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Elastic collision and molecule formation of spatiotemporal light bullets
in a cubic-quintic nonlinear medium
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We consider the statics and dynamics of a stable, mobile three-dimensional (3D) spatiotemporal light bullet in
a cubic-quintic nonlinear medium with a focusing cubic nonlinearity above a critical value and any defocusing
quintic nonlinearity. The 3D light bullet can propagate with a constant velocity in any direction. Stability of the
light bullet under a small perturbation is established numerically. We consider frontal collision between two light
bullets with different relative velocities. At large velocities the collision is elastic with the bullets emerge after
collision with practically no distortion. At small velocities two bullets coalesce to form a bullet molecule. At a
small range of intermediate velocities the localized bullets could form a single entity which expands indefinitely,
leading to a destruction of the bullets after collision. The present study is based on an analytic Lagrange variational
approximation and a full numerical solution of the 3D nonlinear Schrödinger equation.
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I. INTRODUCTION

A bright soliton is a self-bound object that travels at a
constant velocity in one dimension (1D), due to a cancellation
of nonlinear attraction and defocusing forces [1,2]. The 1D
soliton in a cubic Kerr medium has been observed in nonlinear
optics [1,2] and in Bose-Einstein condensates [3]. Specifically,
optical temporal [4] and spatial [5] solitons were observed
for a cubic Kerr nonlinearity. However, a 3D spatiotemporal
soliton cannot be formed in isolation with a cubic Kerr
nonlinearity due to collapse [1,6]. The same is true of a 2D
spatial soliton with a Kerr nonlinearity. However, the solitons
can be stabilized in higher dimensions for a saturable [6,7]
or a modified nonlinearity [8] or by a nonlinearity [9] or
dispersion [10] management among other possibilities [11,12].
A 2D spatiotemporal optical soliton has been observed [13]
in a saturable nonlinearity generated by the cascading of
quadratic nonlinear processes. The generation of a 2D spatial
soliton in an attractive cubic and repulsive quintic medium
has been suggested [14] and realized experimentally [15]. The
generation of a stable 2D vortex soliton in a cubic-quintic
medium has been suggested [16].

Light bullets [6] are localized 3D pulses of electromagnetic
energy that can travel through a medium and retain their
spatiotemporal shape due to a balance between the nonlinear
self-focusing and spreading effects of the medium in which
the pulse beam propagates. Such light bullets are unstable and
collapse in a cubic Kerr medium. Light bullets were realized
experimentally in arrays of wave guides [17]. There were
many theoretical—numerical and analytical—studies which
established robustness and approximate solitonic nature of
the light bullets using the 3D nonlinear Schrödinger (NLS)
equation [1] with a modified nonlinearity [7,8], dissipation
[18], and/or dispersion [10]. A saturable nonlinearity leads to
stable optical bullets [7]. Nonlinear dissipation in the complex
cubic-quintic Ginzburg-Landau equation also stabilizes the
bullets [18]. Dispersion management can stabilize light bullets
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in a medium with cubic nonlinearity [19]. There has been
variational study of light bullets in a cubic-quintic medium
[20] where a condition of stability was obtained. Another
study suggested a way of the stabilization of light bullets in
a cubic-quintic medium by a periodic variation of diffraction
and dispersion [21].

In this paper we study the formation of a 3D spatiotemporal
light bullet [6,7] in a cubic-quintic medium for a defocusing
quintic nonlinearity and a focusing cubic nonlinearity as the
ground state of the 3D NLS equation. A cubic-quintic medium
is of experimental interest also. The study with a polydi-
acetylene paratoluene sulfonate crystal in the wavelength
region near 1600 nm shows that the refractive index versus
input intensity correlation leads to a cubic-quintic form of
nonlinearity in the NLS equation [1,22]. The cubic-quintic
nonlinearity also arises in a low-intensity expansion of the
saturable nonlinearity used in the pioneering study of light
bullets [7]. In this study of light bullets in a cubic-quintic
medium we find that a stable light bullet can be formed
for the cubic focusing nonlinearity above a critical value
in the 3D NLS equation for any finite quintic defocusing
nonlinearity. The statical properties of the light bullet is
studied using a Lagrange variational analysis and a complete
numerical solution of the 3D NLS equation. The variational
and numerical results are found to be in good agreement
with each other. The stability of the light bullet is established
numerically under a small perturbation introduced by changing
the cubic nonlinearity by a small amount, while the bullet is
found to execute sustained breathing oscillation.

The light bullet can move freely without deformation along
any direction with a constant velocity. We also study the
frontal collision between two light bullets. Only the collision
between two integrable 1D solitons is truly elastic [1]. As the
dimensionality of the soliton is increased, such collision is
expected to become inelastic with loss of energy in 2D and
3D. In the present numerical simulation of frontal collision
between two light bullets in different parameter domains of
nonlinearities and velocities three distinct scenarios are found
to take place. At sufficiently large velocities the collision
is found to be quasielastic when the two bullets emerge
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after collision with practically no deformation. At small
velocities the collision is inelastic and the bullets form a single
bound entity in an excited state and last forever and execute
oscillation. We call this a bullet molecule. In a small domain
of intermediate velocities, the bullets coalesce to form a single
entity, which expands indefinitely, leading to the destruction
of the bullets.

.
We present the 3D NLS equation used in this study in

Sec. II. In Sec. III we present the numerical results for
stationary profiles of 3D spatiotemporal light bullets. We
present numerical tests of stability of the light bullet under
a small perturbation. The quasielastic nature of collision of
two solitons at large velocities and bullet molecule formation
at low velocities are demonstrated by real-time simulation. We
end with a summary of our findings in Sec. IV.

II. NONLINEAR SCHRÖDINGER EQUATION:
VARIATIONAL FORMULATION

In nonlinear fiber optics a general 3D NLS equation can
usually be written as [1,23]

[
i

∂

∂z
+ 1

2β0
∇2

⊥ + β2

2

∂2

∂t2
+ γ |A|2

]
A(x,y,t) = 0, (1)

∇2
⊥ = ∂2

∂x2
+ ∂2

∂y2
, (2)

where β2 is dispersion parameter and can be positive or
negative with magnitude of the order of 10−3–10−2 ps2/m
[23]; the nonlinear parameter γ has unit W−1m; the unit of
|A|2 is Wm−2; β0 = 2πn0/λ is the propagation parameter [1],
where n0 is the refractive index; and λ is the wave length
of the beam. The function A describes the evolution of the
beam envelope. For a spatiotemporal soliton it is useful to
define the characteristic lengths for dispersion LDS ≡ τ 2/|β2|
and diffraction LDF ≡ 2n0πρ2/λ, where ρ is the radius of
the beam and τ is the time scale of the soliton [11]. For an
equilabrated propagation of the spatiotemporal soliton, these
two lengths are to be equal −LDS = LDF ≡ LD−, yielding
ρ2 = LDλ/(2πn0). Now by scaling we define the following
dimensionless variables [23]:

x = x

ρ
, y = y

ρ
, t = t

τ
, z = z

LD

,

(3)
φ = Aρ√

P 0

, p = γP0LD

ρ2
.

The scale P0 is chosen, so
∫ |φ|2dxdydt = 1. Using the

dimensionless variables we obtain the following dimensionless
NLS equations with self-focusing cubic and self-defocusing
quintic nonlinearity [1][

i
∂

∂z
+1

2

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂t2

)
+p|φ|2 − q|φ|4

]
φ(r,z) = 0

(4)

in scaled units, where r ≡ {x,y,t},p is the cubic and q the
quintic nonlinearity. Here z is the propagation distance, x,y

denote transverse extensions, and t denotes the time. The
plus sign before |φ|2 in Eq. (4) denotes a self-focusing cubic

nonlinearity. The quintic nonlinearity of strength q with a
negative sign denotes self-defocusing.

To have an idea of the length and time scales concerned,
let us consider the case of an infrared beam of wave length
λ = 1 μm, and take a nonlinear medium of β2 = 10−2 ps2/m,
and a time scale τ = 60 fs. Then the propagation length
LD = 36 cm and the beam width ρ ≈ 239 μm. These numbers
are quite similar to those in an experiment on spatiotemporal
soliton in a planar glass waveguide [24]. In this paper
we quote the results in dimensionless units, which can be
easily converted to actual experimental units following these
guidelines.

For an analytic understanding, we consider the Lagrange
variational formulation of the formation of a light bullet.
In this spherically symmetric problem, convenient analytic
Lagrangian variational approximation of Eq. (4) can be
obtained with the following Gaussian ansatz for the wave
function [25]:

φ(r,z) = π−3/4

w3/2(z)
exp

[
− r2

2w2(z)
+ iα(z)r2

]
, (5)

where r2 = x2 + y2 + t2,w(z) is the width and α(z) is the
chirp. The Lagrangian density corresponding to Eq. (4) is given
by

L(r,z) = i

2

[
φ(r,z)

∂φ∗(r,z)

∂z
− φ∗(r,z)

∂φ(r,z)

∂z

]

+ |∇φ(r,z)|2
2

− p

2
|φ(r,z)|4 + q

3
|φ(r,z)|6. (6)

Consequently, the effective Lagrangian L ≡ ∫
L(r,z)dr be-

comes

L = 3

2
w2α̇ + 3

4w2
+ 3w2α2 − pπ−3/2

4
√

2w3
+ qπ−3

9
√

3w6
, (7)

where the overhead dot denotes the z derivative. The actual
physical dimension J/m of this dimensionless Lagrangian L

can be restored upon multiplication by the factor τP0/LD .
The Euler-Lagrange equation for this Lagrangian yields the
following ordinary differential equation for the width w:

ẅ = 1

w3
− p(2π )−3/2

w4
+ 4qπ−3

9
√

3w7
. (8)

The energy of the stationary bullet is the Lagrangian (7) with
α = 0, e.g.,

E = 3

4w2
− pπ−3/2

4
√

2w3
+ qπ−3

9
√

3w6
. (9)

The width w of a stationary bullet is obtained by setting the
right-hand side of Eq. (8) to zero:

1

w3
− p(2π )−3/2

w4
+ 4qπ−3

9
√

3w7
= 0, (10)

which is the condition for a minimum of energy E −
dE/dw = 0,d2E/dw2 > 0. Without the quintic term (q = 0)
the bullet of width w = p/(2π )3/2 is tantamount to an unstable
Towne’s soliton [26]. We will demonstrate that for stability a
nonzero quintic term (q �= 0) is necessary. For q > 0, Eq. (10)
has solution for the cubic nonlinearity p above a critical value
pcrit, which is the threshold for the formation of the bullet.
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III. NUMERICAL RESULTS

Unlike in the 1D case, the 3D NLS equation (4) does not
have an analytic solution, and different numerical methods,
such as split-step Crank-Nicolson [27] and Fourier spectral
[28] methods, are used for its solution. Here we solve it
numerically by use of the split-step Crank-Nicolson method
in Cartesian coordinates using a r = {x,y,t} step of 0.025 and
a z step of 0.0002 [27]. The number of r discretization points
for each component is 256. There are different C and FORTRAN

programs for solving the NLS-type equations [27,29] and one
should use the appropriate one. We use both imaginary- and
real-z propagations [27] in the numerical solution of the 3D
NLS equation. The imaginary-z propagation is appropriate to
find the stationary lowest-energy profile of the bullet. This
method replaces z by a new variable ẑ ≡ iz and, consequently,
Eq. (4) becomes completely real and a z-iteration of this
equation leads to the lowest-energy state with high accuracy.
The real-z propagation involves a complex variable and hence
is more complicated and less accurate. However, the real-z
propagation yields the propagation dynamics of the bullet.
In the imaginary-z propagation, as the propagation variable
z is replaced by the (unphysical) variable ẑ, this method
cannot lead to the propagation dynamics of the bullet. In the
imaginary-z propagation the initial state was taken as in Eq. (5)
with α(z) = 0 and the width w set equal to the variational
solution obtained by solving Eq. (10). The convergence will
be quick if the guess for the width w is close to the final
width. All stationary profiles of the bullets are calculated
by imaginary-z propagation. The dynamics and collision are
then studied with real-z propagation using the initial profile
obtained in the imaginary-z propagation.

The stable bullet corresponds to an energy (E) minimum as
given by Eq. (10). In Figs. 1(a) and 1(b), we plot E versus w of
Eq. (10) for different cubic (p) and quintic (q) nonlinearities.
The energy minima of these plots correspond to a stable bullet
of negative energy. From Fig. 1(a) we find that for q = 30 such
an energy minima exists for p > 20. An accurate value of this
limit can be obtained from Eq. (10): For q = 30 this equation
has solution for p � pcrit = 19.6. Hence the NLS equation (4)
can have a stable light bullet solution for cubic nonlinearity p

greater than a critical value pcrit. For p < pcrit, the system is
much too repulsive and is not bound and escapes to infinity.
However, this critical value pcrit of p is a function of the quintic
nonlinearity q. The pcrit-q correlation can be found from an
attempt to solve Eq. (10) numerically. The pcrit-q correlation
obtained in this fashion is plotted in Fig. 1(c). However,
in addition to these stable bullets corresponding to a global
minimum of energy with negetive energy values, one can also
have metastable bullets corresponding to a local minimum of
energy at positive energies. Such a situation is illustrated in
Fig. 1(d), where we plot the variational E-w curves for p = 10
and different q values. The bullet with p = 10 and q = 1.3
has a local minimum at a positive energy and is metastable in
nature. In the following, we will only consider the stable light
bullets with negative energy.

Next we compare in Fig. 2(a) the numerical and variational
root-mean-square (rms) radius rrms of a light bullet versus cubic
nonlinearity p for different quintic nonlinearity q = 10,30.
The variational result is given by rrms = √

3/2w, where w is
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FIG. 1. (a) Variational energy versus width (E-w) plot for
different cubic nonlinearities p(= 20,30,60,100) and quintic non-
linearity q = 30. (b) The same for different quintic nonlinearities
q(= 10,30,60,100) and cubic nonlinearity p = 60. (c) Variational
critical cubic nonlinearity pcrit for light bullet formation, obtained
from Eq. (10), for different values of quintic nonlinearity q.
(d) Variational energy versus width (E-w) plot for different quintic
nonlinearities q(= 0.6,0.8,1.3,2,5) and cubic nonlinearity p = 10.

the equilibrium variational width. In Fig. 2(b) we show the
numerical and variational energy |E| of a light bullet versus
p for different q. The numerical energy is calculated using
Eq. (9) with the numerically obtained φ(r,z). The energy of
the light bullet is negative in all cases and its absolute value
is plotted. For small p, the agreement between numerical and
variational results is better. For large p, the agreement between
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FIG. 2. Variational (var) and numerical (num) (a) rms radius and
(b) energy |E| versus cubic nonlinearity p of a light bullet for two
different quintic nonlinearities q(= 10,30).

the two is qualitative. For large nonlinearity p in the NLS
equation, the profile of the bullet deviates more from the
Gaussian variational ansatz—thus making the variational
results more approximate.

To study the density distribution of the light bullets, we
calculate the reduced 1D density defined by

ρ1D(x) =
∫

dtdy|φ(r)|2. (11)

In Fig. 3 we plot this reduced 1D density as obtained
from variational and numerical calculations for different
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FIG. 3. Numerical (line) and variational (chain of symbols)
reduced 1D density ρ1D(x) for different cubic nonlinearity p and
quintic nonlinearity q.
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FIG. 4. Steady oscillation of the rms size xrms during real-z
propagation of a light bullet with p = 20 and q = 15, when at z = 0
the cubic nonlinearity p is suddenly changed from 20 to 20.5.

cubic nonlinearity p and quintic nonlinearity q. For a fixed
defocusing nonlinearity q(= 15), the light bullet is more
compact with the increase of focusing nonlinearity p, resulting
in more attraction. For a fixed focusing nonlinearity p(= 20),
the light bullet is more compact with the decrease of defocusing
nonlinearity q, resulting in less repulsion.

Now we present a numerical test of stability of a stable bullet
under a small perturbation. For this purpose, we consider the
bullet shown in Fig. 3 with p = 20 and q = 15 as calculated
by imaginary-z propagation. Using the imaginary-z profile as
the initial state, we perform numerical simulation by real-z
propagation under a small perturbation introduced at z = 0
by changing p from 20 to 20.5. This sudden perturbation in
the cubic nonlinearity increases the attraction in the system
and the light bullet starts a rapid breathing oscillation. In
Fig. 4 we show the steady oscillation in the rms x size xrms

versus propagation distance z during real-z propagation. The
steady continued oscillation of the bullet over a long distance
of propagation establishes the stability of the bullet. The
real-z simulation was performed in full 3D space without
assuming spherical symmetry to guaranty the stability in full
3D Cartesian space.

The collision between two analytic 1D solitons is truly
elastic [1,3] and such solitons pass through each other
without deformation at any incident velocities. The collision
between two 3D spatiotemporal light bullets is expected to be
inelastic in general with loss of kinetic energy, resulting in
the deformation of the bullets. Such a collision can at best
be quasielastic. To test the solitonic nature of the present
light bullets, we study the frontal head-on collision of two
bullets. The imaginary-z profiles of the light bullets shown
in Fig. 3 with (i) p = 20, q = 15 and (ii) p = 25, q = 35
are used as the initial function in the real-z simulation of
collision, with two identical bullets placed at x = ±3 initially
for z = 0. To set the light bullets in motion along the x

axis in opposite directions the respective wave functions
are multiplied by exp(±i40x). To illustrate the dynamics on
real-z simulation, we plot the time evolution of 1D density
ρ1D(x,z) ≡ ∫

dt
∫

dy|φ(r,z)|2 in Fig. 5(a) for the collision of
two bullets with p = 20, q = 15. The corresponding contour
plot is presented in Fig. 5(b). The same for the collision of two
light bullets with p = 25, q = 35 is presented in Figs. 5(c)
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FIG. 5. (a) The 1D density ρ1D(x,z) and (b) its contour plot during
the collision of two light bullets of Fig. 3 with p = 20, q = 15
initially placed at x = ±3, on real-z propagation. The initial wave
functions are multiplied by exp(±i40x), which sets them in motion
with velocity of about 33 each. The same for two light bullets with
p = 25, q = 35 of Fig. 3 are shown in (c) and (d).

and 5(d). The dimensionless velocity of a light bullet is about
33 and the deviation from elastic collision is found to be
small. Considering the three-dimensional nature of collision,
the distortion in the bullet profile is found to be negligible. To
visualize the amount of inelasticity in the collision displayed
in Figs. 5(a) and 5(b), we display in Figs. 6(a) and 6(b) the 3D
isodensity profile of the light bullet before (z = 0) and after

FIG. 6. Three-dimensional isodensity profile of the (a) initial (at
z = 0) and (b) final (at z = 0.18) light bullets each with p = 20,

q = 15 and (c) initial (at z = 0) and (d) final (at z = 0.18) light bullets
each with p = 25, q = 35 undergoing elastic collision illustrated in
Figs. 5(a) and 5(b). density on contour 0.01.

(a)

 0

 1

z
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10 ρ1D(x,z )

(c)
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 10
z

-4 -2  0  2  4x

 0

 2

 4
ρ1D(x,z)

FIG. 7. (a) The 1D density ρ1D(x,z) and (b) its contour plot during
the collision of two light bullets of Fig. 3 with p = 35, q = 2 initially
placed at x = ±1, upon real-z propagation. The initial wave functions
are multiplied by exp(±i2x) to set them in motion with an initial
dimensionless velocity of about 2. The same for the collision of two
light bullets with p = 30, q = 15 of Fig. 3 for an initial velocity of
about 0.5 are shown in (c) and (d), respectively.

(z = 0.18) the collision shown in Figs. 5(a) and 5(b). The same
for the collision shown in Figs. 5(c) and 5(d) is illustrated in
Figs. 6(c) and 6(d). In general, the inelasticity in both collisions
is small.

To study the inelastic collision, we consider two compact
bullets with p = 35, q = 2 and place them at x = ±1 and
set them in motion with dimensionless velocity of about
2 in opposite directions. This is achieved by multiplying
the respective wave functions by exp(±i2x) and performing
real-z simulation. The dynamics is illustrated by a plot of the
time evolution of 1D density ρ1D(x,z) in Fig. 7(a) and the
corresponding contour plot is shown in Fig. 7(b). The same
for the collision of two light bullets with p = 30, q = 15 with
an initial velocity of about 0.5 are illustrated in Figs. 7(c) and
7(d), respectively. In both cases, the two bullets come close to
each other at x = 0, coalesce to form a bullet molecule, and
never separate again. The combined bound system remains
at rest at x = 0 and contines a small breathing oscillation
because of a small amount of liberated kinetic energy which
creates the bullet molecule in an excited state. The observation
of oscillating bullet molecules in dissipative systems has been
reported [30].

Hence, at sufficiently small incident velocities, the collision
of two light bullets leads to the formation of a bullet molecule,
and at large velocities one has the quasielastic collision of two
light bullets. At intermediate velocities a new phenomenon can
take place. As the initial velocity is slowly increased from the
domain of molecule formation, after collision a bullet molecule
is formed in a highly excited state with a large amount of
energy. In that case, because of the excess energy, the bullet
molecule expands and the localized bullets are destroyed. This
is illustrated by a plot of the time evolution of 1D density
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FIG. 8. (a) The 1D density ρ1D(x,z) and (b) its contour plot during
the collision of two light bullets of Fig. 3 with p = 30, q = 15 initially
placed at x = ±4.5, on real-z propagation. The initial wave functions
are multiplied by exp(±i6x) to set them in motion with an initial
velocity of about 6.

ρ1D(x,z) in Fig. 8(a) for the case of collision of two bullets
with p = 30, q = 15 at an initial velocity of about 6 and the
corresponding contour plot is shown in Fig. 8(b).

IV. SUMMARY

Summarizing, we demonstrated the creation of a stable
3D spatiotemporal light bullet with cubic-quintic nonlinearity

employing the Lagrange variational and full 3D numerical
solution of the NLS equation. The statical properties of
the bullet are studied by a variational approximation and a
numerical imaginary-z solution of the 3D NLS equation. The
cubic nonlinearity is taken as focusing Kerr type above a
critical value, whereas the quintic nonlinearity is defocusing.
The dynamical properties are studied by use of a real-z solution
of the NLS equation. In the 3D spatiotemporal case, the optical
bullet can move with a constant velocity. At large velocities,
the collision between the two spatiotemporal light bullets is
quasielastic with no visible deformation of the final bullets. At
small velocities, the collision is inelastic with the formation
of a bullet molecule after collision. At medium velocities, the
bullets can be destroyed after collision.
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