following Wiener’s statistical innovations, the seminal
work of Granger was originally defined in terms of two
variables X and Y . However, it was quickly generalized to
larger sets of variables where pairwise-conditional Granger

causality could be computed among the variables. By checking
for causal links between each pair of variables, the aim
was to infer the most probable directed graph structure.
Figure 1 illustrates this idea: each node in the dynamical
network generates its own time series data that is influenced
by interactions with other nodes. In practice, we are usually
limited to individual noisy recordings without knowledge of
the underlying network connectivity—which is precisely what
GC attempts to determine. This mathematical framework be-
came popular in the economics community [7] for determining
how nodes of a financial network might be influencing each
other. For example, Hamilton [8] used GC as evidence that
oil shocks were a contributing factor to recessions. More
recently, it has risen in popularity in neuroscience [9] where
Bressler et al. [10] used it to justify that activity in certain
areas of the frontal and parietal lobes can predict visual
processing activity before an anticipated visual stimulus. More
broadly, pairwise-conditional GC is currently being used to
infer networks of connectivity in many applications [11–16].

The method is highly attractive in such systems due to
the fact that there may be no other way to understand
the underlying network of causal relationships. Attempts to
infer causality have also led to numerous other statistical
innovations for determining causality [3–5], including those
leveraging independent component analysis [17] and network
structure [18], for instance. A seminal recent contribution by
Sugihara et al. [19] called convergent cross mapping (CCM)
tests for causation by measuring the extent to which the
historical record of Y values can reliably estimate states
of X. The CCM method looks for the signature of X in
Y ’s time series by seeing whether there is a correspondence
between the attractor manifold built from Y and points in the
X manifold, where the two manifolds are constructed from
lagged (time-delay) coordinates of the time-series variables.
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FIG. 1. Inferring network connectivity via Granger causality analysis. (a) Schematics of a coupled dynamical system where the directed
network architecture plays an important role. The time series generated by each node is influenced by its connectivity to other nodes. (b) In
several applications, the connectivity structure is unknown, but noisy measurements from each node are available. (c) We use Granger causality
to infer the original network structure from the noisy data.

This is a promising avenue especially for systems displaying a
dynamical attractor. More recently, a formulation by Wahl
et al. [20] has employed local linear models in the GC
framework to resolve causal relationships in distinct regions
of state space, leading to a promising technique for resolving
overall GC structure.

As is still the case today, Granger’s definition was met
with controversy. Concerns have ranged from philosophical
matters [21] to conceptual limitations [22] to analytical and
practical implementation issues [19,23]. Granger responded
to criticism in 1980 [21] by arguing that although there is
no consensus for the concept of causality, it is still worth
choosing a specific and operational definition for the context
of a written work or lecture. He suggested that GC should
be viewed merely as evidence in a Bayesian sense. In 2003,
he acknowledged in his Nobel Lecture that because his
definition was pragmatic and easy to apply, “of course, many
ridiculous papers appeared” (see [24]). Several concerns have
led to variations in the methodology which we describe
in Sec. II. We will primarily consider the version called
pairwise-conditional GC. We do not address theoretical or
philosophical concerns with Granger causality. Instead, we
accept it as a technical definition and evaluate its efficacy
in inferring network structure. We use data generated from
a known network of nonlinear Kuramoto coupled oscillators
[25]. This is a canonical choice for studying synchronizable
systems, such as power grids, pacemaker cells in the heart,
pedestrian crowds, and coupled cortical neurons (see [26]
and references therein). We generate random networks to
reconstruct, sampling from the Erdős-Rényi family [27]. This
is a well-studied network model [28] and provides a practical
way to generate random networks with a large range of edge
densities. We calculate the GC structure primarily using the
Multivariate Granger Causality (MVGC) Matlab Toolbox [29].
MVGC is a popular implementation of pairwise-conditional
GC written with neuroscience data in mind [11–13,30–32],
but we also consider other numerical implementations of GC
in order to cross-validate the results.

The outline of the paper is as follows. Sections II and
III provide all necessary background information for the GC
framework and Kuramoto systems, respectively. We describe
our methodology in Sec. IV and present a comprehensive
list of results in Sec. V. We summarize our conclusions in
Sec. VI.

II. BACKGROUND: GRANGER CAUSALITY

Granger causality (GC) is defined in the context of linear
autoregressive modeling, which computes the relationship of
a time series with its own past. One important model that
is used for multivariate stochastic processes is called the
vector autoregressive (VAR) model. Let Xt be a vector-valued
stochastic process with mean zero (averaging at each time t

over the realizations). A VAR model for Xt is a sequence
of n × n real matrices Ak and an n-dimensional white noise
process (independently and identically distributed and serially
uncorrelated) εt such that

Xt =
p∑

k=1

Ak Xt−k + εt . (1)

The Ak matrices (called the regression coefficients) describe
how Xt depends on its past and represent the predictable
behavior of the process. The εt process (called the residuals)
represents the unpredictable behavior. We call p the model
order. Note that fitting a VAR model to data does not imply
that the data was generated by a VAR process.

The above formulation is often written as a first-order VAR
model of the form X̃ t = AX̃t−1 + ε̃t , where

X̃ t =

⎡
⎢⎢⎣

Xt

Xt−1
...

Xt−( p−1)

⎤
⎥⎥⎦, A =

⎡
⎢⎢⎢⎣

A1 A2 · · · Ap

In 0 · · · 0

0
. . . 0

...
0 0 In 0

⎤
⎥⎥⎥⎦,

and ε̃t = [εt ,0, . . . ,0]T with In being an n × n identity matrix.
The spectral radius of a VAR model is defined to be the spectral
radius of A, ρ(A). Recall that the spectral radius of a matrix
A is defined as ρ(A) = max{|λ1|, . . . ,|λn|}, where {λi} are the
eigenvalues of A. The stability criteria for a VAR model is
analogous to those for difference equations: x(k+1) = T x(k) is
stable if and only if ρ(T ) < 1. Thus a VAR model is stable if
and only if ρ(A) < 1.

The statistical basis of GC can be stated as follows: Y causes
X if the past of Y improves the prediction of X as compared
to only using the past of X. Specifically, if a stochastic process
Yt is used to predict Xt , this can be written as

Xt =
p∑

k=1

A′
kXt−k +

p∑
k=1

BkYt−k + ε′
t . (2)
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Then we say that Y Granger causes X if Eq. (2) is a “better”
prediction of X than Eq. (1). In particular, Y Granger causes
X if the variance of ε′

t is statistically significantly lower than
the variance of εt .

There are many variations on the original definition.
Most formulations rely on representing data as a VAR
model, although some differ significantly. Extensions include
blockwise GC [33], partial GC [34], and piecewise GC [35].
Improvements for nonlinear time series are studied in [36–39].

We focus on the version called pairwise-conditional GC,
specifically as implemented in the MVGC Toolbox [29]. GC
might wrongly infer that Y Granger causes X if there is a
third, latent, confounding variable Z that influences both X and
Y . To minimize this effect, pairwise-conditional GC involves
“conditioning out” any other variables for which a time series
is available. Let Z be a third variable. Then conditioning out
is done by changing Eqs. (1) and (2) to

Xt =
p∑

k=1

Ak Xt−k +
p∑

k=1

BkYt−k +
p∑

k=1

Ck Zt−k + εt , (3)

Xt =
p∑

k=1

A′
k Xt−k +

p∑
k=1

C′
k Zt−k + ε′

t . (4)

Now, when fitting each of these VAR models, the idea is that
Y causes X if the past of Y improves the prediction of X as
compared to only using the past of X and Z. Thus, if Z is a
confounding variable, Y does not Granger cause X because it
does not carry additional predictive information beyond what
Z contributed.

We are considering the null hypothesis that B1 = B2 =
· · · = Bp = 0. We calculate the G causality by considering
the log-likelihood ratio

FY→X|Z := ln
|�′|
|�| ,

where � = Cov(εt ) and �′ = Cov(ε′
t ). Thus, to check the

causality between a pair of variables, we can condition out
the other n − 2 variables. In particular, if U is composed of n

processes U1t , . . . ,Unt , we can compute pairwise-conditional
causalities Gi,j (U) := FUj →Ui |U [ij ] , where U [ij ] denotes omit-
ting Ui and Uj , and perform a statistical test to determine which
values Gi,j are large enough to represent a causal relationship
between Uj and Ui . In our network context, this is a directed
edge from node j to node i. In the MVGC Toolbox [29], this
is calculated using multiple representations of a VAR model.
It computes causality both in temporal and frequency domains
and returns an error message if the results do not match. See
[29] for details.

Not all data sets lend themselves to GC analysis. The
coefficients Ak of the fitted VAR model, for instance, must be
square summable and stable [29]. Square summability implies∑p

k=1 ‖Ak‖2 < ∞, which is trivially true for finite p. However,
some stochastic processes may only be fit by a VAR with
p = ∞. The MVGC Toolbox [29] does not provide a practical
way to check this criterion, but mentions that violations may
occur if the data contains a strong, slow moving average
component. This may trigger a warning or an error.

According to [29], there are five likely reasons for problems
with using GC on time series data as follows. (i) Colinearity:

if there are linear or nearly linear relationships between time
series, the VAR representation will be ambiguous. This is likely
to be detected by the toolbox and reported, stopping with an
error. (ii) Stationarity: the data must be covariance stationary.
If the spectral radius of the estimated VAR model is larger
than one, the GC analysis stops with an error. (iii) Long-term
memory: if the autocorrelation does not decay exponentially,
the data is unsuited to VAR modeling since it may silently yield
spurious results. This may be detected when computing the
autocovariance sequence where long-term memory typically
manifests itself as power-law behavior. The sequence should
decay exponentially when the process has a spectral radius
less than one. However, there is a limit to how far the sequence
is calculated, and if the spectral radius is close to one, it may
not decay below a specified tolerance within that length. In
that case, the results may be inaccurate and a warning may
be issued. (iv) Moving average: if the data contains a strong,
slow moving average component, the coefficients might not be
square-summable, the analysis may be invalid, and the toolbox
will typically report warnings or errors. (v) Heteroscedasticity:
if the variance of the residual terms depends on the values of the
process, then the statistical inference is likely to suffer. It can
invalidate standard statistical significance tests or confound G-
causal inference. The toolbox does not offer any way to test or
counteract this effect. All the results in this paper were attained
after running all of the diagnostic tests recommended in [29].
The toolbox did not return any errors in our runs. The only
warnings given were from the autocovariance sequence not
decaying sufficiently quickly, which we carefully annotated.

III. BACKGROUND: KURAMOTO OSCILLATORS

Coupled oscillators have been of long-standing interest in
the scientific community due to their ability to describe canon-
ical phenomena such as synchronization. Yoshiki Kuramoto
proposed one of the most well-studied systems modeling
nonlinear coupled oscillators, the Kuramoto oscillators:

θ̇i = ωi + K

n

n∑
j=1

Aij sin(θj − θi), i = 1, . . . ,n. (5)

In this model, the dynamics of the ith oscillator is governed
by θi , which has a natural frequency ωi . The n oscillators
are coupled in a network with adjacency matrix A and
coupling strength K . Depending on the parameters of the
model, the oscillators may synchronize or exhibit chaotic
dynamics. Kuramoto defined an order parameter to describe
these different potential dynamics:

r(t) = 1

n

∣∣∣∣∣∣
n∑

j=1

eiθj (t)

∣∣∣∣∣∣
, (6)

where r(t) varies from O(1/
√

n) to unity when synchro-
nization occurs. When K increases, so does the average
order parameter r . Figure 2 depicts the synchronization as a
function of strength and probability of connection in a 12-node
Erdős-Rényi network.

Figure 3 depicts several two-oscillator examples. Syn-
chronization occurs if both oscillators converge to the same
frequency. Depending on the network structure, they may
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FIG. 2. Increase in synchrony as connection strength increases.
We generate random 12-node Erdős-Rényi networks with a range
of connection probabilities. We then solve the Kuramoto model on
each network for varying connection strengths. For each network and
connection strength pair, we calculate the average order parameter
r(t) [Eq. (6)]. We see that as the connection strength increases, the
synchrony also increases. However, for sparse networks, the network
remains unsynchronized (r(t) ≈ 1√

n
) and for dense networks, the

network synchronizes for moderate connection strength. This data
was generated in Experiment C1 (see Sec. V).

converge to one oscillator’s natural frequency or an average of
the two. Notice how the cases with exactly one edge appear
to match Granger’s definition of causality; the dominating
oscillator predicts itself, but the other oscillator is strongly
influenced by it.

Figure 4 exemplifies a Kuramoto system with twelve nodes
connected in two disjoint communities. The blue community
synchronizes to a slow frequency ωA and the green community
synchronizes to a fast frequency ωB . The order parameter r(t)
considers synchronization across the whole network, making
it difficult to interpret (black line). If we evaluate r(t) on each

FIG. 4. Example of synchronicity in structured Kuramoto net-
works. (a) We have two disjoint subnetworks. The blue oscillators
have frequencies with average −0.2 while the green oscillators have
average frequency 0.5. As we see in the right panel (c), the individual
trajectories collapse. The blue nodes synchronize to frequency ωA and
the green nodes synchronize to frequency ωB . In the lower left panel
(b), we see that the measure of synchronicity for each community,
r(t) [Eq. (6)], approaches one but at different synchronization times.
However, when r(t) is evaluated on the entire network, we do not
achieve total synchronicity because the two communities are not
connected.

community separately (the blue and green lines) we see that
each community synchronizes with itself.

In this paper, we simulate the Kuramoto model and use
Granger causality (GC) to infer the adjacency matrix A. As
demonstrated in Figs. 3 and 4, the network structure influences
the system dynamics. We expect the dynamics to preserve
signatures of the network architecture and for GC to potentially
discover these connections. Because we know the ground-
truth data, our model guarantees that there are no external or
hidden variables influencing the system. However, as we will
see in Sec. V, GC will consistently fail to recover the known

FIG. 3. Pair of coupled Kuramoto oscillators with distinct natural frequencies. We show the four possible network architectures in panels
(a)–(d). We first plot θ1 and θ2, the solution of the differential equations in Eq. (5). We then plot cos(θ1) and cos(θ2), the more natural way to view
oscillators. In panel (a), the oscillators are uncoupled, so they merely oscillate with their natural frequency. However, in panels (b)–(d), we see
cases leading to synchronization. The overall synchronization of the network can be summarized by the parameter r(t) with full synchronization
achieved when r(t) = 1 [see Eq. (6)].
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FIG. 5. Overview of steps in our methodology. We will experiment with varying the decisions made in each step—see Sec. IV.

connectivity. We are not the first to apply GC methods to
Kuramoto systems. Angelini et al. [40,41] develop a version
of GC that does not use VAR modeling and is specialized for
circular variables, using Kuramoto oscillators as an example.
Wu et al. [42] develop an algorithm for inferring a network of
Kuramoto oscillators using piecewise GC [35] followed by a
pruning of edges.

IV. NUMERICAL EXPERIMENTS

We test Granger causality (GC) by applying it to data
generated from the Kuramoto model Eq. (5) with the goal
of reconstructing the network adjacency matrix A. We split
our methodology into six steps; see Fig. 5 for a schematic
overview. We explore several options at each step to avoid
limiting ourselves to the best or worst cases for GC per-
formance. However, as we will show in Sec. V, network
reconstruction is consistently poor, usually without warnings
from the toolbox. The following specific steps are taken in our
evaluation algorithm.

(1) Choose network. We set up a network with n nodes
that we wish to reconstruct. Our default value (n = 12) yields
a sizable network while performing simulations in a timely
manner. We tried other values for comparison (n = 2, 6, and
24). See Exp. A1–A2 and C2–C3 for details.

In most experiments, we generate Erdős-Rényi networks;
each potential edge is included with constant probability p

[27]. We vary p = 0.05,0.1, . . . ,1 to address how the density
of the network affects GC results.

(2) Generate data on network. We simulate several Ku-
ramoto systems with a variety of parameters as follows.

(i) Connection strength K . By default, we consider K =
0.5,1,2,4,8 to span GC reconstructions ranging from underes-
timation to overestimation of edges (see Fig. 9). Experiments
A1–A2 and C1 display a wider range of K values.

(ii) Initial conditions θ0: randomly sampled from uniform
distributions. We reset them for each trial. This is reasonable

for real data and additionally helps the data have a constant
mean when averaging over trials (a requirement for being
covariance stationary). Our default distribution is [0,2π ] since
we will apply cosine to the data, which has a period of 2π . In
Exp. C4–C5, we shift this distribution for comparison.

(iii) Natural frequencies ω: randomly sampled from uni-
form distributions. We reset them for each trial. A uniform
distribution of [−1,1] is used in some studies of Kuramoto
oscillators [43,44]. However, when we used that range of
natural frequencies, the toolbox gave many warnings (see
Experiment C7). We, therefore, shifted the distribution to [0,2]
for most experiments. See Exp. C6–C7 for comparisons to
other distributions.

(iv) Number of trials N (each from solving the Kuramoto
model once with random initial conditions and natural frequen-
cies). Our default is N = 100, but we consider other values in
Exp. C8–C9.

(v) Data sampling rate: [0,T ] with time step �t , giving m =
T/�t time points. Our default values are �t = 0.1, T = 25,

and m = 250. These were chosen by searching the parameter
space for cases with no warnings and low error. We compare
to other values in Exp. C10–C20.

TABLE I. Summary of our four classes of numerical experiments.
Full details are in Table VI.

Ref. Class Figures Tables

A1–A2 Two-node networks 3, 6 II, VI
B1–B3 Two independent 4, 7, 8 VI

communities
C1–C30 Erdős-Rényia 2, 9, 10, 11, 12, IV, V, VI

13, 16
D1–D2 Erdős-Rényib 14, 15 VI

aChanging parameters.
bChanging implementation.
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TABLE II. Performance (%) of Granger causality in two-node
Kuramoto oscillator example. Confusion matrix. The table summa-
rizes reconstruction results for Experiment A1: four different true
networks and 100 values of connection strength. As we will continue
to see in larger networks, the performance is weakest when the
network is not extremely sparse or dense. The specific parameter
choices for this experiment are in Table VI.

�������Truth
Estimate

93% 4% 2% 1%

9% 2% 0% 89%

7% 0% 2% 91%

4% 0% 2% 94%

(3) Preprocess data. We add noise to our simulations since
measurement errors are expected in most applications, and it
helps the data be more covariance stationary. Specifically, we
add white Gaussian noise of strength s, i.e., a constant power
spectral density of s2. Each one of the N random trials will
have different noise realizations. Our default value of s is 2.5,
based on experiments to minimize the error in the results, but
other values are compared in Exp. C21–C22.

Next, we usually apply cosine: instead of using θ1, . . . ,θn,
we use cos(θ1), . . . , cos(θn). This is a natural way to view
oscillations (see Fig. 3) and remove linear trends. We explore
alternatives in Exp. C23–C24.

(4) Split data. At this point we already generated a “cube”
of data with N random trials, each with a time series of length
m for each of the n oscillators. As pictured in step 4 of Fig. 5,
we could apply GC to the whole cube of data at once. However,
we have the option to split the data cube into smaller cubes by
(a) splitting trials into smaller sets or (b) splitting the time into

FIG. 6. Percentage of inferred edges as the connection strength
varies. We try all four possible two-node networks (0, 1, or 2 edges),
and we vary the connection strength across the horizontal axis. We
also try two amounts of noise. The teal circles are for Experiment
A1 (low noise) and the orange closed circles are for Experiment A2
(higher noise). The specific parameter choices for these experiments
are in Table VI. The error is higher for low noise. As the connection
strength increases, so does the number of inferred edges, a pattern
that will continue for larger networks.

FIG. 7. Results of Granger causality inference on the two-
community network. Panel (a) depicts the true network. The resulting
network from Experiment B1 in panel (b) has many extra connections
and even connects the two separate communities, but the MVGC
Toolbox [29] provides warnings. In Experiment B2, we increase
the noise and try again, producing the network in panel (c) without
warnings. This network is missing many edges but also connects the
two communities. In Experiment B3, we keep the higher level of
noise but halve the time step, resulting in the network in panel (d)
without warnings. We again have vast overestimation of edges and
the community structure is lost. The specific parameter choices for
these experiments are in Table VI.

smaller time intervals. We apply GC to each one of the smaller
cubes, letting them “vote” for edges. We include a directed
edge if at least half of the voting networks include it.

Barnett and Seth [29] suggest splitting the data into smaller
time intervals for making it covariance stationary. This is also
the idea behind piecewise GC [35]. Splitting trials may reduce
error if the subsets are each sufficiently large for reasonable
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FIG. 8. Autocovariance decay for Experiments B2 and B3. In
these two experiments, the toolbox does not provide warnings, but
there are significant errors (Fig. 7). Here we plot the autocovariance
sequence for each experiment to demonstrate that it decays exponen-
tially, as required.

inference. Then the rationale is that the process would become
more robust when considering each vote.

We experiment with splitting data and voting in Exp. C25–
C30.

(5) Recover network with Granger causality. We use
the MVGC Toolbox to recover a network from our data.
Alternative implementations of GC are explored in Sec. V C.

(6) Check accuracy. Finally, we compare the GC estimated
network with the ground truth. Our standard error metric is
the percentage of wrong edges. For n nodes, there are n2 − n

potential directed edges. We add the number of false-positive
and false-negative edges and divide by n2 − n. We consider
other error metrics in Sec. V C.

We list all parameter choices of the exhaustive computa-
tional exploration in Table VI.

V. NETWORK RECONSTRUCTION RESULTS

We summarize our four classes of numerical experiments in
Table I. In Sec. V A we consider a pair of oscillators, as pictured
in Fig. 3. In Sec. V B, we consider the network structure
with two independent communities from Fig. 4. Finally, in
Sec. V C, we generate random Erdős-Rényi networks. For
each experiment, we make choices for all six steps described
in Sec. IV, which are detailed in Table VI. For purposes of
reproducibility, all MATLAB codes constructed are available
online [45].

A. Two-node networks

Experiments A1–A2 investigate a simple, two oscillator
system. This could be an example in economics, such as
the relationship between oil shocks and recessions. We try
all possible two-node networks (see Fig. 3) and vary the
parameters of the system Eq. (5) with n = 2. The parameter
choices for our experiments are summarized in Table VI. We
present the results from Experiment A1 as a confusion matrix
in Table II. Each row shows the distribution of output networks
for a given true network. If the method perfectly recovers

FIG. 9. Results from Experiment C1. Here n = 12 and twenty
different Erdős-Rényi networks are generated while varying the
percentage of connections. We also vary the connection strength
K . In panel (a), we plot the true percentage of connections versus
the estimated percentage of connections for five values of K . If the
percentage of connections was correct, our points would be on the
dashed diagonal line. However, they may still have the wrong edges
even if the correct number are inferred. For the sparse and dense cases,
a varying connection strength K is considered in panels (b) and (c).
The correct percentage of connections is plotted as a horizontal dashed
line for reference. In the inset plots, we see some examples of the
inferred networks. These are colored visualizations of the adjacency
matrices. White squares denote zeros (no edge) and colored squares
denote ones (an edge).

the connectivity of all of the networks, this matrix would
have entries of 100% along the diagonal. Instead we see that
networks with one edge are rarely recovered correctly. The
method has a tendency to overestimate the number of edges.
We will see in later experiments that this pattern continues as
the size of the network increases; performance is weakest when
the number of edges is not extremely low or extremely high.

It may be argued that there was too much noise on the
data for accurate connectivity reconstruction. We decrease the
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FIG. 10. Optimal bands of synchrony. We consider the results
of Experiment C1 in terms of average r , the synchrony measure in
Eq. (6). For each connection probability p across the horizontal axis,
we plot a gray line showing the range of average synchrony r attained
as we varied the connection strength K . We then plot green circles in
panel (a) for the values of r for which the error was less than 10%.
We also plot orange circles in panel (b) for the values of r for which
the error was less than 20%.

noise strength to 0.5 for Experiment A2, since in this case,
the low noise does not cause warnings in the MVGC Toolbox.
Figure 6 compares the results from these two experiments. We
find that, perhaps counterintuitively, the error is higher with
lower noise. In particular, the lower noise results in even more
overestimation of edges. Another pattern that will persist for
larger networks is that as the connection strength increases, so
does the number of edges inferred.

B. Two-community example

For Experiments B1–B3, we return to the two-community
example in Fig. 4. In Experiment B1, we try to reconstruct a
12-node network [Eq. (5) with n = 12] using Granger causality
on the same data plotted in the right panel of Fig. 4. The full
parameter choices for this experiment are given in Table VI.
The resulting network is shown in Fig. 7(b). There are many
extra edges and some missing edges, resulting in an error of
25%. Note that the community structure is lost even though
it is clear from the plot of the data in Fig. 4 that the blue
and green nodes synchronize separately. An error of 25% may
sound reasonable, but visually comparing the two networks
suggests that the error is significant. Similar error percentages
are used as evidence of a Granger causality variation working
well in papers such as [42].

Addressing warnings. The MVGC Toolbox did produce
warnings for Experiment B1, so for Experiment B2, we

FIG. 11. Varying number of oscillators. Here we plot the percent
connectivity vs estimated percent connectivity and five values of
connection strength K for three numbers of oscillators. Left to right,
we compare six, twelve, and twenty-four oscillators. The general
pattern is consistent, but the average error seems to grow with the
number of oscillators.

increased the noise to a strength of s = 2.5, leaving the rest
of the parameters the same. The new data did not cause any
warnings, and the resulting network is shown in Fig. 7(c). This
network had an error of 22%. It is missing many edges but also
added some, including connecting the two communities.

Varying time sampling. In Experiment B3, we tried solving
the Kuramoto model again but after halving the step size �t .
Generally, we hope that algorithms are stable, i.e., that small
changes in the input will lead to small changes in the output.
However, changing the time sampling led to a vastly different
estimated network. Again, the data did not cause any warnings,

FIG. 12. Varying system parameters. We plot the percent connec-
tivity vs estimated percent connectivity and five values of connection
strength K while changing the distribution of initial conditions, the
distribution of natural frequencies, and the number of trials. In the first
column, we vary the distributions of random initial conditions, and
in the second column, we vary the distributions of random natural
frequencies. In the third column, we change the number of trials.
The general pattern is consistent except when the number of trials is
varied; the number of edges inferred grows as the number of trials
grows. Results accompanied by a warning are marked with an “×”
instead of a circle.

032220-8



INFERRING CONNECTIVITY IN NETWORKED DYNAMICAL . . . PHYSICAL REVIEW E 94, 032220 (2016)

FIG. 13. Varying data sampling in time. We plot the percent
connectivity vs estimated percent connectivity and five values of
connection strength K while changing the data sampling in time. We
use data from time 0 to T , where T varies down the rows. We use
a time step of �t where �t varies across the columns. The general
pattern is consistent except when the end time T is small. Results
accompanied by a warning are marked with an “×” instead of a
circle.

but this time, the number of edges were vastly overestimated,
as shown in Fig. 7(d). This network has an error of 30%.

Checking autocovariance decay. If the autocovariance
sequence does not decay exponentially, the data is not suitable
for VAR modeling. This should be detected by the toolbox,
but as a verification, we plot the required exponential decay
in Fig. 8. The parameter choices for Experiments B1–B3 are
summarized in Table VI.

C. Erdős-Rényi networks

In our remaining experiments (Experiments C1–C30 and
D1–D2) we consider random Erdős-Rényi networks. For each
experiment, we vary p, the probability that a directed edge
exists, and we vary K , the connection strength. See Table VI
for all of the parameter choices. Experiments C2–C30 are
small variations on Experiment C1. A sampling of the results
for Experiment C1 are shown in Fig. 9. In panel (a), we
plot the percentage of true edges against the percentage of
estimated edges. If the density of edges was inferred correctly,
the results should match the identity line (the diagonal dashed
line). The next assessment is whether or not the edges inferred
were actually the correct ones. However, we generally do not
even estimate the correct number of edges. Just as we saw
with the two-node case in Fig. 6 and Table II, the number
of edges is most accurate for the extremes—very sparse
or very dense. Another general pattern persists: for lower
connection strength, pairwise-conditional GC underestimates

FIG. 14. Comparing implementations. Here we plot the percent
connectivity vs estimated percent connectivity and five values of
connection strength K . In Experiment D1, we repeat Experiment C1
with the GCCA implementation and observe very little difference.

the number of edges, and for higher connection strength,
pairwise-conditional GC overestimates the number of edges.

The sparse and dense limits of connectivity are the only
two regions where the inferred number of connections is
somewhat consistent with the ground truth. In panels 9(b)
and 9(c), we consider these two limiting network cases more
closely. In particular, they are marked by two vertical dashed
lines in panel 9(a). Here we plot the connection strength
against the percentage estimated connectivity for a broader
range of K values. The correct percentage connectivity is
marked with horizontal dashed lines. We see again that for low
connection strengths, the number of edges is underestimated.
As K increases, our density estimates go from underestimating
to overestimating the connectivity. We can visualize the exact
networks inferred for three values of K , K = 0.5, 2, and 8.
We see that even when the density of edges is approximately
correct, the actual chosen edges do not match.

The Erdős-Rényi networks can also be analyzed from the
viewpoint of the synchrony metric. We consider how our
results relate to the strength of connection and the average
order parameter r(t) [Eq. (6)] for each data set. In the top plot
of Fig. 10, we consider each of the 20 networks, plotted by
the connection probability p used to generate them. For each
network, we generated the data for 100 values of connection
strength K . In general, higher connection strength K means
that the network is more likely to synchronize—a higher
average r(t) is produced (see Fig. 2). The full range of
average r(t) values attained for each network is plotted as
a gray line segment. We see that, for sparse networks, high
synchronization was not attained for any value of K in our
range. This makes sense, since r(t) measures synchronization
over the entire network, and a sparse network will not even be
fully connected. On the other hand, we see that dense networks

TABLE III. Network inference toolboxes and methods compared
in our simulations.

Method Acronym Ref.

Multivariate Granger causality MVGC [29]
Granger causal connectivity analysis GCCA [46]
Granger causality test GCT [48]
Extended Granger causality eGC [49]
eGC toolbox for standard GC
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FIG. 15. Comparing implementations. Here we plot the percent
connectivity vs estimated percent connectivity and five values of
connection strength K . In Experiment D2, we compare the MVGC
Toolbox to other implementations. We observe that each method
infers very few edges when considering only one trial at a time and
voting over 50 sets.

attain a wide range of synchronization as K is varied. We then
checked for the cases where the percentage wrong was under
ten percent and plotted them as green circles. We see that
for sparse networks, the error is best when the network does
not synchronize. For dense networks, the error is best when
the network does synchronize strongly. For medium-density
networks, the error is never below 10%. In the bottom panel
of Fig. 10, we check a looser standard—plotting all cases with
the error below 20%. We see that the general pattern continues.

Many variations to the experiment can be performed,
including varying the number of nodes, percentage of con-
nectivity in the Erdős-Rényi network, and the strength of

FIG. 16. Eigenvalue comparison. One measure of accuracy is
how well the estimated network Ã would recreate the same dynamics
as the true network A. We therefore compare the eigenvalues of
Ã (open colored circles) and A (closed black circles) for the six
estimated networks in Fig. 9. We see many cases of eigenvalues
being significantly wrong. For example, in the first plot, the inferred
network has only eigenvalues of about 0, missing eigenvalues for
significant growth.

TABLE IV. Closeness ranking, part I. Closeness has been used to
rank institutions on a network. We return to Fig. 9 and compare the
closeness ranking on the first true network to the closeness rankings
on three estimates. We see that the rankings formed from the estimated
networks have little relationship with the true ranking.

Estimated, Estimated, Estimated,
Node True rank K = 0.5 K = 2 K = 8

1 12 1 8 3
2 11 3 9 12
3 3 3 4 3
4 10 3 5 3
5 1 3 5 7
6 6 3 10 10
7 4 1 7 8
8 1 3 2 1
9 5 3 10 11
10 6 3 2 3
11 9 3 1 2
12 6 3 10 8

connections. These variations are summarized in Table VI.
Figure 11 demonstrates the connectivity results as a function
of network size. The computations show that the qualitative
behavior does not change with n. We can also vary the
θ0 (initial condition) distribution, the ω (natural frequency)
distribution, and the number of trials N , the third dimension of
our data cube. These results are shown in Fig. 12. We note that
having both positive and negative natural frequencies seems to
cause many warnings, perhaps due to different synchronization
effects. The number of trials has a large impact on the number
of edges inferred—as N increases, so does the number of
edges. The other variations in the experiments do not change
the qualitative shape of the results. We also modify how we
sample in time. In Fig. 13, we vary the time step �t down the
rows and vary the end time T across the columns. This means
that the number of observations m is different in each plot.

TABLE V. Closeness ranking, part II. Closeness has been used
to rank institutions on a network. We return to Fig. 9 and compare
the closeness ranking on the second true network to the closeness
rankings on three estimates. We see that the rankings formed from
the estimated networks have little relationship with the true ranking.

Estimated, Estimated, Estimated,
Node True rank K = 0.5 K = 2 K = 8

1 6 11 1 1
2 1 9 1 1
3 1 9 1 1
4 6 3 1 1
5 1 5 1 1
6 1 6 1 1
7 6 2 1 1
8 6 1 1 1
9 11 11 1 1
10 6 6 1 1
11 12 3 1 1
12 1 8 1 1
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TABLE VI. Summary of experiments. For Experiments C1–C30, gray boxes highlight any change from the usual parameters.

n A K θ0 ω N �t T m s Prep Voting

A1 2 All four two-node networks 0.1,0.2, . . . ,10 [0,2π ] [−1,1] 100 0.1 25 250 2.5 cos(θ ) None
A2 2 All four two-node networks 0.1,0.2, . . . ,10 [0,2π ] [−1,1] 100 0.1 25 250 0.5 cos(θ ) None
B1 12 Fig. 4 5 a b 1 0.1 25 250 0.1 cos(θ ) None
B2 12 Fig. 4 5 a b 1 0.1 25 250 2.5 cos(θ ) None
B3 12 Fig. 4 5 a b 1 0.05 25 500 2.5 cos(θ ) None
C1 12 E-R, p = 0.05,0.1, . . . ,1 0.1,0.2, . . . ,10 [0,2π ] [0,2] 100 0.1 25 250 2.5 cos(θ ) None
C2 6 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 25 250 2.5 cos(θ ) None
C3 24 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 25 250 2.5 cos(θ ) None
C4 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [−2π,0] [0,2] 100 0.1 25 250 2.5 cos(θ ) None
C5 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [−π,π ] [0,2] 100 0.1 25 250 2.5 cos(θ ) None
C6 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [−2,0] 100 0.1 25 250 2.5 cos(θ ) None
C7 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [−1,1] 100 0.1 25 250 2.5 cos(θ ) None
C8 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 10 0.1 25 250 2.5 cos(θ ) None
C9 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 1000 0.1 25 250 2.5 cos(θ ) None
C10 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.05 5 25 2.5 cos(θ ) None
C11 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.05 15 75 2.5 cos(θ ) None
C12 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.05 25 125 2.5 cos(θ ) None
C13 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.05 35 175 2.5 cos(θ ) None
C14 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 5 50 2.5 cos(θ ) None
C15 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 15 150 2.5 cos(θ ) None
C16 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 35 350 2.5 cos(θ ) None
C17 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.2 5 50 2.5 cos(θ ) None
C18 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.2 15 300 2.5 cos(θ ) None
C19 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.2 25 500 2.5 cos(θ ) None
C20 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.2 35 700 2.5 cos(θ ) None
C21 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 25 250 1.5 cos(θ ) None
C22 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 25 250 3.5 cos(θ ) None
C23 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 25 250 2.5 θi+1 − θi None
C24 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 25 250 2.5 Detrend Tenths in time
C25 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 1 0.1 25 250 2.5 cos(θ ) 1000 sets
C26 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 10 0.1 25 250 2.5 cos(θ ) 100 sets
C27 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 25 250 2.5 cos(θ ) 10 sets
C28 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 25 250 2.5 cos(θ ) Halves in time
C29 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 25 250 2.5 cos(θ ) Fourths in time
C30 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 25 250 2.5 cos(θ ) Eighths in time
D1 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 100 0.1 25 250 2.5 cos(θ ) None
D2 12 E-R, p = 0.05,0.1, . . . ,1 0.5,1,2,4,8 [0,2π ] [0,2] 1 0.1 25 250 2.5 cos(θ ) 50 sets

aθ 0 = [10,11,6,9,5,3,8,4,0,2,7,1] 2π

11 .
bω = [0.6,0.4,0.65,0.35,0.55,0.45,−0.1,−0.3,−0.05,−0.35,−0.15,−0.25].

Extensive computational experiments also considered vary-
ing the noise added to the data (including adding it before
or after applying cosine), differencing and detrending of the
data instead of applying a cosine (recommended by [29] for
making data covariance stationary), and splitting the data and
weighting multiple inferences of network structure. In all these
cases, the same trends as shown in the preceding figures hold,
i.e., as the connection strength increases, so does the number
of edges inferred. In no case does the GC method produce
accurate results.

The MVGC Toolbox is a successor to the Granger Causal
Connectivity Analysis (GCCA) toolbox [46]. The newer
toolbox adds more diagnostic warnings and errors and is
intended to be more accurate. For Experiment D1, we rerun
Experiment C1 with the GCCA toolbox and obtain very similar
results (Fig. 14). We also try three other implementations
of Granger causality. First, we consider the implementation

of the classic Granger causality test (GCT) [47] provided
with the [48] paper. This implementation only accepts one
trial at a time (N = 1). They compare it to other network
inference procedures, including the MVGC toolbox [29], on
data generated by three models. The first two models are
simply VARs. The third adds latent and exogenous variables.
Although this is not explicitly stated, it seems that all
implementations correctly infer the first two network models
but sometimes make mistakes on the third. The focus of the
paper is on whether the methods are consistent over repeated
trials. They state that the MVGC toolbox [29] is anomalous
in its lack of compliance to Neyman-Pearson criteria. We
additionally consider a version of Granger causality called
extended Granger causality that allows instantaneous causal
relationships (zero lag) [49]. The paper is accompanied by
two implementations, one that includes zero-lag relationships
(which we refer to as Schiatti eGC) and one that does not
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(which we refer to as Schiatti GC). These implementations
also only accept one trial at a time (N = 1). They are tested
on data generated by an extended VAR model that allows for
zero-lag relationships. The methods are then compared on real
data where the true network structure is not known. Table III
shows the methods compared along with their commonly used
acronym and initial source reference.

In order to test implementations that only accept one trial
at a time, in Experiment D2, we generate 50 trials, separate
them into sets of N = 1, and then vote over the 50 estimates.
We compare the MVGC [29], GCCA [46], GCT [48], Schiatti
eGC, and Schiatti GC [49] implementations. We see that in
all five implementations, almost no edges are kept after voting
(Fig. 15). Although individual estimates contain some correct
edges, the methods are not sufficiently consistent to estimate
the same edge at least half of the time. This suggests that it
is not sufficient to test a new version of Granger causality on
data generated by a VAR model.

Thus far, we have evaluated the accuracy of our results
in three ways: visually comparing the original network to
the estimated network (as in Figs. 7 and 9), comparing
the percentage connnectivity to the percentage estimated
connectivity, and calculating an error—the percentage of
potential edges that are correctly labeled as an edge or not
an edge. Perhaps in some applications, what is important is
reconstructing a network that would produce similar dynamics.
Thus we may be concerned with comparing the eigenvalues of
the estimated network Ã to the original network A. We return
to the six estimated networks in Fig. 9: two true networks and
the corresponding estimates when K = 0.5, 2, and 8. We plot
the eigenvalues of the true network with the eigenvalues of
the estimated network in Fig. 16. We see that even when the
densities are relatively correct, the dynamics produced by the
connectivity matrix would be significantly wrong.

In [50], Billio et al. use a form of Granger causality to infer
a network of financial institutions. Then they propose various
econometric measures of connectedness to assign ranks to
institutions and predict financial loss. One metric used to
rank is closeness: the average distance from node j to the
remaining nodes, where unconnected nodes are defined to have
the maximum distance, n − 1. In Tables IV and V, we use this
metric to assign ranks to the twelve nodes in our examples
from Fig. 9. We see that a ranking formed from the estimated
networks has little relationship with the true ranking. This once
again shows that the GC method fails to capture meaningful
results concerning the ground truth network.

VI. CONCLUSIONS

The inference of causal structure from time series mea-
surements remains one of the most challenging tasks in
data-driven discovery across the sciences. It has become
especially important in the emerging area of network science
for understanding how different dynamical nodes of a system
interact to produce overall network functionality. A variety
of statistical methods have been instrumental in developing
mathematical architectures for inferring connections between
nodes. These methods often make assumptions about the
physical processes generating the data and the form of the
connections (e.g., linear). Foremost among these methods is

pairwise-conditional Granger causality as it has been used
extensively across a variety of disciplines [7–16]. We con-
sider a nonlinear, networked dynamical system of Kuramoto
oscillators as a ground-truth test model for inferring network
connectivity and demonstrate that, without exception, Granger
causality gives highly inaccurate results for the inferred causal
relations and the eigenvalues of the connectivity matrix. This is
consistent with an additional study of the quantitative accuracy
of the GC method [22]. This is an important assessment
of the statistical efficacy of the GC method, and it further
suggests that it should be carefully validated before use with
any networked time series data.

The Kuramoto oscillator model is chosen for consideration
for this study as it has become a canonical model in networked
dynamical systems. It has simple oscillatory behavior that is
influenced by its interaction structure. Both synchronization,
partial and complete, and chaotic behavior is possible in the
network. Given that we can specify a ground truth connectivity
structure, the GC method can be used to test the efficacy
of the inference method. We observe that as the connection
strength or number of trials increases, we transition from
underestimating the number of edges to overestimating the
number of edges, quickly surpassing the correct number.
This pattern is consistent over variations in parameters, and
individual networks inferred are not consistent with the ground
truth (see Fig. 7). This suggests that the algorithm is not
stable; small changes in the input data lead to large changes
in the estimated network. Accuracy is best on very sparse or
very dense networks, although arguably still not sufficient.
Perhaps the errors are controlled in very sparse networks
because the network overall does not synchronize even for high
connection strength, mitigating confusion from synchronized
but unconnected nodes. (See Fig. 10.) Similarly, perhaps the
errors are limited in dense networks because the networks
become fairly synchronized overall, thus implying many
connections.

The limitations of GC—a chief inference method for
connectivity in networked dynamical systems—may have
serious implications for the neuroscience community. In fact,
Bullmore and Sporns [51] emphasize the distinction between
structural (anatomical) links and effective (causal-functional)
relationships between the network elements. Our simulations
suggest that causal inference alone might provide unsatisfac-
tory results, and thus one should try to maximize the usage of
anatomical and biophysical constraints in conjunction with the
method. For instance, in Experiments B1–B3 (see Fig. 7), GC
inference failed to detect a simple two-community structure
in a relatively small network; in some cases, the inferred
network missed many edges and, in others, it overestimated
their number. More importantly, it inferred nonexistent con-
nections between the disjoint communities. Neuroscientists
should try to incorporate this sort of prior information into
the algorithm and carefully validate if the inferred results
are within an anatomically plausible range of parameters.
Some may argue that the goal in connectomic inference is
not to exactly reconstruct links but to only capture similar
statistical or functional-dynamical properties of the system.
Figure 16 suggests that they might not hold for GC since
there are significant discrepancies between the eigenvalues
of the original matrix and of the inferred ones, which would
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lead to qualitatively different dynamics. Tables IV and V also
show mismatches between the closeness ranking, pointing out
that estimated networks may have little relationship with the
true ranking. Furthermore, neural networks exhibit not only
excitatory connections but also inhibitory ones. This would
likely complicate the inference problem since the number of
possible wrong links would increase dramatically. Finally, our
analysis was limited to the Kuramoto model, which exhibits
a simpler repertoire of collective states compared to more
complex dynamical models such as spiking neural networks.

It is possible that a property of the data generated by
Kuramoto oscillators makes it unsuitable for Granger causality
computations. However, we used all provided tools for
checking for problems. We suggest that further study is
required to understand the conditions under which the results
can be trusted and to provide practical ways to check those
conditions. Unfortunately, of the myriad of uses made of
GC in practice [8,10–16], none of the authors validate the
technique against a ground truth example. There may be
another version of Granger causality that can correctly infer
networks from our time series data. However this remains
an open challenge to the community at large. Our code is

available online [45] so that our experiments can be repeated
with other network inference methods. In particular, we have
shown that it is important to test methods on data that is
not simply generated from a VAR model and that a range
of networks should be considered. It may be possible that
other statistical innovations for determining causality can be
used to infer network structure [3–5], including new directions
leveraging independent component analysis [17], the phase
slope index (PSI) [22], and/or network structure [18]. More
recent innovations have considered the construction of local
models of GC to infer the broader inference network [20]
and finding time-delay embeddings in systems displaying
attractor structures [19]. Thus open issues remain, such as
whether the adopted toolboxes can be improved to solve the
issues highlighted in this work, and whether innovations may
provide different and more appropriate ways for GC to work
in practice. Regardless of technique, this is a fundamentally
difficult problem [52] requiring new ideas, innovations, and
methods from the broader mathematical sciences commu-
nity. Network science is here to stay and inference models
will only increase in importance to the physical sciences
community.

[1] N. Wiener, The theory of prediction, Mod. Math. Eng. 1, 125
(1956).

[2] C. W. J. Granger, Investigating causal relations by econometric
models and cross-spectral methods, Econometrica: J. Econ. Soc.
37, 424 (1969).

[3] G. W. Imbens and D. B. Rubin, Causal Inference for Statistics,
Social, and Biomedical Sciences: An Introduction (Cambridge
University Press, Cambridge, UK, 2015).

[4] S. L. Morgan and C. Winship, Counterfactuals and Causal
Inference: Methods and Principles for Social Research, 2nd
ed. (Cambridge University Press, Cambridge, UK, 2015).

[5] J. Pearl, Causality: Models, Reasoning and Inference, 2nd ed.
(Cambridge University Press, Cambridge, UK, 2009).

[6] P. W. Holland, Statistics and causal inference, J. Am. Stat. Assoc.
81, 945 (1986).

[7] K. D. Hoover, Causality in economics and econometrics, The
New Palgrave Dictionary of Economics (Palgrave Macmillan,
New York, NY, 2008), p. 2.

[8] J. D. Hamilton, Oil and the macroeconomy since World War II,
J. Pol. Econ. 91, 228 (1983).

[9] S. L. Bressler and A. K. Seth, Wiener-Granger causality: A well
established methodology, Neuroimage 58, 323 (2011).

[10] S. L. Bressler, W. Tang, C. M. Sylvester, G. L. Shulman,
and M. Corbetta, Top-down control of human visual cortex by
frontal and parietal cortex in anticipatory visual spatial attention,
J. Neurosci. 28, 10056 (2008).

[11] J. F. Alonso, S. Romero, M. À. Mañanas, and J. Riba, Seroton-
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