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Semiclassical treatment of quantum propagation with nonlinear classical dynamics:
A third-order thawed Gaussian approximation
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The time-dependent WKB approximation for a coherent state is expanded to third order around a guiding
real trajectory, allowing for the novel treatment of nonlinearity in its semiclassical dynamics, which is generally
present in all physical systems far from the classical regime. The result is a closed-form solution consisting of a
linear combination of Airy functions and their derivatives multiplied by an exponential. The expression’s ability
to capture nonlinearity is demonstrated by examining the autocorrelation of initial coherent states in anharmonic
systems with few to many contributing periodic orbits. Its accuracy is compared to the quadratic expansion and
found to be superior in regimes of � where the curvature begins to be significant, as expected. Moreover, the
expression is shown to be a real-trajectory uniformization over two coalescing saddle points that are emblematic
of significant curvature. This extends real-trajectory time-dependent wave-packet semiclassical methods to highly
anharmonic systems for the first time and establishes their regime of validity.
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I. INTRODUCTION

The Feynman path integral provides a clear prescription for
finding the quantum dynamics of states [1,2]. Unfortunately,
it is exactly solvable in only a few simple cases, and so its
semiclassical treatment is often considered instead. There has
been much recent work on this topic, ranging from so-called
“initial-value” representations [3–6], coupled multiconfigu-
rational Gaussian methods [7,8], Bohmian mechanics [9],
frozen Gaussian dynamics [10], Wigner formulations [11], and
thawed Gaussian dynamics [12,13]. The direction considered
here is most closely related to the last topic.

A variational expansion of the Feynman path in-
tegral up to second order in � produces the time-
dependent Wentzel-Kramers-Brillouin (WKB)—the van
Vleck–Morette–Gutzwiller (vVMG) propagator [14–16]—
which reduces the number of trajectories that are considered
to the set of only the (real or complex) classical trajectories
between two manifolds, along with their action S and stability
∂2S/∂q ′∂q. The position state representation of vVMG is

GvVMG(q,q ′,t) = 1√
2πi�

∑
paths

(
∂2S(q,q ′,t)

∂q∂q ′

)1/2

× exp

[
i

�
S(q,q ′,t)

]
, (1)

where q ′ and q are the initial and final positions, respectively,
for time t .

When considering the propagation of states in time, it is
necessary to expand their semiclassical propagator around
guiding time-dependent trajectories [17,18] that approximate
the local parts of the state that are of interest. Formally,
these guiding trajectories should correspond to saddle points
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obtained by evaluating the integral between the vVMG
propagator and a particular state by the method of steepest
descents. When this expansion is done to quadratic order,
the dynamics near guiding trajectories are linearized and the
neighboring part of the state remains well approximated for
any time with sufficiently small �, or equivalently, for any �

for a sufficiently short time. Even when the dynamics of the
classical density are globally highly nonlinear in phase space,
local pieces on the order of � can often still be linear and well
captured, as has been shown for the Coulombic potential [19]
and the stadium billiard [20]. This corresponds to the regime
when the saddle points are sufficiently well separated from
each other with respect to �.

However, for larger �, nonlinearities become important
even at the local scale, and an expansion to higher than second
order around the guiding trajectories becomes necessary. Such
curvature is evidenced by two (or more) saddle points coming
close enough together so that the area they encompass is on
the order of �. This causes the integration by the method of
steepest descents to fail. In both prior studies, hairpins in phase
space—highly curved manifolds—had to be avoided for this
reason [19,20]. Such curvature is a general feature of almost
any physically relevant system away from the classical regime.
Therefore, there is a great need for a treatment that handles
pervasive nonlinearity in phase space and coalescing saddle
points uniformly; this is called a “uniformization.” Related
efforts have relied on many-trajectory uniformization [21] to
address this issue.

In this paper, we will introduce a real-trajectory uni-
formization of the semiclassical dynamics of coherent states.
This is the next order cubic treatment of the “off-centered
thawed Gaussian approximation” [22]. It can also be described
as a uniformization over real trajectories that approximates
the time-dependent WKB treatment of Gaussians known
as generalized Gaussian wave packet dynamics (GGWPD)
[23,24]. As we will explain, the real trajectories can be viewed
as an approximation to the generally complex trajectories
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necessary in GGWPD. However, since they are real, they are
far easier to find and use.

Unfortunately, many cubic expansions of this nature behave
badly when taken to higher than second order, and fewer
still have closed-form simple solutions. Will including the

dynamics up to third order be a nonasymptotic expansion
and therefore actually produce less accurate results? Is it
still possible, as in earlier work, to calculate correlations of
wave packets by summing orbit contributions based on their
phase-space intersections?

II. DERIVATION OF THE CUBIC APPROXIMATION

As mentioned in the Introduction, in this paper we will consider coherent states—Gaussian wave packets in position and
momentum space—whose representative classical densities are localized in phase space. To examine our higher-order expansion
around guiding trajectories, we will work in one dimension and determine the time propagation of the initial Gaussian wave
packet:

�β(q,0) = 4

√
1

πσ 2
exp

{
i

�

[
ξ (q − qβ) + i�

2σ 2
(q − qβ)2 + γ

]}
, (2)

where σ ∈ R and is proportional to the spread of the Gaussian, ξ ∈ R and is equal to the central momentum, and γ ∈ R and is
an initial phase of the state.

Instead of the full semiclassical propagator, we apply the cubically approximated semiclassical (c.s.c.) propagator,
Gcsc(q,q ′,t) ∝ ∑

paths exp [ i
�
Scub(q,q ′,t)], to the initial state �β , giving

�csc
β (q,t) =

∫
dq ′Gcsc(q,q ′,t)�β(q ′,0). (3)

Here we have expanded the action S(q,q ′) up to third order around an initial position q0 and its time evolute qt to produce

Scub(q,q ′,t) = S(qt ,q0) +
(

∂S

∂qt

)
q0

Q +
(

∂S

∂q0

)
qt

Q′ + 1

2

(
∂2S

∂q2
t

)
q0

Q2 + 1

2

(
∂2S

∂q2
0

)
qt

Q′2 +
(

∂2S

∂q0∂qt

)
Q′Q + 1

6

(
∂3S

∂q3
0

)
qt

Q′3

+1

6

(
∂3S

∂q3
t

)
q0

Q3 + 1

2

(
∂3S

∂q2
0∂qt

)
Q′2Q + 1

2

(
∂3S

∂q0∂q2
t

)
Q′Q2, (4)

where Q = q − qt and Q′ = q ′ − q0. This is the main extension over the harmonically approximated semiclassical (h.s.c.)
propagator, and as we shall see in the following, the resulting formalism builds upon it.

Substituting the expanded action into Eq. (3) yields

�csc
β (q,t) = 4

√
1

πσ 2

1√
2πi�

∑
paths

∫ ∞

−∞
dQ′

⎡
⎢⎣
⎛
⎝
√

∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

+
⎛
⎝ ∂3S

∂Q′2∂Q√
∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

Q′ +
⎛
⎝ ∂3S

∂Q′∂Q2√
∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

Q

⎤
⎥⎦

× exp

{
i

�
[	Q′3 + ϒQ′2 + �Q′ + �]

}
, (5)

where

	 = 1

6

(
∂3S

∂q3
0

)
qt

, (6)

ϒ = 1

2

[(
∂2S

∂q2
0

)
qt

+
(

∂3S

∂q2
0∂qt

)
Q

]
+ i�

2σ 2
, (7)

� =
(

∂S

∂q0

)
qt

+
(

∂2S

∂q0∂qt

)
Q + 1

2

(
∂3S

∂q0∂q2
t

)
Q2 + i�

σ 2
(q0 − qβ) + ξ, (8)

and

� = S(qt ,q0) +
(

∂S

∂qt

)
q0

Q + 1

2

(
∂2S

∂q2
t

)
q0

Q2 + 1

6

(
∂3S

∂q3
t

)
q0

Q3 + i�

2σ 2
(q0 − qβ)2 + ξ (q0 − qβ) + γ. (9)

Above we have also expanded the prefactor to the next higher order around q ′ = q0 and q = qt compared to the h.s.c. propagator;
the h.s.c. propagator contains only the first term in this prefactor. However, note that the square root of the prefactor is not an
entire function and so the region of convergence of any expansion is limited by where its argument is zero. As we shall see, this
means that when our point of expansion is close to the zero of the argument, the overall expansion is no longer well behaved.
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We let the phase in Eq. (5) be f (Q′,t) and the prefactor g(Q′,t) and then rewrite the former to fit the Airy function’s cubic
integral identity such that

�csc
β (q,t) =

∑
paths

∫
dQ′g(Q′,t) exp

{
1

�
f (Q′,t)

}
, (10)

where

f (Q′,t) = i(	Q′3 + ϒQ′2 + �Q′ + �) (11)

= 	i

(
Q′3 + ϒ

	
Q′2 + �

	
Q′ + �

	

)
(12)

= 	i

[(
Q′ + 1

3

ϒ

	

)3

− 1

3

(
ϒ

	

)2

Q′ − 1

27

(
ϒ

	

)3

+ �

	
Q′ + �

	

]
(13)

= 	i

[(
Q′ + 1

3

ϒ

	

)3

− 1

27

(
ϒ

	

)3

+ �

	
+

(
�

	
− 1

3

(
ϒ

	

)2
)(

Q′ + 1

3

ϒ

	

)
− 1

3

ϒ

	

(
�

	
− 1

3

(
ϒ

	

)2
)]

, (14)

and

g(Q′,t) = 4

√
1

πσ 2

1√
2πi�

⎡
⎢⎣
⎛
⎝
√

∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

+
⎛
⎝ ∂3S

∂Q′2∂Q√
∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

Q′ +
⎛
⎝ ∂3S

∂Q′∂Q2√
∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

Q

⎤
⎥⎦. (15)

Thus, setting z = −i 3

√
3

	2 (	Q′ + 1
3ϒ) simplifies the phase such that

f = z3

3
− ζz + A, (16)

where

ζ = 3

√
	2

3

[
�

	
− 1

3

(
ϒ

	

)2
]
, (17)

and

A = i

{
−1

3
ϒ

[
�

	
− 1

3

(
ϒ

	

)2
]

− 1

27

ϒ3

	2
+ �

}
. (18)

Substituting in z changes the contour integral:

�csc
β (q,t) =

∑
paths

∫ −i 3
√

3
	2 (	∞+ 1

3 ϒ)

−i 3
√

3
	2 (−	∞+ 1

3 ϒ)
dz g

[
Q′(z),t

]dQ′

dz
exp

[
1

�

(
z3

3
− ζz + A

)]
. (19)

This is a convergent integral when π
6 < arg(z) < π

2 , 5π
6 < arg(z) < 7π

6 , or 3π
2 < arg(z) < 11π

6 as |z| → ∞. These conditions

are satisfied since 	 ∈ R and �ϒ = �

2σ 2 > 0. Depending on the root of 	− 2
3 , the possible contours of integration are equivalent

to C1 from ∞e− 1
3 πi to ∞e

1
3 πi , C2 from ∞e

1
3 πi to ∞eπi , and C3 from ∞eπi to ∞e− 1

3 πi .
Thus, the integrals we must consider are

F (ζ,�,Cj ) = 1

2πi

∫
Cj

dz exp

[
1

�

(
z3

3
− ζz

)]
, (20)

G(ζ,�,Cj ) = 1

2πi

∫
Cj

dz z exp

[
1

�

(
z3

3
− ζz

)]
. (21)

The contours of integration ensure that each F (Cj ) and G(Cj ) is linearly dependent on the other two [25] such that

F (ζ,�,C1) + F (ζ,�,C2) + F (ζ,�,C3) = 0, (22)

and the same with G.
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Furthermore,

F (ζ,�,C2) = exp
(

2
3πi

)
F
(
ζe

2
3 πi,�,C1

)
, (23)

G(ζ,�,C2) = exp
(

4
3πi

)
G
(
ζe

2
3 πi,�,C1

)
, (24)

and

F (ζ,�,C3) = exp
(

2
3πi

)
F
(
ζe

2
3 πi,�,C2

)
, (25)

G(ζ,�,C3) = exp
(

4
3πi

)
G
(
ζe

2
3 πi,�,C2

)
. (26)

With these identities, the contour integrals in Eqs. (20) and (21) can be evaluated and are

F (ζ,�,C1) = �
1
3Ai

(
ζ

�
2
3

)
, (27)

G(ζ,�,C1) = −�
2
3Ai

′
(

ζ

�
2
3

)
, (28)

and similarly for C2 and C3.
In summary,

�csc
β (q,t) =

∑
paths

∫
Cj

dz g[Q′(z),t]
dQ′

dz
exp

[
1

�

(
z3

3
− ζz + A

)]
(29)

=
∑
paths

∫
Cj

dz
4

√
1

πσ 2

1√
2πi�

i
3
√

3	

⎡
⎣
⎛
⎝
√

∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

+
⎛
⎝ ∂3S

∂Q′∂Q2√
∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

Q +
⎛
⎝ ∂3S

∂Q′2∂Q√
∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

(
i

3
√

3	
z − ϒ

3	

)⎤
⎥⎦ exp

[
1

�

(
z3

3
− ζz + A

)]
(30)

= (2πi)
∑
paths

4

√
1

πσ 2

1√
2πi�

i
3
√

3	

⎧⎪⎨
⎪⎩
⎡
⎢⎣
⎛
⎝
√

∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

+
⎛
⎝ ∂3S

∂Q′∂Q2√
∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

Q − ϒ

3	

⎛
⎝ ∂3S

∂Q′2∂Q√
∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

⎤
⎥⎦

×F (ζ,�,Cj ) + i
3
√

3	

⎛
⎝ ∂3S

∂Q′2∂Q√
∂2S

∂Q′∂Q

⎞
⎠

Q′=Q=0

G(ζ,�,Cj )

⎫⎪⎬
⎪⎭ exp

(
A

�

)
, (31)

where Cj runs from −i 3

√
3

	2 (	∞ + 1
3ϒ) to −i 3

√
3

	2 (−	∞ + 1
3ϒ).

F (ζ,�,C1) exp (A
�

) can be written in a form that makes its Q dependence explicit:

�
1
3Ai

[
�

− 2
3 (αQ2 + βQ + γ )

]
exp[i(δQ3 + εQ2 + ζQ + η)/�], (32)

where β, γ , ε, ζ , η ∈ C and α, δ ∈ I. (See the Appendix for their explicit form.)
In this way, it can be seen that the final solution in Eq. (31) is a linear combination of an Airy function and its derivative, with

complex quadratic arguments in Q, multiplied by a Gaussian with a cubic imaginary term.
Due to the variable transformation necessary to produce the Airy function form, we found it necessary that 	2 	
 (� − 	ϒ2)

or, more loosely, that the triple derivatives of the trajectories’ action be greater than or equal to the second-order derivatives
with respect to the Gaussian’s dispersion σ . This ensures that the Airy functions’ arguments are not too large to be numerically
handled by our Airy function library [26]. This is never the case early in a wave packet’s propagation when its dynamics are
exactly linearizable. As a consequence, in practice, early on in the dynamics the argument for the Airy function is a large number
and only later does its form become numerically usable, as numerical evaluation readily showed.

As a final point on practical implementation, in numerics it is important to watch the sign of the argument ∂2S/∂q0∂qt of the
square roots of the prefactor and ensure that the roots propagate continuously on their Riemannian surface across branch cuts.
This is equivalent to adding the correct Morse index into the formulation.
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III. STABILITY MATRICES AND THEIR DERIVATIVES

The double action derivatives are often most easily found
in terms of the elements of the stability matrix,

M(t) =
(

M(t)11 M(t)12

M(t)21 M(t)22

)
=

((
∂pt

∂p0

)
q0

(
∂pt

∂q0

)
p0(

∂qt

∂p0

)
q0

(
∂qt

∂q0

)
p0

)
. (33)

These are more convenient since they are dependent on the
initial position and momentum instead of the initial and final
positions. In terms of M , the double action derivatives are(

∂2S

∂q2
0

)
qt

= M22

M21
, (34)

∂2S

∂q0∂qt

= − 1

M21
, (35)

and

(
∂2S

∂q2
t

)
q0

= M11

M21
, (36)

where we dropped the stability matrix’s t argument for
brevity’s sake and M(0) = I2×2.

The stability matrix of the guiding trajectory (q0,qt ) =
(pt ,qt ) obeys the symplectic equation of motion

Ṁ(t) = K(t)M(t), (37)

where

K(t) =
(

− ∂2H
∂q∂p

− ∂2H
∂q2

∂2H
∂p2

∂2H
∂p∂q

)
. (38)

Similarly, the triple derivatives of the action can often most
easily be found in terms of the elements of the stability matrix
and its first derivative �(t) ≡ ∂M

∂(p0,q0) , a 2 × 2 × 2 tensor. The
equation of motion for �(t) can be shown to be

�̇(t)ilm =
∑
j,k

∂K(t)

∂(p,q) ijk

M(t)klM(t)jm +
∑

j

K(t)ij�(t)j lm,

(39)

where

∂K(t)

∂p
=

(
− ∂3H

∂q∂p2 − ∂3H
∂q2∂p

∂3H
∂p3

∂3H
∂q∂p2

)
(40)

and
∂K(t)

∂q
=

(
− ∂3H

∂q2∂p
− ∂3H

∂q3

∂3H
∂p2∂q

∂3H
∂q2∂p

)
. (41)

In terms of the � tensor, the triple action derivatives are

∂3S

∂q3
0

= 1

M21
�222 − 2

M22

(M21)2
�221 + (M22)2

(M21)3
�211, (42)

∂3S

∂q2
0∂qt

= 1

(M21)2

(
�212 − M22

M21
�211

)
, (43)

∂3S

∂q3
t

= 1

(M21)2

(
�111 − M11

M21
�211

)
, (44)

∂3S

∂q0∂q2
t

= �211

(M21)3
, (45)

and �(0) = 0 × I2×2×2.
In many applications there is often no need to maintain

strict symplecticity or conservation of the area of phase space

when calculating �(t). Instead, it can be found by numerical
approximation to an acceptable accuracy, such as perhaps by
a finite difference evaluation from two stability matrices for
two trajectories, with initial conditions slightly displaced from
each other. This is especially important for applications in “on-
the-fly” calculations, where the stability matrix is computed
by ab initio methods and generally relies on an expensive
calculation of the system’s Hessian matrix to find K(t). Thus,
for instance, using a finite difference computational approach
would be expected to double the amount of Hessians that
must be computed. This is still a far cry from the many more
that are necessary, one for each trajectory’s stability matrix,
in contemporary “initial-value methods” such as the Herman-
Kluk propagator.

IV. PERFORMANCE OF THE CUBIC APPROXIMATION

To evaluate the performance of the cubic approximation we
derived, we examine the first return of an initially displaced
and kicked coherent state with � = 1, σ = 1/

√
8, qβ = 1,

and pβ = −300, under the Hamiltonian H = p2

2m
+ ω|q3| with

m = 1, ω = 10 000. Although trajectories under this system’s
evolution have higher than triple action derivatives, the triple
derivatives dominate in an interval of values for � (with respect
to σ ) that we focus on, as we will show. In this regime
this potential exhibits isolated hairpins in phase space and
negligible fourth- or higher-order kinks.

Figure 1 shows a few time steps after the first period of
the wave packet’s orbit during the time interval when it is
traversing past its initial state. As can be seen, at the beginning
of this interval the wave packet has nearly reformed to a
Gaussian state after its collision with the near wall. It then
develops oscillatory anharmonic features as it returns to the
far wall. These oscillations in its absolute value are indicative
of two contributing branches in q space of the wave function, as
we shall see when we examine its propagation in phase space
shortly. In the second column the quadratic approximation is
shown capturing the center of mass of the wave packet well,
but it is clearly unable to reproduce the two branches that pro-
duce the nonlinear oscillations. Compared to the quadratic’s
performance, the cubic approximation is able to capture these
features far more successfully, as shown in the third column.
This indicates that the cubic treatment can handle highly
anharmonic propagation that produces significant curvature
in phase space with only a single guiding trajectory. For the
quadratic and cubic runs shown, the guiding trajectory (pt ,qt )
at all times was chosen to be the center of mass of the initial
state at t = 0 and so required no root searching.

The real part of the numerically evaluated autocorrelation,
〈�β(0)|�β(t)〉 = ∫ ∞

−∞ dq �∗
β(q)�β(q,t), exhibits similar

performance differences between the quadratic and cubic
methods during the same time interval. As seen in Fig. 2, the
quadratic expansion is able to capture the overall envelope
of the first recurrence in the autocorrelation well. However,
unlike the cubic approximation, it is unable to reproduce the
chirp in the frequency during the recurrence as well as the
variations in its envelope.

Figure 3 shows the 4.9-σ confidence interval of the initial
classical Gaussian distribution and its final time evolute at the
time steps indicated during the recurrence. Also shown are the

032211-5



LUCAS KOCIA AND ANNA KLALES PHYSICAL REVIEW E 94, 032211 (2016)

FIG. 1. The first recurrence of the wave packet with its initial
coherent state in the absolute value cubic potential described inline.
At t = 340 the wave packet has just reflected off of the right wall and is
fairly Gaussian in appearance. As it proceeds back across the potential
at t = 360 to t = 400, the absolute value of its wave function becomes
far more asymmetric and oscillatory. The cubic approximation to this
evolution, expanded around the classical guiding trajectory at the
center of the wave packet, appears to be able to capture this latter
behavior far better than the quadratic approximation and GGWPD.

equivalent confidence intervals generated from quadratically
and cubically expanding the action around the initial and final
positions of the central guiding trajectory (the latter are marked
by the black x’s) up to that time point. They show that at
t = 340 only the far-off tails of the classical density have
passed through the latter’s initial self, while at t = 380 the
wave packet has rotated and its central highest density is now
sweeping through. Finally, at t = 400, the central density is
seen exiting the initial 4.9-σ confidence interval.

It is clear in these snapshots of phase space that the initial
spread σ = 1/

√
8 is such that the state’s classical density

exhibits significant curvature after its first period. Decreasing
σ while keeping σ/� fixed allows the quadratic approximation

(a)

(c)

(b)

(d)

(e)

FIG. 2. The first recurrence in the autocorrelation according
to (a) full quantum propagation, (b) the semiclassical quadratic
and (c) cubic approximations, (d) the normalization of the cubic
approximation, and (e) ε, which is defined in the text. These are
for the coherent state and cubic potential described in text with
time step �t = 8 × 10−5. The cubic autocorrelation diverges from
unit normalization immediately before the recurrence when the wave
packet bounces against the near wall.

to perform better in the time period examined because less of
the density in phase space is able to develop curvature, and only
one branch contributes within an area of �. Increasing σ with
respect to � leads both the quadratic and cubic approximations
to perform badly as the density becomes too stretched out. In
this case, using just the central guiding trajectory is insufficient
because multiple hairpins begin to overlap the initial state
which require corresponding guiding trajectory. An example
of how to properly handle this regime is shown in Sec. VII and
generally requires root searching.

In other words, with only a single central guiding trajectory
at intermediate times, the cubic approximation is expected
to be superior to the quadratic one only for intermediate

-100

-300

-500

-700

0.0

p

q2.0 0.0 2.0 0.0 2.0 0.0 2.0

t=340 t=360 t=380 t=400

FIG. 3. The 4.9-σ confidence intervals of the initial and classi-
cally propagated final states in phase space around the time of the
middle of the recurrence. Along with the full time evolution, also
shown is the quadratically and cubically approximated evolution of
the state around the guiding trajectory marked by “x.”
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FIG. 4. The error |Cc.s.c./h.s.c
β (t) − Cβ (t)|/|Cβ (t)| averaged over all

absolute values greater than 0.01 in the time interval t = 350 to
t = 500 with �t = 1 for different values of �. These are plotted on
a logarithmic scale with σ/� kept fixed. When � = 1, σ = 1/

√
8,

which are the parameters used in the evolution under the absolute
value cubic potential discussed in the text.

values of � when the cubic curvature of the state’s manifold in
phase space becomes significant. For larger values of �, when
more hairpins contribute to phase-space overlaps and higher
orders of curvature become important, it is expected to only be
nominally better. On the other hand, as � → 0 the quadratic
expansion should become exact. This is confirmed in Fig. 4
where the errors of the two methods (using the same central
guiding trajectory) are compared at different values of �.

In this vein, choosing a more appropriate “off-center”
guiding trajectory to better capture the phase-space overlap at
each time step during the first recurrence, and more than one
trajectory when multiple branches contribute, will improve
both the quadratically and cubically approximated autocor-
relation. However, the quadratically approximated recurrence
will never be exact for large enough �, because two very close
guiding centers are necessary to treat the tip of the hairpin’s
contribution when it passes through its initial state in phase
space. These two guiding centers will always become too
close together and their respective Gaussians will overlap.
The proper treatment of these two coalescing guiding centers
necessitates a “uniformization”—the cubic approximation—
as will be explained in the next section, Sec. V.

Further examining the behavior of the cubic approximation,
it is clear that immediately before the first recurrence shown in
Fig. 2 the expression is not well behaved as the wave packet hits
the near wall. This can be seen in its nonunitary normalization
around t = 333 in the second-lowest panel of Fig. 2, as well
as in the peak at the same time point in its autocorrelation one
panel above. This occurs for the reasons intimated in the earlier
derivation, namely, due to the expansion of the prefactor, which
is not an entire function. In particular,

√
∂2S(q,q ′,t)/∂q∂q ′ is

discontinuous at ∂2S(q,q ′,t)/∂q∂q ′ = 0, and any expansion
about q ′ and q will have its radius of convergence bounded
by this value. So, it is important that this discontinuity does
not fall on heavily weighted regions of the z(q ′) domain over
which the integral in Eq. (19) is performed, namely, anywhere
near the initial wave packet. If this occurs, the expansion is
not well behaved and the integral over z(q ′) becomes poor.
For a particular Q, the discontinuity of the prefactor in q ′ with

respect to q0 lies at

q ′
0 − q0 = −

√
∂2S

∂q0∂qt

∂3S

∂q2
0 ∂qt

⎡
⎣
√

∂2S

∂q0∂qt

+
∂3S

∂q0∂q2
t√

∂2S
∂q0∂qt

Q

⎤
⎦. (46)

Hence, for all Q, when ε ≡ ∂2S
∂q0∂qt

/ ∂3S

∂q2
0 ∂qt

= 0 the disconti-

nuity lies directly on q0—the initial position of the guiding
trajectory. For the example we have shown so far, this
corresponds to the center of the initial wave packet. We show
in last panel of Fig. 2 that this is exactly what happens at
t = 333 (and at later turning points) and is the reason for
the violation of the expression’s unitarity. Namely, at turning
points, ∂2S/∂q0∂qt = ∂pt/∂q0 → 0 and so ε → 0. Hence, for
centered guiding trajectories, the discontinuity of the square
root causes the most important part of phase space to be
poorly approximated during turning points. This issue can
be mitigated most simply by choosing a different, perhaps
nearby, guiding trajectory, which is not near a turning point at
the troublesome time steps.

As we have made clear so far, the quadratically and
cubically approximated calculations both rely on one or more
real guiding trajectories at each time step to approximate
the dynamics of nearby phase space. It can be easily shown
that the quadratically approximated evolution of the classical
density is equivalent to expanding the potential around the
guiding trajectory up to second order at every time step
[17]. This means that the classical density remains real at
all times and maintains its Gaussian form in its position-
space projection. This is clear in Fig. 3 by its conserved
elliptically shaped confidence interval. On the other hand, the
cubically approximated evolution of the classical density by
the expansion of its action around the initial q ′ and final q is
not equivalent to expanding the potential around the guiding
trajectory up to third order. In particular, it is easy to show that
cubic potentials have infinite orders of powers of initial q ′ and
final q in their action.

Perhaps a surprising consequence of this last statement is
that the cubically approximated classical density does not
necessarily remain real. In particular, since we expand our
action up to third order in q ′ and q, it follows that

− p′ = ∂S

∂q ′ = ∂S

∂q0
+ ∂2S

∂q2
0

Q′ + ∂2S

∂q0∂qt

Q + 1

2

∂3S

∂q3
0

Q′2

+ ∂3S

∂q2
0∂qt

Q′Q + 1

2

∂3S

∂q0∂q2
t

Q2 (47)

and

p = ∂S

∂q
= ∂S

∂qt

+ ∂2S

∂q2
t

Q + ∂2S

∂q0∂qt

Q′ + 1

2

∂3S

∂q3
t

Q2

+ ∂3S

∂q0∂q2
t

Q′Q + 1

2

∂3S

∂q2
0∂qt

Q′2, (48)

where p′ and p are the initial and final momenta of the
trajectory (q ′,q), and Q′ = q ′ − q0 and Q = q − qt again. It
follows that the final position with respect to qt is

Q = 1

2a
(−b ±

√
b2 − 4ac), (49)
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FIG. 5. (a) The cubically approximated wave function from Fig. 1
and (b) the cubically approximated dynamics of the classical density
that are real from Fig. 3. As described in the text, the abrupt
terminations of the purely real parts of the classical density at time
steps 340 and 360 produce the two lobes seen in the wave packet.

where

a = 1

2

∂3S

∂q0∂qt

, (50)

b = ∂2S

∂q0∂qt

+ ∂3S

∂q2
0∂qt

(q ′ − q0), (51)

and

c = ∂S

∂q0
+ ∂2S

∂q2
0

(q ′ − q0) + 1

2

∂3S

∂q3
0

(q ′ − q0)2 + p′. (52)

Hence, |�qt | > 0 when the discriminant b2 − 4ac is negative.
This condition is satisfied at times for the parts of the classical
density during the time interval shown and so leads them to
become complex valued.

We showed the 4.9-σ confidence intervals of the cubically
approximated density, restricted to the trajectories with no
imaginary part, in Fig. 3 (in blue). For convenience, these
fragments are replotted without the other curves in Fig. 5 below
their corresponding wave packets in position representation.
At t = 340 and t = 360, the real parts of the cubically evolved
classical densities are shown abruptly terminating at two
regions, after which they are complex. These correspond to
the boundary in phase space where the discriminant becomes
negative. At t = 380 and t = 400 the entire classical density
within the confidence interval shown becomes real again.

Since the cubically approximated expression involves an
integral over all real q ′ and q, the abrupt transitions of
the classical density to complex space has the effect of
discontinuously changing the integral’s domain, since the
trajectories whose positions become complex are not included
in the integral. In particular, the two lobes of the wave packet
at t = 340 correspond to the q projection of the two abrupt
terminations of the classical density shown below. These two
lobes become the two larger ripples along the wave packet
at t = 360. They are smaller in amplitude since fewer of the
classical trajectories have become complex, as can be seen in
the thinner ends of the “legs” in the phase-space confidence
intervals at t = 360.

It is unclear whether this feature has a physical inter-
pretation concerning the dynamics. Regardless, the cubic

approximation to the wave packet evolution fares poorer when
significant portions of the corresponding real initial classical
density have become complex valued. In practice, we found
that the intervals of time when this occurs are relatively
short, and even when they occur, the resultant wave packets
are still often superior to the quadratic approximation. The
cubically approximated wave packet at t = 360, for example,
is still far closer to the exact one compared with the quadratic
approximation, despite its two anomalous peaks.

V. METHOD OF STEEPEST DESCENTS

An alternative quadratic evaluation of

�β(q,t) =
∫

dq ′GvVMG(q,q ′,t)�β(q ′,0) (53)

is by the method of steepest descents [27–30]. This is equiva-
lent to the quadratic approximation already presented, except
that the guiding centers around which the expansion is made
become the saddle points of the integrand—the initial and final
positions where the first derivative of the phase is equal to zero.
Such a treatment is on a more formally solid footing compared
to the previous approach, since these guiding trajectories are
well defined. However, the resultant guiding trajectories are
often complex valued and need to be found by root-finding
methods. More precisely, the expansion of the action in Eq. (4)
is made around the saddle points in phase space of the
integrand, which are generally complex trajectories (pt ,qt ),
obeying double-ended boundary conditions. The result, which
is the mixed coherent state and position representation of the
time-dependent WKB approximation and also the position
representation of GGWPD, is

�β(q,t)

= 4

√
1

πσ 2

∑
saddle points

√
−∂2S/∂q0∂q(

∂2S/∂q2
0

)
qt

+ i�/σ 2

× exp

[
i

�
S(q,q0,t)

]
exp

[
iσ 2

�2
�p0�p0 − σ 2

2�2
(�p0)2

− 1

2σ 2
(�q0)2 − 1

�
�p0�q0

]
, (54)

where the sum is over all saddle points (guiding trajectories)
that satisfy

0 = 1

σ 2
(q0 − qβ) + i

�
(p0 − pβ) (55)

and

qt = q. (56)

Unlike for the real-trajectory methods explored before, these
two equations define specific conditions that the guiding
trajectories (p0,q0) → (pt ,qt ) must satisfy. For this to be
possible, in general (p0,q0) ∈ C2 while (pt ,qt ) ∈ R2 and so
the guiding trajectories cannot begin by being real.

The performance of the steepest descents method applied
to the prior absolute cubic potential is shown in the right
column of Fig. 6. There it is clear that the GGWPD wave
packet agrees closely with the exact evolution and captures
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the interference oscillations very well. This is accomplished
by including two saddle-point contributions in the sum of
Eq. (54) corresponding to the two branches on the left side of
the hairpin. These are marked as black dots in the phase-space
plots in the left column of Fig. 6. On the right side of the
hairpin, two saddle points can still be found very close to each
other, though only one is expected. However, the lower of the
two appears to have traversed a Stokes line and contributes
anomalously large amplitude. Therefore, we only include the
upper saddle point contribution. Even so, at the last two time
steps (t = 380 and t = 400), the tight hairpin becomes so
tight perpendicular to its q projection that the saddle points
on the two branches at and after the hairpin coalesce too
closely to each other (with respect to �) vertically. This leads
to the formation of the anomalous peak at the right side
of the GGWPD wave packet where the method of steepest
descents fails, even when only keeping the top branch of saddle
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FIG. 6. (a) The 4.9-σ confidence intervals of the classical densi-
ties alongside their (b) corresponding exact and GGWPD-generated
wave packets at four time points. Also shown are the real parts of the
complex guiding trajectories (pt ,qt ) (marked as black dots, with their
area of coalescence magnified in the inset) used to produce the wave
packet at every q value. A pair of guiding trajectory contributions,
each from one of the two branches, was included for the part of the
quadratic wave packet to the left of the hairpin. The part to the right
was constructed by only including the upper branch.

points. Notice that at t = 400 these two branches to the right
of the hairpin have fused into one branch. This suggests a
relationship between saddle points crossing a Stokes line and
the coalescence of two branches. However, we do not pursue
this subject further in this paper.

We point out the relatively large amount of work necessary
to produce this GGWPD result: at every q the correct two
saddle points had to be found by root searching through the
four-dimensional complex space corresponding to complex
classical trajectories. The cubic approximation, on the other
hand, is able to capture both of the contributions caused by
the curvature automatically from only one guiding trajectory,
and so reproduces most of the interfering features with no
additional work for different qs.

The quadratic real-trajectory or “thawed Gaussian approx-
imation” has been recently argued to be an approximation
to GGWPD in that it approximates the latter’s complex
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FIG. 7. The (a) 4.9-σ confidence intervals from Fig. 6 and the
final real “off-center” guiding trajectories (pt ,qt ) (marked as black
dots, with their area of coalescence magnified in the inset). (b)
The quadratic approximation to the wave packets at every q value
produced from these guiding trajectories. Like in the GGWPD case,
a pair of guiding trajectory contributions, each from one of the two
branches, was included for the part of the quadratic wave packet
to the left of the hairpin. The part to the right was constructed
by including only the upper branch. The initial values of the real
trajectories were chosen to be the real parts of the initial complex
saddle-point trajectories used in GGWPD in Fig. 6.

032211-9



LUCAS KOCIA AND ANNA KLALES PHYSICAL REVIEW E 94, 032211 (2016)

trajectories by their closest corresponding real trajectories
[31]. In other words, the guiding trajectories in the quadratic
approximation can be considered to be real-trajectory analogs
to the original integrand’s complex saddle-point trajectories,
which define the more formal GGWPD.

To explore this relationship, we used the real parts of
the initial complex saddle-point trajectories found at every q

value in GGWPD as the guiding trajectories for the quadratic
real-trajectory approximation. As shown in Fig. 7, their time
evolutes lie along the center of the two branches of the
confidence interval in phase space to the left of the hairpin, just
like the real parts of the evolved complex trajectories shown in
Fig. 6 do. However, to the right of the hairpin this relationship
is broken and the lower real trajectories curve left while the
rest go right. The latter’s contributions were kept while the
former’s were discarded to produce the wave packets in Fig. 7,
just like we discarded the lower branch when we looked at
the GGWPD. However, unlike that case, the reasons for not
keeping them are perhaps more obvious in the real-trajectory
case; the real guiding trajectories that capture the part of the
wave packet to the right of the hairpin should also lie to the
right. Finally, after t = 380 the two branches fuse to become
one, as was also seen in GGWPD.

Notice that the quadratic real-trajectory evaluation in Fig. 7
is just as accurate as GGWPD away from the hairpin. Around
the hairpin it fails due to the two Gaussians corresponding to its
two guiding trajectories beginning to overlap. This is the real-
trajectory manifestation of coalescing saddle points and causes
the approximation to fail faster than the GGWPD’s failure
of the method of steepest descents. The cubic approximation
derived here is a uniformization of this quadratic real-trajectory
method and handles these two overlapping Gaussians. It
works so well in the example shown so far, in fact, that

using only one guiding trajectory for every q seems largely
sufficient.

As an aside, it is possible to formulate a superior steepest
descents equivalent to the cubic approximation presented here,
in the same way that GGWPD is the superior steepest descents
equivalent of the real-trajectory quadratic approximation.
Such a formulation would also be a “uniformization” in that
it would properly handle two (or more) coalescing saddle
phase-space points, which are the marker of phase-space
curvature, in a uniform manner. Indeed, the derivation would
follow the same steps as those laid out here but with the
phase f (Q′,t) expanded around its saddle points. Again, the
cubic approximation presented here could be interpreted as
a real-trajectory approximation to such a uniform steepest
descents treatment, the latter of which would instead generally
involve complex trajectory root finding of what would now be
pairs of complex trajectories.

Returning back to GGWPD, we proceed to examine its
evaluation of the autocorrelation during the first recurrence
by performing the integral in Eq. (54) with another coherent
state by the method of steepest descents. This is in contrast
to the numerical evaluation of the integral and allows us to
consider only the neighborhoods near the set of saddle-point
trajectories that satisfy the new steepest descent conditions.
Numerical integration with a coherent state, which is what
we examined for the quadratic and cubic approximations to
the autocorrelation, is comparably difficult to perform with
the position representation of GGWPD due to the necessity
of finding the correct roots for every q point at every
time step. Its evaluation by the method of steepest descents
produces the coherent state representation of time-dependent
WKB, or the coherent state representation of GGWPD,
and is

〈�β |�β(t)〉 = 1√
2i�σ

∑
saddle points

exp

(
i

�
S(qt ,q0,t)

)√√√√ −∂2S/∂q0∂qt[
1/2σ 2 − i

(
∂2S

/
∂q2

t

)
q0

/
2�

][
1/2σ 2 − i

(
∂2S

/
∂q2

0

)
qt

/
2�

]
+ 1

4�2

[
∂2S

∂qt ∂q0

]2

× exp

[
iσ 2

�2
�p0�p0 − σ 2

2�2
(�p0)2 − 1

2σ 2
(�q0)2 − 1

�
�p0�q0

]

× exp

[
iσ 2

�2
�pt�pt − σ 2

2�2
(�pt )

2 − 1

2σ 2
(�qt )

2 + 1

�
�pt�qt

]
, (57)

where now the sum is over all saddle points that satisfy

0 = 1

σ 2
(q0 − qβ) + i

�
(p0 − pβ) (58)

and

0 = 1

σ 2
(qt − qβ) − i

�
(pt − pβ), (59)

for (p0,q0) and (pt ,qt ) ∈ C2. Again, the guiding trajectories
(p0,q0) → (pt ,qt ) must satisfy these two conditions and so are
generally complex valued.

Figure 8 shows that GGWPD is able to capture the first
recurrence in the autocorrelation very well. Its only apparent
deviation from the exact curve can be found in its amplitude,
which is slightly too low in the middle. We attribute this

underestimation of the amplitude to the fact that we only
included one saddle-point contribution in the sum this time
around. A search in nearby complex phase space reveals
another saddle point where it is expected, shown in the bottom
panel of Fig. 8 where it is the leftmost black dot. Promisingly,
it was found to contribute negligible amplitude before t = 360
and then significantly larger amplitude during the middle of
the recurrence, as desired. Unfortunately, this contribution is
badly behaved and is increasingly too large in magnitude. For
this reason it was not included. It is not clear whether this is due
to that saddle point traversing a Stokes line or if it is a valid
contribution and its bad behavior is due to the coalescence
together of these two saddle points. As we have seen, these
two phenomena appear to be related. Regardless, it is not
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FIG. 8. (a) The real part of the GGWPD autocorrelation is
compared to the exact first recurrence. Notice the underestimation
of the exact amplitude by GGWPD in the middle of the recurrence.
(b) The 4.9-σ confidence intervals are shown along with the two
saddle-point trajectories drawn as black dots for the coherent state
representation of the GGWPD. These saddle points appear to coalesce
together around t = 380.

surprising that GGWPD fails to be exact in the middle of the
recurrence, since it should require at least two saddle points
to capture the recurrence, which judging from the phase-space
confidence intervals at t = 380 will be very close together.

VI. GUIDING TRAJECTORIES

The quadratic approximation’s accuracy has often been
found to be relatively insensitive to the selection of an
appropriate real guiding trajectory. In fact, many results
[12,32] have been obtained using only the central trajectory of
the initial coherent state as the guiding trajectory, as we also
did for the results shown in Figs. 1 and 2. However, when the
dynamics of the state become more anharmonic, the selection
of an “off-center” guiding trajectory becomes more important.

To explore the cubic approximation’s sensitivity to the
appropriate guiding trajectory, we examine its performance
of the autocorrelation during the four times indicated in Fig. 1
under different guiding trajectories. To see this, we show the
overlap in phase space of the classical density corresponding
to the wave packet with its initial self in Fig. 9. Its 4.9-σ
confidence intervals are drawn in red in both columns over the
underlying contour plots. The contour plots show the error in
approximating the recurrence from using the corresponding
guiding trajectories. The shading corresponds to the error in
the first recurrence of the wave packet propagated by a guiding
trajectory that ends at the phase-space point (pt ,qt ) indicated
by the abscissas and ordinates. The lighter the shading, the
greater the error, or equivalently, the poorer the corresponding
guiding trajectory (pt ,qt ) fares at capturing the overlap at the
time step shown. The left column shows the error from the
quadratic expansion at the guiding trajectories while the right
column shows the cubic expansion’s error.

As expected, the region of good candidate guiding tra-
jectories (pt ,qt ) is quite consistently broad for the quadratic
approximation and seems to itself be fairly Gaussian in shape.

FIG. 9. Error,
|Chsc/csc

β (t)−Cβ (t)|
|Cβ (t)| , for guiding trajectories (pt ,qt )

ending at the phase-space point indicated by the axes for the time
interval shown in Fig. 2. Darker regions correspond to guiding
trajectories that lead to the most accurate approximation of the
overlap, while lighter regions correspond to poorer trajectories. As
can be seen in this side-by-side comparison between the quadratic and
cubic approximations, while the area of acceptable phase space from
which the quadratic approximation’s guiding center can be selected
is quite consistent and appears almost Gaussian shaped itself, it is
significantly more variable for the cubic case. In particular, the cubic
approximation’s valid guiding center area is smallest when it is least
applicable immediately after a turning point and is largest when the
third-order action derivatives dominate over all others.

However, selecting a better guiding trajectory than the center
of the wave packet from these darker phase-space regions does
greatly improve the quadratic approximation’s autocorrelation
for the first half of the recurrence shown in Fig. 2, a procedure
that is largely unnecessary for the cubic approximation since
it fares just fine with the central guiding trajectory.

On the other hand, the cubic approximation’s region of
good candidate trajectories (pt ,qt ), indicated by its growing
black area, appears to be highly variable in shape and size.
At t = 340 the cubic approximation is still suffering the last
effects of its bad behavior at the preceding caustic and has
only a very thin black region around q = 1.3. This region
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FIG. 10. The (a) absolute value and (b) real part of the au-
tocorrelation of an initial coherent state with σ = 0.057, qβ = 0,

pβ = 200 in the Morse potential H = p2

2m
+ D[1 − exp(−αq)]2 with

m = 1, D = 50 000, α = 8 and with time step �t = 0.000 05. The
cubic expansion is able to capture the local nonlinearity in the
autocorrelation. (Inset: The collection of periodic orbits shown in
phase space which additively contribute to the semiclassical wave
packet [the sums over paths in Eq. (31) at t = 350.)

grows substantially with time, dwarfing the corresponding
quadratic approximation’s black area during the time span
when the cubic approximation is seen to most closely approach
the exact propagation in Fig. 1. This suggests that when the
cubic approximation is performing best, it is more insensitive
to “incorrect” guiding trajectories compared to the quadratic
approximation, and vice versa.

VII. SUM OVER INDIVIDUAL CONTRIBUTIONS

As time increases, growing numbers of periodic or hete-
roclinic orbits usually intersect with an area in phase space.
Adding all of them with appropriate phases, from a manifold of
guiding trajectories, is necessary to approximate the full wave
packet’s auto- or crosscorrelations. As discussed in detail in
Sec. V, the “Method of Steepest Descents,” this sum is the
real-trajectory equivalent to the saddle-point sum formally
present in the coherent state representation of GGWPD in
Eq. (57). The quadratically expanded propagator has been
shown to handle this properly, as mentioned before in the
cases of the Coulombic potential and the stadium billiard.
However, when these individual contributions are highly
curved themselves such that they must be captured by pairs
of saddle points in GGWPD (and appear as hairpins in phase
space), the quadratic approximation struggles. This is clear
in Fig. 10, which shows the autocorrelation at some time
interval for an initial coherent state evolving under a Morse
potential—often used to realistically model the anharmonicity
in molecular vibrational bonds—whose parameters can be
found in the caption. Figure 10(a) shows the absolute value

of the autocorrelation, while Fig. 10(b) shows the real part.
The inset shows the confidence intervals of the classical
density of the initial wave packet and its time evolute during
the autocorrelation examined. Apparent in this inset are the
trajectories contributing to the overlap at that time step, of
which a representative set is indicated by the x’s, which
were selected simply because they lay along the center of
the overlap. Using these as the guiding trajectories for the
quadratic approximation produces a rather poor fit to the exact
curves. This likely remains true if one tries to capture the
hairpins with two guiding trajectories each due to Gaussian
wave packet overlap. On the other hand, the figure makes
clear that the cubic approximation is able to reproduce this
autocorrelation much more accurately with these guiding
trajectories. Each contribution is added with its correct phase
and amplitude relative to the others. We note that no effort
was made to find the “optimal” set of guiding trajectories
here. This is further evidence of the cubic approximation’s
relative insensitivity to appropriate guiding trajectories at
some times.

VIII. CONCLUSION

We presented and examined a closed-form extension to
the quadratically expanded real-trajectory time-dependent
WKB formalism. We accomplished this by expanding the
action S(q,q ′,t) to third order so as to include curvature in
the underlying semiclassical dynamics in phase space. The
resultant expression was found to perform better than the
quadratic approximation when � is finite, often with only one
real guiding trajectory, but not so large so as to necessitate
higher powers of the action.

On the negative side, for central guiding trajectories the
expression was also found to behave badly at caustics, unlike
the lower-order treatment, due to its prefactor not being an
entire function. The cubic expression is also comparatively
more sensitive to the selection of an appropriate guiding
trajectory (pt ,qt ) at some times and its corresponding classical
density is not always real. However, while the quadratic
treatment fails at uniformly capturing the hairpins in phase
space that develop with time, the cubic approximation is able
to accomplish this well and is then often found to be less
sensitive to the correct guiding (pt ,qt ).

Thus, overall, unlike its lower-order version, the cubic
approximation proves to be very useful at effectively handling
nonlinearities in phase space and is able to accomplish this
without appealing to complex classical trajectory root finding
or initial-value sampling of trajectories as other methods do.
The derivation presented can be easily extended to higher
dimensions, and we hope that it can be used as easily as
the “thawed Gaussian” approximation in many-dimensional
systems. Lastly, the cubic treatment we presented further
solidifies the concept that underlying classical trajectories
make up localized quantum wave packets, even in the nonlinear
regime of dynamics, and their proper treatment can capture
almost all quantum propagation.

ACKNOWLEDGMENTS

L.K. thanks the Faculty of Arts and Sciences and the
Department of Chemistry and Chemical Biology at Harvard

032211-12



SEMICLASSICAL TREATMENT OF QUANTUM . . . PHYSICAL REVIEW E 94, 032211 (2016)

University for generous support of this work. The authors
also thank Professor Eric Heller and Steve Tomsovic for very

helpful discussions, and Prof. Tomsovic and Alyssa Wilson
for proofreading this paper.

APPENDIX

The coefficients in Eq. (32) are

α = −
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