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We show how two electrically coupled semiconductor lasers having optical feedback can present simultaneous
antiphase correlated fast power fluctuations, and strong in-phase synchronized spikes of chaotic power drops.
This quite counterintuitive phenomenon is demonstrated experimentally and confirmed by numerical solutions
of a deterministic dynamical system of rate equations. The occurrence of negative and positive cross correlation
between parts of a complex system according to time scales, as proved in our simple arrangement, is relevant for
the understanding and characterization of collective properties in complex networks.
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I. INTRODUCTION

For a long time, light-emitting diodes are known to show
photon emission correlations depending on their electrical
pumping coupling. When parallel connected and pumped by
a very regular current source their output has a negative
cross correlation [1]. For pairs of diode lasers this quantum
optics effect extends into classical antiphase fluctuations in
the power emitted by the two lasers [2]. To explain these
effects physically one needs to remember that the pump
electrical carriers flow and recombine either way between
the parallel connected units. Quantum correlations in power
fluctuation among pairs of lasers with a common pump source
have also been studied many years ago [3] and one can
also obtain an intuitive explanation for their behavior. The
realm of classical nonlinear dynamics does not always give
such simple intuitive results. This will be experimentally
shown here for coupled pairs of chaotic diode lasers. The
power fluctuations in the lasers present the coexistence of
antiphase fluctuations at a fast time scale simultaneously
with in-phase, fully chaotic synchronized power drops in a
time scale two orders of magnitude slower. The occurrence
of anticorrelations in subsystems of complex systems that
have collective synchronized states is an intriguing effect
pertaining to different domains in nature. One finds it described
in economics [4] where the data from antiphase correlated
pairs of stocks are proposed to extract the best conditions
for investors to make gains. Analogous to what we show for
lasers, the antiphase oscillations of stock values may occur as
the market changes and even through the events of crashes,
when both stocks have a simultaneous huge drop.

In this work we show the dynamics of one pair of lasers
chaotic by optical feedback and coupled electrically. The
results show how competitive coupling for pump energy
among two chaotic subsystems can lead to synchronized pulse
spikes in the whole system while antiphase oscillations remain
present among the parts. We can optically and electrically
probe the variables and this allows detailed experimental
inspection of the dynamics and its comparison with the
theoretical model. A data series acquired from each subsystem
unit can be statistically matched to numerically calculated data,
extracted from an autonomous deterministic dynamical system

with time delay. The physical interpretation of the equations is
available and numerical solutions provide excellent agreement
with the experiment. Such mechanisms can have a relevant
impact on understanding large laser network dynamics.

From a practical point of view, diode lasers are the most
used in optical engineering. The nonlinear behavior of a single
edge emitting diode laser with external cavity optical feedback
has many dynamical forms as its pump current is changed [5].
Among these are the so-called low frequency fluctuation (LFF)
in power. The laser acquires a chaotic regime of fast power
fluctuations along with strong power drops with irregular large
time intervals. Most of this dynamics can be predicted by
a deterministic semiclassical model of rate equations with
delay [6,7] and its experimental study is still attracting broad
interest in deterministic coherence resonance [8] and optical
rogue events created by feedback with conjugated fields [9].
A comprehensive review of laser diode chaos can be found
in [10]. Modeled as excitable systems [11–14], they also have
been applied to simulate complex networks [15,16].

To have a single diode laser presenting chaotic LFF [5,6,17],
an external mirror placed a few meters apart and aligned as an
external cavity, feeds back part of the field with a time delay,
τ , in the range of tens of nanoseconds. Then, apart from the
optical field period close to 10−14 s, three time scales can be
identified in the intensity instabilities [7,17]:

(1) First there are ultrafast field fluctuations in the 10 ps
range. These field amplitude and phase fluctuations result
from the quasimode locking process among the external cavity
modes that creates ultrashort pulses.

(2) Next, the laser output power may show fluctuating
modulations in the intermediate feedback time scale on the
order of 10 ns, again due to the external reflecting feedback
cavity.

(3) Finally, the irregular LFF power drops occur with an
average time interval in the 1 μs–1 ms range, another two
or more orders of magnitude slower. These instabilities are
reproduced theoretically with a deterministic set of equations
in a dissipative nonlinear system [7]. All these effects are
within classical fluctuations scales. Light and pump currents
quantum fluctuations in the experiments are not addressed
and consistently the equations are fully deterministic without
quantum fluctuation terms.
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Optically coupled pairs of the above described lasers have
been studied as they present cross-correlated dynamics includ-
ing chaotic synchronization [18,19], which has fundamental
and applied interests [15,20]. Novel dynamical behavior
appears and is reported here when, instead of optically coupled,
the pair of lasers has optical feedback but is electronically
coupled in parallel. Examined with broadband time resolution,
the dynamics of each laser has instabilities in the three
above referred to time scales. The main new result of our
work is the demonstration that the two-laser system does
not show the same type of correlations in the different time
scales. Synchronism with in-phase correlation at the slow
scale is observed along with antiphase power fluctuations at
the intermediate faster scale, while no correlation appears
in the ultrafast time scale (10 ps range). We also show
how simple laser rate equations, including electric current
conservation, match the experiments and open the possibility
for new numerical studies in laser networks.

II. EXPERIMENTAL SETUP

Let us first describe the experimental setup. Pairs of semi-
conductor lasers differing by less than 2% in their threshold
current and optical frequency were coupled electrically in
parallel configuration and pumped by a high impedance current
source, as indicated in Fig. 1. Various types of commercial
GaAlAs single transverse mode Fabry-Perot lasers were used:
one pair of Hitachi-HL8334MG, emitting at 83 nm with a
threshold current of 33 mA, a pair of Thorlabs L850P010
with a 10.5 mA threshold current and 850 nm wavelength,
and another pair of L780P010 with a threshold of 8.5 mA
near 780 nm wavelength. All present the same phenomena.
Solitary longitudinal mode separation was typically 150 GHz
and no control was used to keep the lasers monomode.
The electric coupling between the lasers was made by short
coaxial cable connections. The total current was stabilized to
±0.001 mA and each laser temperature to 0.01 K. Optical
feedback was implemented by reflecting dielectric mirrors
located at distances between 3.00 and 8.00 m from each
laser, after beam collimation by aspheric antireflection coated
lenses. Manipulating the optical alignment, up to 6% current
threshold reduction could be achieved in both lasers. The
feedback delay times were τj = 40 ns with a ±5 ps precision

FIG. 1. Setup for the experiments on the power correlations and
chaos synchronization of two electrically coupled lasers.

mismatch that did not affect the results. Output coupling beam
splitters lead 4% of light onto 3 GHz bandwidth photodiodes.
Setting the total pump current near twice the single laser
free running threshold, makes each laser present LFF. Output
power data series were acquired by a 1 GHz bandwidth
digital oscilloscope. The time series were computer treated to
calculate experimental histograms and correlation functions.
In Sec. V more is given on the experimental electronic details
and measurements made in the system.

III. DYNAMICAL EQUATIONS WITH PUMP COUPLING

The theoretical framework to explain the experiments has
the simple form of a rate equations dynamical system with time
delay. Our model is a pair of coupled equations corresponding
to monomode laser equations, having delayed optical field
feedback, as introduced by Lang and Kobayashi [6], and Sano
[7], supplemented by Kirchhoff’s laws, with the constraint
imposing constant total electronic pump current, J0.

dEj

dt
= (1 + iαj )

2

[
Gj (Nj ) − 1

τpj

]
Ej (t) + κjEj (t − τj ),

(1)

dNj

dt
= Jj (t) − Nj (t)

τsj

− Gj (Nj )|Ej (t)|2, (2)

where the gain for each laser (j = 1,2) is given by

Gj (Nj ) = G0j [Nj (t) − N0j ]

1 + εj |Ej (t)|2 . (3)

In these equations the dynamical variables are the complex
optical electric field, Ej (t), and the carrier population in-
version, Nj (t). The parameters are the diode laser linewidth
enhancement factor αj , the photon lifetime in the laser chip
cavity τpj , the optical feedback strength κj , and the feedback
delay times τj . The small signal gain is G0j , the transparency
population inversion is N0j , and the gain saturation coefficient
is εj . With the parallel coupled circuit configuration the total
pump current is split among the lasers as J0 = J1(t) + J2(t).
The variations of each current are assumed to depend linearly
on the carrier population difference. Therefore

J1(t) = J0/2 − η[N1(t) − N2(t)] (4)

and J2(t) = J0 − J1(t). The value of the coupling coefficient
η is determined from our experimental data taken with a single
laser having feedback. The threshold pump currents are given
by Jthj = [N0j + (τpj G0j )−1] /τsj . The two lasers are similar
so that, in most calculations, we assumed the parameters
summarized in Table I. They have been attributed values
according to early studies [6,7,17] and had fine adjustments

TABLE I. Parameter values used in numerical simulations.

αj 3.0 G0j 1.2 × 104 s−1

N01 1.0 × 108 N02 0.99 × 108

1/τpj 513 × 109 s−1 1/τsj 0.5 × 109 s−1

κ1 = κ2 16 × 109 s−1 εi 5.0 × 10−7

τ1 = τ2 40 ns η 2.5 × 108 s−1
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by inspection of our experimental data. The pump current was
taken as J0 = 2.03Jth1. The numerical solutions were obtained
with a standard fourth order Runge-Kutta algorithm. With the
parameters used, the fastest time scale was set by τp ∼ 2 ps
and integration time steps were fixed at dt = 0.2 ps. Transients
spanning 100 external cavity-feedback times were discarded
in the solutions. The robustness of the results with respect to
small parameter variations was verified. Comparisons between
theory and experiment are presented next.

IV. EXPERIMENTAL AND THEORETICAL RESULTS

Let us now give the experimental results along with the
theoretical numerical integration of our equations. Segments
of the lasers power when only one laser has optical feedback
are presented in Fig. 2(a). The signal corresponding to laser
1, operating with optical feedback, is given in the top lines
(displaced for easier visualization). The chaotic nature of the
dynamics in laser 1 appears in the irregular time interval
between LFF drops. Laser 2 (lower line) was electrically
coupled but did not have optical feedback. It presents jump up
spikes in optical power, acting as a kind of sensor for the chaos
in laser 1 via their electronic dynamics. Figure 2(b) shows
equivalent segments of the calculated time series. The value of
η for the equations was extracted from the experimental signal
by matching the relative amplitude for the drop and jump up.
It corresponds to a current partition deviation from J0/2 of
δJi ≈ ±10−3J0 at the spikes of LFFs and jump ups. Direct
measurements of the current fluctuations are given in Sec. V.

A single laser, pumped by a constant current, has less
carrier recombination in its junction region when its power
output decreases. This means an increase of junction voltage,
as observed by Ray et al. [21]. The number of junction carriers
increases and the physical picture representing current voltage
in a direct polarized ideal diode under feedback light gives a
consistent explanation to these results. Here, with the parallel
coupled lasers, the total current is constant but the current
in each laser can vary. The consequence is observed in Fig. 2.
Each time laser 1 has an optical power drop, there is a decrease
of its current and the correlated increase in the current of laser
2 implies a jump up of its power (lower line). The ultrafast
fluctuations (tens of picoseconds) are not observed in our
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FIG. 2. Output power of the coupled lasers. Laser 1 (top line) that
has optical feedback shows LFF power drops, while laser 2 (lower
line) had no optical feedback. (a) Experimental light intensity and
(b) |Ej (t)|2 from numerical integration of Eqs. (1)–(3) (the vertical
scales were displaced for better visualization).
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FIG. 3. Output power of the lasers coupled in parallel and having
optical feedback. The top line is laser 1 and the bottom is laser
2. (Power scales were displaced for visualization.) Synchronism is
clearly observed. (a) Experimental time series including a few power
drops. (b) Numerical integration for the coupled laser equations.

experimental conditions. Our detection is not sensitive at the
ultrahigh frequencies.

Drops in light emission from one diode source accompa-
nied by an emission increase from another one electrically
connected in parallel were reported a long time ago for light-
emitting diodes [1] and lasers [2]. These were experiments in
fluctuations around stable operation conditions different from
the emphasis of our work.

Chaotic dynamics in the parallel electronic coupling
scheme shows more than simply antiphase correlations. Novel
results are revealed when both lasers have optical feedback.
In general, each laser can manifest uncorrelated LFF power
drops. However, as seen in Fig. 3(a), when we choose appro-
priate experimental alignments and value for the total current,
the large power drops synchronize in phase. Now, instead of
an increase of one laser power, at the expense of the big drop in
the other one, both lasers have nearly simultaneous LFF power
drops. Figure 3(b) shows a comparable numerical segment of
the lasers power calculated using the coupling parameter η

obtained from the data with a single laser having the feedback,
as in Fig. 2(a). The small antiphase fluctuations are always
present in any of the dynamical conditions, independent of
LFF synchronization.

These antiphase fluctuations at a time scale above nanosec-
ond are clearly observed as we look into short segments of
the time series as shown in Fig. 4. They were also measured
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FIG. 4. Signal showing antiphase fine structure fluctuations su-
perimposed on a pair of drops of the in-phase synchronized LFF when
κ1 = κ2. (a) Experiment and (b) theory.
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FIG. 5. Experimental LFF time interval histograms: (a) Time
interval between successive drops in one of the lasers. (b) Theory
for (a). (c) Time interval between drops of the two lasers. (d) Theory
for (c).

directly in the voltages and currents variation on each laser
(see Sec. V).

To better characterize the dynamics of the coupled system,
histograms of events and correlation functions were made from
experimental data series. Within full synchronism typical data
series containing more than 105 events are captured without
unpaired drops. The chaotic nature of the LFF drops shows in
the broad histograms for the time interval between consecutive
drops in any one of the lasers. These distributions, shown in
Figs. 5(a) and 5(b), approximate Gaussians with an average
time between drops of 1.5 μs, which is 37 times the feedback
time, and a wide variance close to 1 μs. Both quantities
are more than one order of magnitude larger than the lasers
feedback time. The synchronization indicator is represented in
the histograms given in Figs. 5(c) and 5(d). The time difference
between the power drops of the two lasers has a very narrow
distribution, with a width on the order of 10 ns, centered near
zero delay. This is much narrower than the distributions shown
in Figs. 5(a) and 5(b) for the time interval between successive
pulses of a single laser, whose widths are on the order of 1 μs.

Notice in Fig. 5(c) that almost all pairs of drops occur
within less than 10 ns, which is significantly shorter than
the experimental 40 ns of optical feedback time. The small
shift of a few nanoseconds from zero delay is sensitive to
experimental unbalance of laser parameters. When one laser
has a higher value for its feedback coefficient and/or a lower
threshold and/or higher pump current in the parallel coupling
circuit it becomes leading in the drops. The effects of small
unbalances on the synchronism shifts were confirmed in the
theoretical-numerical solutions as shown in Fig. 5(d). Bimodal
distributions, with symmetrical anticipations and delays in the

FIG. 6. Theoretical numerical cross-correlation dependence on
the feedback coefficient ratio.

synchronizations, were also observed in experimental data and
obtained in the theory, as we properly bias the parameters.

The onset of LFF synchronism depends on the feedback
coefficient in each laser and on their coupling impedance.
We present next how the synchronism transition, calculated
as a function of the parameters κ2/κ1 and η, manifests in
the cross-correlation functions C(τ ) shown in Figs. 6–8. The
calculation with the constant coupling parameter had η from
Table I. Laser 2 is assumed to increase its feedback coefficient
κ2 from zero to κ2 = κ1 = 16 × 109 s−1. Figure 6 shows the
calculated cross-correlation function. For zero and very small
optical feedback in [aser 2, when no LFF exists in this laser,
only antiphase fast oscillation and the jump ups are present,
as in Fig. 2. This gives the value of −1 for the zero delay,
τ = 0, cross correlation. As κ2 increases, LFF drops start to
appear in laser 2 and some drops coincide with those in laser
1. Positive contributions begin to add to the cross correlation.
At some intermediate value of κ2, C(τ = 0) vanishes. This
does not mean that the signals are totally uncorrelated. It does
show that in-phase and antiphase fluctuations, in different time
scales, are simultaneously present in the dynamics. The full
chaos synchronized LFF dynamics only appears with κ2/κ1 >

0.7 and the cross correlation is almost +1 (there is an ever-
present small antiphase contribution). Cross sections of the
three-dimensional (3D) Fig. 6 can reveal the onset of LFF
synchronization when we plot C(τ = 0) as a function of κ2/κ1.
It can also show the antiphase fluctuations in the graph of C(τ )
for κ2 = 0. These are given in Figs. 7(a) and 7(b), respectively.

The cross-correlation function was also calculated varying
the electronic coupling coefficient to show the onset of
LFF synchronization, starting with the two lasers having
independent LFFs. This is given in Fig. 8. Very small values
of η are unable to mediate the synchronism. Therefore the
two lasers have LFF drops but they are independent and
their cross correlation is null. As the value of η increases,
a transition region is reached where more and more LFF pairs
drop near simultaneously. At the value of η = 1.2 × 108 s−1

full synchronism is attained and C(τ = 0) rises to the value
near +1. This value of η corresponds to a peak coupling current
of 50 μA as shown in Sec. V.
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FIG. 7. Detail of Fig. 6. (a) Cross correlation between the lasers
calculated at zero delay time (τ = 0) as a function of κ2/κ1. (b) Cross
correlation between the lasers calculated when laser 2 has no feedback
(κ2 = 0).

V. ELECTRICAL MEASUREMENTS IN THE COUPLED
LASERS

We describe here details of the electrical measurements
made along with the optical measurements on the coupled
lasers. The lasers were coupled electrically in parallel config-
uration and pumped by a high impedance current source, as
indicated in the electronic circuit shown in Fig. 9. The resistors
R1 and R2 were included with two purposes. First, they
controlled the amount of coupling between the lasers. Their
values partially determine η, the current coupling coefficient,
through the partition of the total current by Kirchhoff’s laws
J1(t) + J2(t) = J0, supplemented by a linearized approxima-
tion for the currents unbalance as a function of the carriers
populations,

J1(t) = J0/2 − η[N1(t) − N2(t)]. (5)

Ni(t) is the active carrier population of laser i with i = 1,2.
The internal resistances of the lasers are smaller than 5�

[2]. The value of η decreases with the circuit impedance
between the lasers. Without the capacitor C such impedance is
dominated by the external resistors. Consistently, we verified

FIG. 8. Theoretical numerical cross-correlation dependence on
the coupling coefficient η. Same parameters from Table I but N02 =
0.998 × 108 and J0 = 2.02Jth1.

FIG. 9. Setup for the experiments on the power correlations and
chaos synchronization of two electrically coupled lasers.

that when R1 = R2 � 50 �, the coupling is reduced to the
point of preventing LFF synchronism. With these high values,
optical power measurements with just one laser having optical
feedback, like the one reported in Fig. 2, did not show a
detectable response on the second laser without feedback. This
evidences small coupling and explains why the two lasers
with optical feedback had LFF but never got synchronized.
The switch in Fig. 9 that shunted the capacitor C across the
resistors could restore the synchronization, demonstrating that
the precise value of η depends on more than circuit resistors.
Our model provides remarkable agreement with the optical
and electrical measurements, as described below. The second
use of the resistors was to obtain the laser currents through the
voltages V11, V12, V21, and V22 on the extremes of the resistors.
For that case we took small values R1 = R2 = 10 � so that
we had synchronism.

We made most of our measurements on the L780P010 and
L850P010 Thorlabs lasers. Optical feedback was implemented
by mirrors located at distances between 3.00 and 8.00 m from
each laser. The feedback field coefficients κi were determined
by the current threshold reduction, which could reach 6%
in both lasers by proper alignment of the feedback mirrors.
The pump current was near twice the (almost equal) single
laser solitary threshold. Data series were acquired by fast
(>3 GHz band) photodiodes and a digital oscilloscope having
a bandwidth of 1 GHz and a maximum sampling rate of
5 GS/s. The time series were computer treated to achieve
averages and experimental histograms. The results for the
measurements and numerical calculations with the dynamical
equations are shown in Figs. 10–13.

Figures 10 and 11 correspond to the situation when only
laser 1 has optical feedback and undergoes LFF pulsations,
while laser 2 is affected by the current redistribution. Notice in
Fig. 10(a) that there is a time mismatch of nearly 5 ns, which
corresponds to 1/10 of the feedback time. Such time mismatch
is attributed to electronic delays on the laser interconnections.
It was accounted in the theoretical model by means of
an unbalance in the lasers parameters. The corresponding
measured pump currents obtained for the case of only one laser
with feedback is given in Fig. 11. From these data we extract
values between 30 and 130 μA for the spikes in the currents.
These are fluctuations at least one order of magnitude larger
than any thermal or quantum noise current fluctuation.
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FIG. 10. Laser power variations during the LFF drop when only
laser 1 had feedback. (a) Experimental. (b) Theory with J0/2 =
1.01Jth1 and Jth1 = 7.87 503 × 1016 s−1. In both figures the black
curves correspond to laser 1 and the red (online) curves to laser 2.

The results for a pair of synchronized drops, when both
lasers have optical feedback, is given in Figs. 12 and 13. Again
there is the time mismatch of nearly 5 ns, which corresponds
to 1/10 of the feedback time. They show clearly that the
signals do not drop on exact time coincidence. However, on
the coarse grained (many nanoseconds) time scale both laser
powers always drop together. The comparison with the model
here is excellent when we substitute J0 = 20 mA, obtaining an
excursion of current variation equivalent to the experimental
value of ±30 μA, as shown in Fig. 13.

VI. THE ONSET OF SYNCHRONISM

When the two lasers have optical feedback each one can
manifest LFF power drops which, in general, are uncorrelated.
Still the small antiphase fluctuations are present. The onset of
LFF synchronizations in time series is shown in Fig. 14(a).
The two lasers have LLF but only a partial number of LFF
drops in synchronism is observed. In these cases, instead of an
increase of one laser power at the expense of the big drop in the
other one, both lasers drop power together. Figure 14(b) shows
a numerical time series giving a segment calculated with the
parameter η varying in this intermediate synchronism regime.

The rate equation model reproduces this dynamical con-
dition as shown in Fig. 14(b). As we choose an appropriate
value for the total current and feedback alignments, more and
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FIG. 11. Pump current variations during one LFF drop of laser
1 while laser 2 had no feedback. (a) Experimental. (b) Theory. In
both figures a 29 MHz low-pass filter was used. The black curves
correspond to laser 1 and the red (online) curves to laser 2.
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FIG. 12. Laser power variations during a pair of synchronized
LFF drops. (a) Experimental. (b) Theory with J0/2 = 1.01Jth1

and Jth1 = 7.87 503 × 1016 s−1. In both figures the black curve
corresponds to laser 1 and the red (online) curve to laser 2.

more cases occur where both lasers have a near simultaneous
irregular LFF power drop until all power drops synchronize in
phase with a small time mismatch of a fraction of the feedback
time. Both the experimental and the numerical theoretical
curves showing intensity drops and current jumps during
a synchronized LFF reveal a delay time between the two
lasers. In the experimental system this delay was traced to
the threshold of the lasers. The one with a lower threshold,
on the order of 2%, always dropped a few nanoseconds
earlier. Consistently, introducing a 1% difference among the
numerical values of threshold in the equations did reproduce
the same type of delay. A quantitative inspection of LFF
delay versus the other parameters was left for further studies.
Also, investigation of the role of significant electronic delays,
by changing the length of the circuits wiring, will be left
for a future work. In our current experiments, cables of
less than 10 cm restricted the possible delay to less than a
nanosecond. Therefore, our observed delays, associated to
threshold parameters, have a physical origin on the carriers
electronics in the junctions.

VII. ON THE PHASE OF THE CHAOTIC INTENSITY
PULSES AND THE OPTICAL PHASE OF THE FIELDS

The concept of synchronized chaotic optical oscillators
described here deserves clear distinction from the concept of
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FIG. 13. Pump current variations during a pair of synchronized
LFF drops. (a) Experimental. (b) Theory with J0/2 = 1.01Jth1 and
Jth1 = 7.87 503 × 1016 s−1. In both figures a 29 MHz low-pass filter
was used. The black curves correspond to laser 1 and the red (online)
curves to laser 2.
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FIG. 14. Output power of the lasers coupled in parallel and having
optical feedback. The pump current and feedback strengths were
set to partial synchronism of LFF. The top line is laser 2 and the
bottom is laser 1. (Power scales were displaced for visualization). (a)
Experimental and (b) numerical integration from theory. Whenever
a coincidence drop is missed there is a power jump up in one of the
lasers.

synchronization by frequency entrainment in optical clocks.
This last case demands that the two optical fields evolve in
time with a locked phase as

Ej (t) = |E0j (t)| exp [−iφj (t)], (6)

with φ1(t) − φ2(t) = const.
Most of the chaos synchronization among lasers does

not obey such condition. This is the case here. Both in the
experimental and numerical cases, we focus on the light
intensity dynamics obtained from the squared field amplitude.
The irregular pulses described by I1(t) and I2(t) are the result
of a time averaging over optical periods and even more,
averaging over detection time filtering. Therefore, we are
dealing with phases on intensity variations rather than am-
plitude oscillations. The phases that we get for the dynamical
variables in their phase spaces can appear as locked when
chaos synchronization is attributed to the coupled dynamics
but there is no locking of the optical phase. Specifically,
the averaged winding numbers calculated for the two slowly
varying field envelopes in our rate equations became equal in
the condition we call synchronous. Detailed discussions on
the phase synchronization in coupled chaotic oscillators can
be found in [22,23].

We can investigate the behavior of the optical phases from
the numerical time series for the complex field amplitudes.
Figures 15(a)–15(f) show the optical phases and frequencies
calculated from Eqs. (1)–(3) when the lasers have synchro-
nized LFF. It is important to notice that in Fig. 15(b) the phases
evolve with respect to the solitary laser phases, given by ω0t ,
while most of the time the lasers have a redshifted frequency
near the maximum gain condition. From the calculated slope
we infer that circa 300 external cavity modes, separated by
�ω = 25 MHz, participate in their itinerant dynamics [7]. The
difference among the two phases is near zero in a rough coarse
grained time scale as seen in Fig. 15(c). The numerical time
derivative of the phases give the instantaneous frequency. The
value for each laser is shown in Fig. 15(d) where they appear
superimposed.

During each pair of drops, which appear to be simultaneous
when viewed in a large time scale (tens of nanoseconds), the

224 228 232
2

3

4

5

Time (μs)

In
te
ns
ity
(a
rb
.u
ni
ts
)

(a)

224 228 232

-7.5

-7.4

-7.3

-7.2

Time (μs)

Ph
as
e

Φ
(t)
(1
06
ra
d)

(b)

200 220 240

0

1

Time (μs)
Φ
2(t
)-

Φ
1(t
)(
10

5
ra
d)

(c)

224 228 232
-8

-6

-4

-2

0

ν(
t)-

ν 0
(G
H
z)

Time (μs)

(d)

230.4 230.8 231.2
2

3

4

5

In
te
ns
ity
(a
rb
.u
ni
ts
)

Time (μs)

(e)

230.4 230.8 231.2
-8

-6

-4

-2

0

ν(
t)-

ν 0
(G
H
z)

Time (μs)

(f)

FIG. 15. Numerically calculated optical phase for the two cou-
pled lasers. (a) Segment of the laser intensity for the sake of
comparison. (b) Plot of the two phases evolving in time. (c) Phase
difference showing the large time scale synchronism. (d) Optical
frequency excursion of the two lasers. (e) Details of the intensity
fluctuations close to a synchronized drop and (f) the instantaneous
frequency of the two lasers.

two lasers can have different optical phases with jumping
excursions of thousands of radians. In Fig. 15(c), the phase
mismatch is shown in two short time intervals around LFF
drops. Notice that the short time (tens of nanoseconds) oscilla-
tions of the phases are partially synchronized in antiphase. The
single drops, with a shorter time scale permits the observation
of the anticorrelated fast oscillations both in the intensities and
in the optical phase at different time intervals before the drop.
The (7.5 GHz) irregular red frequency chirping during each
LFF drop and recovery cycle is clearly observed in Fig. 15(f).
In all cases a precise optical synchronism is never attained,
consistent with our experiments.

VIII. ON THE CORRELATION FUNCTIONS

The proper setting for synchronization could give long data
series containing more than 105 LFF events missing no pair
of simultaneous drops. The competition for pump energy still
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FIG. 16. Experimental correlations of the lasers coupled in
parallel and having optical feedback. (a) Autocorrelations of one
laser. (b) Cross correlation showing negative values due to antiphase
fluctuation contributions, superimposed to large time scale positive
contributions due to in-phase fluctuations.

exists, but only in short time scale intervals. Figure 16(a) shows
the autocorrelation function calculated from experimental
series measured for one laser to compare with the experimental
cross correlation between the two synchronized lasers in
Fig. 16(b). The theoretical autocorrelation function for one
laser and cross correlation for the two synchronized lasers are
shown in Fig. 17.

Autocorrelation and cross-correlation functions of signals
having more than one dominant (not necessarily perfectly
periodic) period need interpretation when one wants to
identify in-phase, positive correlated, and antiphase, negative
correlated signals. To clarify how in-phase synchronized signal
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FIG. 17. Numerical correlation functions: (a) Autocorrelation of
laser 1. (b) Cross correlation showing the downgoing antiphase
fine structure superimposed on the in-phase synchronized LFF.
Filters were used to enhance the proportions of antiphase (negative
contribution) and in-phase (positive contribution) signals visible.

events in slow time scale coexisting with some antiphase
oscillations of individual units in a coupled system manifest in
cross-correlation functions, we did numeric calculations using
nonchaotic time series extracted from the functions

X(t) = A cos(�1t) + a sin(ω1t),
(7)

Y (t) = B cos(�2t) + b sin(ω2t).

When �1/�2 and ω1/ω2 are not rational, the cross correlation
between these signals is zero. Interesting results appear when
we consider �1 = �2 = � and ω1 = ω2 = ω and change the
values of the coefficients. The cross correlations of these
signals will give clues to what we get for the cross correlations
from the nonlinear equation for the electrically coupled lasers
having optical feedback.

Taking a total time much larger than 1/� and 1/ω , the
analytical expressions for the autocorrelation C1 and cross
correlation C12 at τ = 0 between the signals become

C12(τ = 0) = 〈�X�Y 〉√
〈(�X)2〉〈(�Y )2〉

= (AB + ab)√
(A2 + a2)(B2 + b2)

. (8)

Our interest is when ω is at least one order of magnitude larger
than � and the two time scales have opposite correlations.
This is the case when AB > 0 and ab < 0 , for example.
Let us take A fixed and positive, and increase the value
of B starting from zero. If A � a and B � b we have
C12 → +1 and, conversely, if A � a and B � b we have
C12 → −1. To visualize the numerically calculated figures,
we took A = 105, a = −b = 33, � = 2π , and ω = 20 × 2π .
Varying B from zero to the value of A we get the calculated
cross correlations shown in Figs. 18 and 19. For small B the
antiphase contribution from the two fast sinusoidal signals
dominates. This is seen in the negative portion of the cross
correlation at a zero time.

The cross correlation of the laser dynamics in chaos
have qualitatively the same shape seen in the respective
figures above. We can therefore interpret the onset of LFF
synchronism obtained in our experiments by inspection of
these correlation functions.

IX. RELATED DYNAMICS IN MULTIMODE LASERS

The dynamics of coupled monomode laser oscillators have
general features common to the dynamics of single lasers with
more than one field mode. Such common properties result from
the fact that the number of dynamical variables in both systems
can be the same. Two monomode lasers, like the ones described
by our equations, before optical feedback is included, consist
of a pair of three-dimensional dynamical systems: one complex
field, Ei(t), and one gain population, Ni(t), for each. A single
laser like a vertical-cavity surface-emitting laser (VCSEL),
when described as two polarization modes [24–26], also has
two orthogonal fields, E+(t) and E−(t) , competing for two
populations, N+(t) and N−(t) . These are associated to the
different subbands as proposed by San Miguel et al. [24]. The
interlasers coupling mechanism in our case is attributed to
Kirchhoff’s law as current conservation in the parallel circuit,
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FIG. 18. Numerical cross correlation obtained when two simple
signals are composed by harmonics in phase and antiphase, with
different frequencies and having variable amplitudes. (a) 3D map
showing the dominant antiphase term contribution evolving to the
in-phase cross correlation when B in Eq. (7) varies from −A to A .
(b) Details of (a) showing the undulations associated to antiphase
overriding the wide positive correlation curves.
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FIG. 19. Details of the numerical cross correlation obtained
when two simple signals are composed by harmonics in phase and
antiphase with different frequencies and having variable amplitudes.
(a) Variation of the zero time (τ = 0) cross correlation showing the
excursion from fully antiphase, −1, to almost complete in phase
near +1. The value +1 is not reached because a small antiphase
contribution is always present. (b) Correlation profile when B = A .

while the two populations in the VCSEL model are coupled by
spin-flip mechanisms. The introduction of optical feedback in
either system brings the infinite dimensional feature depending
on time delay and the two subystems show LFF [25]. Antiphase
and in-phase correlations among the two laser intensities I1(t)
and I2(t) , as for I+ and I−(t) in VCSELs, should therefore not
be a surprise to be found in both systems. Also, intensity
correlations between different spatial modes, both in edge
emitting diode lasers and VCSELs, have been investigated
long ago in Refs. [27–31], where the spatial distribution of
intensity noise was measured and intermode anticorrelations
were responsible for total intensity noise reduction, sometimes
below the shot noise level.

The phase correlations in VCSELs are very well detailed
in the paper by Sciamanna et al. [26]. These authors call
attention to the need for more experimental work on the
VCSEL dynamics and we hope to include such studies in our
future research with coupled systems. A detailed description of
the optical feedback effects in vertical-cavity surface-emitting
and edge emitting semiconductor lasers is given by Panajotov
et al. [32]. Edge emitting are the types used and described
in our experiments, but we have evidence for the same
effects with vertical-cavity surface emitting lasers. Discussions
referring to the coexistence between fast antiphase oscillations
within multimode LFF dynamics can be found in the literature
[33,34].

X. CONCLUSION

We have thus demonstrated in detail how in-phase synchro-
nized dynamical events in slow time scale can coexist with
antiphase oscillations between individual units in a pair of cou-
pled lasers. A remarkable observation, both in the experiments
and in the simple theoretical model, is some enhancement of
the antiphase oscillations amplitude just before any sharply
synchronized power drop, as shown in Figs. 4(a) and 4(b)
for the intensity, as well as in Figs. 13(a) and 13(b) for the
current dynamics. We also obtained numerical cases where
the antiphase enhancement before the drops appear on the
frequency correlation. The variation of correlation signals with
time scale shown here for two lasers is relevant to the study of
multilaser networks and their use for simulation of complex
systems. Pairwise correlations within a complex network are
known to be distinct from correlations among large groups
of units [35,36], as well as different from the correlations
in a single coupled pair system [1]. Detailed knowledge of
the properties of pair units will enlarge the possibility to
extract properties resulting from the multicoupling topology
in networks with many complex subsystems.
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