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Emergence of spike correlations in periodically forced excitable systems
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In sensory neurons the presence of noise can facilitate the detection of weak information-carrying signals,
which are encoded and transmitted via correlated sequences of spikes. Here we investigate the relative temporal
order in spike sequences induced by a subthreshold periodic input in the presence of white Gaussian noise. To
simulate the spikes, we use the FitzHugh-Nagumo model and to investigate the output sequence of interspike
intervals (ISIs), we use the symbolic method of ordinal analysis. We find different types of relative temporal
order in the form of preferred ordinal patterns that depend on both the strength of the noise and the period of the
input signal. We also demonstrate a resonancelike behavior, as certain periods and noise levels enhance temporal
ordering in the ISI sequence, maximizing the probability of the preferred patterns. Our findings could be relevant
for understanding the mechanisms underlying temporal coding, by which single sensory neurons represent in
spike sequences the information about weak periodic stimuli.
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I. INTRODUCTION

Many excitable systems, such as neurons and cardiac
cells, display spiking output signals that can be analyzed by
using an event-level approach, i.e., by detecting the times
when the spikes occur, and then analyzing the statistics
of the time intervals between successive spikes [interspike
intervals (ISIs)]. Some important properties of ISI sequences
are related to coherence and stochastic resonance phenomena.
Coherence resonance refers to enhanced spike regularity under
an optimal level of noise [1], while stochastic resonance
refers to enhanced detection and transmission of subthreshold
time-varying signals, also under an optimal level of noise
[2–5].

Another relevant property of ISI sequences is the presence
of correlations [6–9], which are known to influence the neu-
ron’s capacity of information transfer [10–13]. In particular,
while Gaussian white stochastic stimuli produce uncorrelated
ISI sequences, correlated stochastic stimuli and information-
carrying stimuli generate correlated spikes [14–17].

In the literature, temporal correlations in ISI sequences have
been quantified by means of the serial correlation coefficients
(SCCs) Cj ,

Cj = 〈(Ii − 〈I 〉)(Ii−j − 〈I 〉)〉
σ 2

, (1)

where j is an integer number, {. . . ,Ii−1,Ii,Ii+1, . . . } is the ISI
sequence, and 〈I 〉 and σ are the mean value and the standard
deviation of the ISI distribution. Serial correlation coefficients
and statistical analysis of the ISI distribution are standard
techniques to investigate spike trains. In the past decade,
however, nonlinear methods of time-series analysis have been
demonstrated useful for extracting information from empirical
or synthetic data generated from nonlinear dynamical systems,
but their potential for the analysis of ISI sequences remains
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largely unexplored. A particularly useful tool is known as
symbolic analysis [18]. In this approach, by defining an
appropriated symbolic rule, a time series is transformed into a
sequence of symbols and its information content is described
by a set of discrete probabilities, defined in terms of the
frequencies of occurrence of the different symbols. Which
symbolic rule is appropriated to quantify the information
content of a time series and to capture relevant properties
(such as the presence of more or less frequently expressed
symbols) depends on the specific system, as well as on the
length and characteristics of the data. Different symbolic rules
might capture different properties of the dynamics, providing
complementary information [18].

A popular symbolic technique, known as ordinal analysis
[19], has been proven very useful for investigating biomedical
signals and other complex signals. It has been used for clas-
sifying behaviors, detecting dynamical changes, estimating
model parameters, etc. [20–28]. Ordinal analysis uses symbols
known as ordinal patterns of length L, which are defined
in terms of the relative order relations of L data values.
Because each symbol is determined by L values, temporal
information is incorporated in the symbolic sequence. In
contrast, when the encoding rule assigns a symbol to each
individual data point, the resulting symbolic sequence can be
regarded a coarse-grained description of the time series. One
can then expect that ordinal analysis will provide additional
information complementary to that gained by SCCs. This is
because SCCs perform a comparison of two ISI values with a
global magnitude (the mean ISI 〈I 〉), while in contrast ordinal
analysis performs a relative comparison of each data point with
the L − 1 previous data points. In addition, one can expect that
ordinal analysis provides complementary information with
respect to that gained from the statistical analysis of the ISI
sequence, because it keeps information about the presence of
temporal ordering in the sequence of ISI values, while the ISI
distribution does not (shuffle surrogate data has the same ISI
distribution as the original data). On the other hand, because
ordinal analysis neglects the actual ISI values (i.e., the precise
duration of the interspike intervals), one can expect that SCCs
and the ISI distribution will provide amplitude information
that cannot be obtained with ordinal analysis.
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FIG. 1. Time series generated from the FHN model with the
parameters a = 1.05, ε = 0.01, and D = 0.015. In (a) a0 = 0, while
in (b) and (c) a0 = 0.02 and T = 10 and 20, respectively. The spike
times are detected with the threshold y = 1.5. In (b) and (c) the
dashed line indicates the value of cos(2πt/T ).

Here our goal is to analyze order relations in ISI sequences
generated by a single neuron driven by weak periodic and
stochastic inputs. We perform extensive simulations of the
FitzHugh-Nagumo (FHN) model (a classical example of an
excitable nonlinear system), driven by Gaussian white noise
and a subthreshold sinusoidal input: Without noise there are
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FIG. 2. Probabilities of the six OPs that are defined by the relative
length of three consecutive ISIs vs the noise strength. The OPs are
schematically shown in the inset. The parameters are (a) a0 = 0,
(b) a0 = 0.02 and T = 10, and (c) a0 = 0.02 and T = 20; the other
parameters are as indicated in the text. In (c) the arrows indicate the
noise levels used in Figs. 3 and 4.

no spikes (but only subthreshold oscillations). The simulated
ISI sequences are thus generated by the combined effects of
noise and periodic forcing. Temporal correlations in the ISI
sequence are detected and quantified by the probabilities of
the ordinal patterns (OPs).

We demonstrate that these probabilities capture relevant
properties of the ISI sequence: We find the presence of
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FIG. 3. The OP probabilities vs the amplitude of the input signal. The parameters are T = 20 and (a) D = 0.015 and (b) D = 0.035; the
other parameters are the same as in Fig. 1.

preferred patterns that are tuned by (i) the period of the
input signal and (ii) the strength of the noise. We also show
that some probabilities display the resonancelike feature of
being enhanced for particular signal-dependent noise levels.
In addition, for certain parameters we find that the OP
probabilities are organized in a hierarchical structure, with
clusters of two patterns having very similar probabilities. We
conclude with a discussion of the relation between the OP
probabilities, the mean ISI, and the SCCs.

II. MODEL

The FHN equations are [1]

ε
dx

dt
= x − x3

3
− y, (2)

dy

dt
= x + a + a0 cos(2πt/T ) + Dξ (t), (3)

where x is the fast variable and y is the slow one, ε � 1, and a

is a control parameter such that when |a| > 1 there is a stable
fixed point and when |a| < 1 there is a stable limit cycle; ξ (t)
is a white Gaussian noise of zero mean and unit variance and
D is the noise strength; a0 and T are the amplitude and the
period of the input signal.

The FHN model was simulated with parameters as in [1]:
a = 1.05 and ε = 0.01; a0 and T were varied such that the

input signal is kept subthreshold (without noise there are
no spikes). The model equations are integrated with random
initial conditions and a second-order Runge-Kutta method,
with integration step 0.005. Figure 1 displays typical spike
sequences, where the spike times ti are detected by using
a threshold. Then the ISI sequence is defined as {Ii}, with
Ii = ti − ti−1. For each set of parameters, time series with
more than 100 000 ISIs were generated (the first 100 ISIs were
neglected to let transients die away).

III. METHOD

As discussed in the Introduction, the OPs are defined by
the relative ordering of L ISI values. Neglecting equality, for
L = 2, Ii < Ii+1 gives pattern 01 and Ii > Ii+1 gives 10; for
L = 3 the L! = 6 possible order relations are indicated in the
inset of Fig. 2; Ii < Ii+1 < Ii+2 gives pattern 012; Ii+1 < Ii <

Ii+2 gives pattern 102, etc. If Ii = Ii+1, a small random value
is added before computing the ordinal pattern. Longer order
relations can be analyzed by either using lags (considering
nonconsecutive values Ii , Ii+τ , and Ii+2τ ) or by using longer
patterns (for L = 4 there are 4! = 24 possible order relations,
for L = 5 there are 5! = 120 order relations, etc.). In this work
we analyze consecutive ISIs (τ = 1) and mainly focus on OPs
of length L = 3, but we also analyze longer correlations with
L = 4 and 5 OPs.
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FIG. 4. The OP probabilities vs the period of the input signal. The parameters are a0 = 0.02 and (a) D = 0.015 and (b) D = 0.035; the
other parameters are the same as in Fig. 1.
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FIG. 5. (a) Probabilities of patterns 01 and 10 vs the period of the input signal. (b) Permutation entropy vs T for OPs of length L = 3, 4,
and 5. In both (a) and (b) the parameters are the same as in Fig. 4(b).

If the L! patterns are equally probable, one can conclude
that there are no preferred order relations among L consecutive
ISI values; in contrast, a nonuniform distribution of OP prob-
abilities reveals the presence of preferred and/or infrequent
order relations. The interval of probability values that is
consistent with the uniform distribution is computed with a
binomial test: If the OP probabilities are within the interval
[p − 3σ,p + 3σ ], where p = 1/L!, σ = √

p(1 − p)/M , and
M is the number of OPs, then the probabilities are consistent
with the uniform distribution with 95% confidence level.

The set of ordinal probabilities pi , with i ∈ [1, . . . ,L!],
has associated an entropy, known as permutation entropy
[19,27,28], which is defined as H = S/Smax, with S =
−∑

pi log pi and Smax = log L!. The permutation entropy
provides a complexity measure for time series and even very
small deviations from H = 1 can be used for detecting sig-
natures of underlying determinism, for identifying dynamical
changes and characteristic time scales, etc. [21,24–26,29].

IV. RESULTS

Let us first analyze the ISI sequence generated by the
stochastic input only (a0 = 0). Figure 2(a) displays the
probabilities of the six OPs as a function of the noise strength
and the gray region indicates the probability region consistent
with the uniform distribution. We can observe that, within
the range of noise strength considered, the six probabilities
are in the gray region and thus they are consistent with
equally probable patterns, i.e., no order relations are detected
in the ISI sequence. This is interpreted as due to the fact that
the spikes are induced by a fully random process (Gaussian
white noise).

Next we add the weak periodic input and again plot the OP
probabilities vs the noise strength [in Fig. 2(b), T = 10; in
Fig. 2(c), T = 20]. We observe a resonancelike phenomenon,
in which the probabilities of some patterns lie outside the gray
region for certain noise strengths. For example, in Fig. 2(b)
we note that for D ∼ 0.03, V and � are the preferred patterns;
in Fig. 2(c), with weak noise, V and � are preferred, but with
higher noise, 012 and 210 are preferred.

The effect of the periodic signal gradually increases with
its amplitude. This is shown in Fig. 3, which displays the OP
probabilities vs a0, keeping fixed the period of the signal and

the strength of the noise. We consider weak noise [Fig. 3(a)]
and stronger noise [Fig. 3(b)], which induce different ISI
order relations [as indicated with arrows in Fig. 2(c)]. We
observe that, in both cases, as a0 increases, the OP probabilities
gradually leave the gray region, revealing that order relations
gradually emerge in the ISI sequence. We note that, within the
range of values considered here (the input is subthreshold), a0

does not change the preferred OPs.
In order to investigate the role of the period of the input

signal, in Fig. 4 we display the OP probabilities vs T . We
consider weak and stronger noise (the same levels as in Fig. 3).
We note that when the input signal is fast, the OP probabilities
are inside the gray region, but for slower input, they lie outside.
We also note that the preferred patterns depend on both T and
D and there is a resonantlike effect in the form of enhanced
probability of particular OPs for specific values of T and D.
For example, for D = 0.035 [Fig. 4(b)] patterns 012 and 210
are preferred for T ∼ 6, but they are unlikely to occur for
T ∼ 10.

To explore the length of temporal ordering, we show
in Fig. 5(a), for the same parameters as in Fig. 4(b), the
probabilities of OPs of length L = 2. We observe that they
are in the gray area, which indicates that there is no temporal
order in the ISI sequence. However, the probabilities of L = 3
OPs reveal the presence of patterns with favored occurrence,
as shown in Fig. 4(b). Therefore, we conclude that, in order to
uncover temporal ordering, the ISI sequence has to be analyzed
with OPs of appropriate length: If the length of the OP is
too short, no temporal ordering is detected (as shown here,
with the L = 2 OP the probabilities are within the gray area,
consistent with equiprobable OPs), while if the length of the
OP is too long, as will be shown below, the large number of
OPs will require very long time series in order to compute the
OP probabilities with robust statistics.

To explore the effect of longer OPs, it is unpractical to
display the probabilities of 24 L = 4 OPs or 120 L = 5 OPs.
Therefore, in Fig. 5(b) we plot the permutation entropy H

computed with patterns of length L = 3, 4, and 5 vs the period
of the input signal. The value of H very close to 1 indicates
that the time series is highly stochastic. This is expected
because the modulation is subthreshold and the spikes are
noise induced. However, a small variation of the permutation
entropy is a signature of a transition as T increases: For
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FIG. 6. (a) Probabilities of patterns 01 and 10 vs the number M

of interspike intervals in logarithmic scale. (b) Probabilities of the six
L = 3 OPs vs M . For both (a) and (b) the parameters are a0 = 0.025,
D = 0.015, and T = 20. (c) Same as in (b) but with a0 = 0.

T < 5, H ∼ 1, while for longer T , H tends to decrease, but
nonmonotonically, i.e., there are values of T for which H is
minimum, indicating the existence of more probable patterns
and thus temporal ordering in the ISI sequence. We also note
that, while for T < 5, H ∼ 1 for L = 3–5, for T > 5, the
permutation entropy decreases with L, indicating the longer
range of temporal ordering.

The influence of the length of the time series M is shown
in Fig. 6, which displays the OP probabilities vs M . We see

that, with a periodic input signal [Figs. 6(a) and 6(b)], the
OP probabilities are outside the gray region, if M is large
enough. Moreover, in Fig. 6(b), clusters of OPs with similar
probabilities are seen, only if M � 103 (similar clustering was
reported in [30]). In contrast, without periodic input [Fig. 6(c)]
the probabilities are inside the gray region and no clustering is
seen, even for large M .

Interestingly, the behavior of the OP probabilities shown
in Fig. 3(a) resembles that found experimentally in a modu-
lated semiconductor laser that emits feedback-induced optical
spikes [30]. As shown in Fig. 4(a) in [30], when the modulation
amplitude increases there is a transition to a dynamical state in
which some OP probabilities are outside the gray region and,
remarkably, the OP probabilities are organized in the same
clusters and with the same hierarchy (the same ordering of the
OP probabilities) as observed in Fig. 3(a) here. This qualitative
similarity can be due to a generic behavior of excitable systems,
which can be described by circle maps [31]. As shown in [30],
a modified circle map qualitatively explains the behavior of
the OP probabilities computed from the laser data and it has
been shown to also explain serial correlations in empirical ISI
data [17]. This suggests that similar behavior can be observed
in other excitable systems.

V. COMPARISON WITH MEAN ISI
AND CORRELATION ANALYSIS

Since both the noise strength D and the period of the input
signal T modify the neuron’s spike rate, one could expect that
the underlying reason for the variation of the OP probabilities
with D and T is related to the spike rate variation. One could
also wonder if these changes are also captured by correlation
analysis.

To investigate if there is a close relation between the values
of the OP probabilities, the serial correlation coefficients C1

and C2, and the mean ISI 〈I 〉 (the inverse of the spike rate),
Figs. 7–9 display, for the same parameters as in Figs. 2–4, C1

and C2 (middle column) and the mean ISI (right column). For
easy comparison, the OP probabilities are also shown in the
left column.

First, we note that the variation of 〈I 〉 with D and T is
not correlated to that of the OP probabilities: In particular, we
see no similar trend. Second, we note that C1 and C2 display
smooth variations, similar to those of the OP probabilities.
As expected, when C1 < 0 and C2 > 0 the most frequently
expressed OPs are V and � patterns (021, 120, 201, and 102).

In addition, under particular conditions equivalent situa-
tions can be identified. For example, in Figs. 9(a), 9(c), and
9(e), for T = 20 and D = 0.015, 〈I 〉 = 12 ∼ T/2. In this
case, patterns 012 and 210 are the less frequently expressed.
Compared with Figs. 9(b), 9(d), and 9(f) (for D = 0.035),
for T = 10, 〈I 〉 = 5 ∼ T/2 and also patterns 012 and 210
are the less frequently expressed. The two situations are
equivalent because in both cases 〈I 〉 ∼ T/2 and when T = 20
and D = 0.015 [Figs. 9(a), 9(c), and 9(e)], C1 ∼ −0.08 and
C2 ∼ 0.05, while when T = 10 and D = 0.035 [Figs. 9(b),
9(d), and 9(f)], C1 ∼ −0.08 and C2 ∼ 0.05.

However, in general, no clear relations can be inferred from
these plots. In order to search for such a relation, in Fig. 10 we
have collapsed all data sets in scatter plots, which display the
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FIG. 7. (a)–(c) OP probabilities, (d)–(f) serial correlation coefficients (C1 circles, C2 triangles), and (g)–(i) mean interspike interval. The
parameters are the same as in Fig. 2: (a) a0 = 0, (b) a0 = 0.02 and T = 10, and (c) a0 = 0.02 and T = 20.

OP probabilities vs C1 and C2. For clarity the OP probabilities
are separated into three groups: the trend patterns [012 and 210
in Figs. 10(a) and 10(b)] and the two clusters of patterns that
have similar probabilities [021 and 102 in Figs. 10(c) and 10(d)
and 120 and 201 in Figs. 10(e) and 10(f)]. In the scatter plots
no clear relations between C1 and C2 and the OP probabilities
can be seen, but there is a well-defined trend with C2 (however,
the relation is not one to one).

To further explore the relation between the OP probabilities
and the serial correlation coefficients we have redone the
scatter plots, now plotting the pattern probability in color code
vs C1 and C2. Figures 11(a) and 11(b) display the probability
of the trend pattern 012 and of the V pattern 102, respectively,
again collapsing all data sets shown in Figs. 7–9. Here again
we see a clear trend with C2 but no trend with C1. We note that
the trend pattern 012 (the V pattern 102) is less probable (is
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FIG. 8. (a) and (b) OP probabilities, (c) and (d) serial correlation coefficients (C1 circles, C2 triangles), and (e) and (f) mean interspike
interval. The parameters are the same as in Fig. 3: T = 20 and (a) D = 0.015 and (b) D = 0.035.
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more probable) if C1 < 0 and C2 > 0. We again note that the
relation is not one to one and similar values of C1 and C2 might
correspond to different values of the ordinal probabilities, thus
the ordinal probabilities cannot be predicted from knowledge
of ISI statistics; however, the trends shown in these plots allow
predicting that if C1 < 0 and C2 > 0, pattern 012 (pattern 102)
will be less (more) frequently expressed than expected if the
six patterns are equally probable.

We conclude this section by summarizing the information
gained with ordinal analysis, which could not be inferred from
correlation analysis.

(i) For a wide range of parameters, in the ISI sequences
there are OPs that have almost equal probabilities: 021,102
and 201,120.

(ii) For a wide range of parameters, there is a well-defined
hierarchy in the probabilities of the various OPs. For example,
in Fig. 7(b), for D > 0.04,

P (102) = P (021) > P (120) = P (201) > P (210) >

P (012), while in Fig. 9(a), for T > 15, P (120) = P (201) >

P (102) = P (021) > P (012) > P (210)
(iii) The ordinal probabilities allow computing the permu-

tation entropy, shown in Fig. 5(b), which displays a sharp
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FIG. 10. Scatter plots in which all the data sets shown in the three previous figures are collapsed. Here the OP probabilities are plotted vs
(a), (c), and (e) C1 and (b), (d), and (f) C2. For clarity the OP probabilities are separated in three groups: the trend patterns (a) and (b) 012
and 210 and the two clusters of patterns that have similar probabilities (c) and (d) 021 and 102 and (e) and (f) 120 and 201. No clear relation
between C1, C2, and the six ordinal probabilities is seen, but there is a well-defined trend with C2.
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FIG. 11. Scatter plots of ordinal probabilities vs C1 and C2. The
color code indicates the value of (a) P (012) and (b) P (102). Both
panels display the same data that were shown in Figs. 7–9.

transition at T = 10. Such a transition is not seen in 〈I 〉, C1,
or C2, which vary smoothly with the modulation period (as
shown in Fig. 9).

These observations provide a complementary approach
for a qualitative comparison of empirical and synthetic ISI

sequences and can also be useful for distinguishing and
classifying different types of ISI sequences.

VI. CONCLUSION

To summarize, we have studied the emergence of relative
temporal order in spike sequences induced by the interplay
of a stochastic input and a subthreshold periodic input.
By using symbolic analysis we uncovered preferred ordinal
patterns, which are tuned by the period of the input signal
and by the strength of the noise. We have also shown
that the probabilities of specific patterns are maximum or
minimum for particular values of the period of the input
and the strength of the noise. Our findings could be use-
ful for contrasting empirical and synthetic ISI sequences,
validating neuron models, or estimating their parameters.
Moreover, our results could motivate new experiments on
single sensory neurons to further understand the mechanisms
by which they encode information about weak stimuli in noisy
environments.
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