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Sudden failure of a single transmission element in a power grid can induce a domino effect of cascading
failures, which can lead to the isolation of a large number of consumers or even to the failure of the entire
grid. Here we present results of the simulation of cascading failures in power grids, using an alternating current
(AC) model. We first apply this model to a regular square grid topology. For a random placement of consumers
and generators on the grid, the probability to find more than a certain number of unsupplied consumers decays
as a power law and obeys a scaling law with respect to system size. Varying the transmitted power threshold
above which a transmission line fails does not seem to change the power-law exponent q ≈ 1.6. Furthermore,
we study the influence of the placement of generators and consumers on the number of affected consumers and
demonstrate that large clusters of generators and consumers are especially vulnerable to cascading failures. As a
real-world topology, we consider the German high-voltage transmission grid. Applying the dynamic AC model
and considering a random placement of consumers, we find that the probability to disconnect more than a certain
number of consumers depends strongly on the threshold. For large thresholds the decay is clearly exponential,
while for small ones the decay is slow, indicating a power-law decay.
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I. INTRODUCTION

A reliable supply of electric power is of fundamental
importance for the technical infrastructure of modern societies.
In fact, the reliability of electric power grids has increased
continuously in the past few decades [1]. However, large-scale
power outages still occur and can affect millions of customers,
which may result in catastrophic events. It is therefore
important to understand which topological properties of power
grids and which placements of generators and consumers on
the grid are able to diminish the risk of large-scale outages.

Large-scale outages can often be traced back to the failure
of a single transmission element [2–5]. The initial failure
causes secondary failures, which can eventually lead to a whole
cascade of failures. Cascading failures have been analyzed
in various studies with different models and from different
viewpoints [6–18]. Most of these previous studies analyze the
influence of network topology on the cascade of failures using
simplified topological flow models such as the messenger
model introduced by Motter and Lai [6], which is used to
study cascading failures in Refs. [19,20].

In this work we base the analysis of cascading failures on the
alternating current (AC) power flow equations [21–24]. This
allows us to study the influence of the physical properties of
the grid, such as the placement of generators and consumers
and the power capacitance of the transmission lines, on the
probability and the extent of cascading failures. To this end,
we consider a random placement of generators and consumers
on a regular 2D grid graph (square grid) as well as on a
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model topology for the German high-voltage transmission grid
(380 kV) [25].

An evaluation of the statistics of power failures which
occurred in real power grids over the past few decades shows
that the probability of ending up with more than a certain
number of unsupplied consumers often decays like a power law
with the number of unsupplied consumers Nc [14,15]. Such
a slow decay indicates a significant probability that a large
number of consumers will become unsupplied. It is therefore
of practical relevance to understand which properties of the
grid are responsible for this behavior. In Ref. [14], a simple
model has been suggested to simulate cascading failures that
assumes that the load Fij of a failing transmission line is
redistributed in equal parts among the remaining transmission
lines. This model can be solved analytically and yields a
power-law distribution when the initial average power flow
through the transmission lines prior to the failure F = 〈Fij 〉
reaches a certain critical ratio of the threshold power Fth. Below
that value, an exponentially fast decay is found [14].

While most previous studies assume that the power-law
dependence is only related to the network topology, in
particular to scale-free topologies [26,27], the main goal of
this work is to analyze which influence different placements
of consumers and generators have on the probability to find
Nc unsupplied consumers. We start by finding the stationary
power flow in the fully connected grid. Then we initiate
a power line failure by removing one transmission line by
hand and find the new stationary power flow. The resulting
redistribution of the power flow may trigger further line failures
where the transmitted power exceeds a threshold Fth, which
we set to be a certain ratio of the transmission line power
capacitance. This chain of outages continues until we cannot
find a stable solution for the stationary power flow anymore.
We then record the number of consumers Nc that cannot
be supplied anymore by the available generators. Note that
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consumers which are connected within clusters might also
not be supplied if the number of generators does not at
least equal the number of consumers in the specific cluster.
This process is repeated by subsequently initiating the power
outage with every transmission line of the grid, removing
that line, and observing the resulting cascade. Thereby, we
obtain the probability distribution of the blackout size Nc in
dependence of the placement of consumers and generators and
the threshold Fth.

We gain further insights by analyzing the share of links that
can induce a cascade of failures depending on the existence of
various fixed cluster sizes. We demonstrate that the existence
of large clusters of generators and consumers makes the
grid particularly vulnerable to cascading failures, since the
likelihood for a whole cluster to break down at once appears to
increase with increasing cluster size. We thereby show that the
size of the power outage depends essentially on the placement
of consumers and generators. Finally, we study a real-world
topology, a model for the German high-voltage transmission
grid [25]. In this irregular grid structure, we find a decay of
p̄(Nc) for large Nc, which depends strongly on the threshold
Fth. For large Fth the decay is clearly exponential. For small
Fth the decay is slow and may indicate a power-law decay.
Thus, there might be a critical value of the threshold Fth in the
German grid below which the cumulative probability density
becomes critical and decays with a power law.

II. POWER GRID MODEL

We approximate the power grid as a network of N rotating
synchronous machines, representing generators and motors.
Each machine k ∈ {1, . . . ,N} is characterized by the net
mechanical power P mech

k , which is positive for a generator and
negative for a consumer. The state of machine k is given by
the angular frequency and the rotor angle (power angle) θk(t)
which is measured relatively to a reference machine rotating
at the nominal grid angular frequency ω0 = 2π × 50 Hz.
Correspondingly, ωk(t) = dθk(t)/dt = θ̇k gives the angular
frequency deviation from the reference frequency ω0. The
dynamics of the rotors are governed by the swing equation
[21–23],

Ik

d2θk

dt2
+ Dk

dθk

dt
= P mech

k − P el
k , (1)

where P el
k is the net electrical power transmitted from adjacent

rotating machines through the transmission lines. Ik is the
moment of inertia of the rotor times ω0 and Dk measures the
damping, which is mainly due to damper windings [28].

For simplicity, we neglect ohmic losses of transmission
lines which can be considered small in high voltage lev-
els [29]. Thus, the line admittance is purely inductive, Yk� =
1/(iωLk�), where Lk� is the inductance of the line (k,�).
Then, the magnitude of the voltage is constant throughout
the grid, |Uk| = U0∀k ∈ {1, . . . ,N}. For a common two-pole
synchronous machine, the phase of the voltage equals the
mechanical phase of the rotor. The expression for the active
electric power then simplifies to

P el
k =

N∑
�=1

U 2
0

ωLk�

sin(θk − θ�). (2)

Substituting this result into the swing equation (1) yields the
equations of motion,

Ik

d2θk

dt2
+ Dk

dθk

dt
= P mech

k −
N∑

�=1

U 2
0

ωLk�

sin(θk − θ�). (3)

Using the abbreviations

Pk = P mech
k − Dkω0

Ik

, αk = Dk

Ik

,

Kk� = U 2
0

IkωLk�

,

the oscillator model reads

d2θk

dt2
= Pk − αk

dθk

dt
+

N∑
�=1

Kk� sin(θ� − θk). (4)

These equations of motion are widely used to model power
grids in power engineering, where it goes by the name syn-
chronous motor model [30]. Notably, this model is similar to
the Kuramoto model, which is studied extensively in statistical
physics [31–33]. In the Kuramoto model, the inertia term is
absent, so it can be seen as the overdamped limiting case.

In order to find the stationary solutions of the oscillator
model (4), it is equivalent to solve the static flow equations,

0 = Pk +
N∑

�=1

Kk� sin(θ� − θk). (5)

This can be done by a standard root-finding algorithm [34].
Note that regular square grids consisting of loops with four
edges, which are studied in the following, may have multiple
stationary (stable and unstable) solutions [38]. We ensure the
stability of a stationary state by checking that the Jacobian
matrix has no positive eigenvalues.

III. CASCADING FAILURE ALGORITHM

In the following we describe the cascading failure algorithm
used in this study. We determine the stable state with power
flows Fij . Note that we skip realizations for which no stable
state exists or the initial maximal power flow max(Fij ) is
already larger than the threshold power flow Fth. Thereby
it is ensured that the initial power flow through all lines is
stable. Next, we remove one of the transmission lines of the
network in order to induce a cascade of failures. It is again
ensured that the network reaches a new stable state with a
new power flow distribution F ′

ij . All transmission lines for
which the transferred power F ′

ij exceeds Fth are removed from
the grid, and the power flows are recalculated. This process
is repeated until no transferred power exceeds Fth or until
the grid splits into different subgrids. In the latter case, we
record the number of affected consumers, the blackout size
Nc, which is the number of consumers that cannot be supplied
by generators anymore. The whole process is repeated for each
transmission line of the original grid being initially removed
and for other placements of generators and consumers Pk .
Figure 1 illustrates the cascading failure algorithm for the
example of a 6 × 6 square grid. Figure 1(a) illustrates the initial
stable state before the initial line is removed, Fig. 1(b) the
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FIG. 1. Example for a cascading failure in a 6 × 6 square grid
with open boundary conditions. Triangles denote generators, and
disks denote consumers. Intact transmission lines are indicated by a
thin dashed line. The stable state power flow is plotted in color scale
ranging from 0 to 5 s−2. (a) Power flow in the fully connected grid.
(b) Power flow after removing one line. (c) Power flow after removing
all lines with a power flow larger than the power threshold Fth after
initial removal of a transmission line. (d) After several more steps
(not shown) some nodes become isolated (indicated by crosses), so
the simulation is stopped.

stable state after the removal of one transmission line (upper
left side of the grid), Fig. 1(c) the second step of the cascade
of failures, and Fig. 1(d) the final step with seven disconnected
consumers.

A. Statistical analysis

We initiate a cascade of failures by manually removing
each of the NL transmission lines of the original grid
separately. For a L × L square grid graph with open boundary
conditions, there exist NL = 2L(L − 1) links, so we perform
the cascading failure algorithm NL times. We repeat this for
R = 1000 realizations of random placements of generators
and consumers Pk . For each realization r , we obtain the
histogram Er (Nc), which counts the number of events that Nc

consumers are unsupplied. From this, we obtain the normalized
probability distribution function (pdf)

er (Nc) = Er (Nc)

NL

, (6)

the share of initially removed transmission lines for which the
cascade resulted in Nc isolated consumers.

Then we compute the complementary cumulative distribu-
tion function (ccdf) pr (Nc) (in short cumulative probability
in the following), yielding the probability that the number of

unsupplied consumers (the blackout size) is larger than Nc,

pr (Nc) =
∞∑

N ′
c=Nc+1

er (N ′
c). (7)

Finally, we obtain the ensemble average p̄(Nc) over R = 1000
realizations,

p̄(Nc) = 1

R

R∑
r=1

pr (Nc). (8)

B. Regular square grid topology with random
placement of consumers

In the following, we present the results for the statistics
of the number of unsupplied consumers for a L × L square
grid with open boundary conditions for different linear system
sizes L. We consider a simple regular square grid topology
with open boundary conditions this rather simple model
to systematically study the influence of different consumer
placements. Half of the nodes serve as consumers and the
other half as generators. Each node k generates the net power
Pk = ±P (positive for generators, negative for consumers),
with P = 1 s−2. The power capacity of all transmission lines is
set to Kij = K = 5 s−2. All machines have the same damping
parameter αk = α = 1 s−1.

In order to precisely control the amount of randomness
in the system, we use the following procedure to generate a
random array Pk [39,40]: We start from a periodic arrangement
of generators and consumers [41] and divide the graph into two
subgraphs, one carrying all N/2 generators and the other all
N/2 consumers. Then, p different nodes are chosen randomly
from each subgraph, forming p generator-consumer pairs.
Finally, each of these generator-consumer pairs is swapped.
By generating a permutation of the periodic arrangement
in this way, it is ensured that no node is swapped twice.
The maximally disordered state is reached after pmax = N/4
swaps, which is the case used throughout this study. There is a
finite number of possible realizations, given by the ensemble
size,

NE =
(

N/2

p

)
. (9)

In this study we always consider only a small subset of possible
realizations, as NE is a very large number already for the
smallest considered systems.

The cumulative probability p̄(Nc) is illustrated in Fig. 2 for
various power flow thresholds fth = Fth/K and linear system
sizes L. For all considered threshold values fth, the length
of the tail of the cumulative probability p̄(Nc) is increasing
with increasing linear system size L. Larger systems possess
more consumers, so the probability to obtain a large number
of unsupplied consumers is increasing and the values of p̄(Nc)
are increasing with system size in the tail of the distribution.

The value p̄(0) marks the probability that a cascade results
in one or more unsupplied consumers. This probability is
increasing for decreasing system size and decreases with the
threshold value fth. This is clearly seen for low critical values
of fth = 0.25 and fth = 0.3 in Figs. 2(a) and 2(b), respectively.
For fth = 0.4 and fth = 0.5, illustrated in Fig. 2(c) and 2(d),
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FIG. 2. Average cumulative probability p̄(Nc) [cf. Eq. (8)] for
square grids of different linear system size L and threshold fth =
Fth/K: (a) fth = 0.25, (b) fth = 0.3, (c) fth = 0.4, (d) fth = 0.5.
Error bars show the standard error [cf. Eq. (8)].

these trends are less clearly visible since there are fewer
observations available. Consequently, the relative standard
deviation between different realizations is also increasing with
increasing threshold values.

The results for the cumulative probabilities p̄(Nc) in
dependence of the threshold power flow fth for fixed system
size are illustrated in Fig. 3. We observe an increase of
p̄(Nc) with decreasing fth. The length of the tails are almost
independent of the threshold value fth, indicating that even
for the largest threshold value fth = 0.5 outages with a large
number of unsupplied consumers occur.

For comparison, we also identify the initially existing
consumer clusters that exist prior to the initialization of the
cascade of failures. The size of an initially present consumer
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FIG. 3. Average cumulative probability p̄(Nc) (8) for square grids
with varying thresholds fth and fixed linear system size L (colored
lines, red axis). The distribution of clusters of consumers p̄(Ng) is
shown as the black line (black axis). (a) L = 10, (b) L = 14. Error
bars show the standard error [cf. Eq. (8)].

cluster is denoted by Ng . The corresponding complementary
cumulative probability distribution p̄(Ng) [cf. Eqs. (6)–(8)]
represents the probability that the initial consumer clusters
are larger than Ng , as illustrated in Fig. 3 (black curves).
Interestingly, we do not find a direct relation between the
consumer cluster size of the original grid Ng and the number
of unsupplied consumers Nc after the cascade. The largest
initial consumer clusters Ng are considerably larger than the
largest number of unsupplied consumers after the cascade.
For example, for the considered realizations with L = 10,
the largest initial consumer cluster consists of 42 consumers,
whereas the largest number of unsupplied consumers after
the cascade is 26. We conjecture that in case of the square
grid topology, the distribution of originally existing consumer
clusters Ng provides an upper limit for the distribution of
unsupplied consumers Nc, but we find no direct relation
between Ng and Nc if the consumers are randomly distributed.

C. Scaling analysis

It has been noted in Ref. [14] that cascading failures may
show evidence for self-organized criticality (SOC) [42]. SOC
has been first found experimentally in rice piles, where the
distribution of the size of avalanches has been found to follow
a power law [43]. Numerical studies of avalanches in sand
pile models have shown evidence for power-law behavior as
well, but the accuracy of the numerical determination of the
avalanche exponents q is limited by finite-size effects, resulting
in values of the order of q = 1.6 [42,44,45]. The most effective
way to evaluate the numerical data is by conducting a finite-
size scaling analysis. Here we apply this strategy to evaluate
our numerical data on cascading failures, using the scaling
ansatz

p̄(Nc,L) = N−q
c f (Nc/L

d ), (10)

with some unknown scaling function f (Nc/L
d ) and the

effective scaling dimension d.
We rescale our data according to the scaling ansatz (10)

with parameters d = 0.8 and q = 1.6 illustrated in Fig. 4. For
the scaling ansatz to be valid, the curves of all system sizes L

should coincide. The agreement of the data with the scaling
ansatz is best for small threshold values fth. We cannot exclude
that the worse agreement for larger fth is only due to the
decreasing statistics, since fewer cascades are initiated. Note
that the effective scaling dimension d = 0.8 is smaller than the
spatial dimension. We find good agreement with the scaling
ansatz for values in the range q = 1.6 ± 0.2. For large fth we
still find the best agreement with the scaling ansatz for the same
parameter values as for fth = 0.25. We thus find evidence for
scaling of the average cumulative probability p̄(Nc,L) with
an exponent q ≈ 1.6 ± 0.2, which possibly does not depend
on the threshold value. A power-law dependence corresponds
to a horizontal line of N

q
c p̄(Nc,L) in Fig. 4. We only find a

power-law dependence for a small interval.
In contrast to the simple model of Ref. [14] where the

load Fij of a failing transmission line is redistributed in equal
parts among the remaining transmission lines, we do not find
evidence for a critical ratio of the threshold power Fth within
the studied range of Fth values. Interestingly, by including the
physical flow model (5) in the simulation, although we only
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FIG. 4. Scaling law for d = 0.8 and q = 1.6. Average cumulative
probability p̄(Nc,L) (8) for square grids of different linear system
size L and with different threshold power flow fth: (a) fth = 0.25, (b)
fth = 0.3, (c) fth = 0.35, (d) fth = 0.4. Error bars show the standard
error [cf. Eq. (8)].

find a small interval with a pure power-law decay, the exponent
q ≈ 1.6 ± 0.2 is comparable to the one found in Ref. [14],
q ≈ 1.4.

IV. IMPACT OF CLUSTERING IN THE REGULAR
SQUARE GRID TOPOLOGY

To better understand the impact of the initial clustering
of generators and consumers on the cascading failures, we
analyze regular square grids (L = 12) with open boundary
conditions and a periodic arrangement of generator and
consumer clusters of fixed size (1 × 2, 2 × 2, 2 × 4, etc.).
These may occur as particular cases of the random realizations,
analyzed before. For these we are able to demonstrate a
direct relation between the initial consumer cluster size
Ng and the number of unsupplied consumers Nc after the
cascade. Obviously, the largest possible clusters exist if all
N/2 consumers are located on one side of the grid and
all N/2 generators on the other side (6 × 12 clusters). The
smallest possible clusters are formed by pairs of connected
consumers or generators (1 × 2 clusters). We also consider
clusters with 4 (2 × 2), 8 (2 × 4), 12 (3 × 4), 24 (4 × 6), and
36 (6 × 6) consumers or generators per cluster. In order to
obtain comparable results, we determine the maximal power
flow in the initial grid Fmax and set the threshold power flow
to Fth = Fmax + 0.1 s−2.

We measure two quantities and study their dependence
on the cluster size Ng: The maximal number of unsupplied
consumers that can occur, and the most likely number of
unsupplied consumers Nc (cf. Fig. 5). The results demonstrate
that the most likely value of Nc increases linearly with the
cluster size Ng [cf. Fig. 5(a), red curve]. It is therefore the most
probable event that exactly one consumer cluster disconnects
from the grid. For small cluster sizes, the maximum outage
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FIG. 5. (a) Blue: Maximal number of unsupplied consumers Nc

that occurs for all possible initial line failures as function of cluster
size Ng . Red: Most likely number of unsupplied consumers. (b) Blue:
Number of supercritical links whose initial failure causes the maximal
possible number of unsupplied consumers. Red: Number of critical
links whose initial failure cause a power outage.

that can occur [cf. Fig. 5(a), blue curve] is slightly above the
most probable outage, indicating that sometimes more than
one cluster contains unsupplied consumers at the end of the
cascade. For large cluster sizes (24 to 72 nodes), an outage of
one cluster is at the same time the maximally possible event
and the most probable one.

The number of critical links, i.e., those links that cause a
power outage, is found to increase with the initial cluster size
Ng up to a cluster size of eight [cf. Fig. 5(b), red curve]. For
larger cluster sizes, this number of critical links is decreasing.
Links that connect different clusters are found to be particularly
vulnerable. The number of such links is decreasing with
increasing cluster size, explaining the decrease in the number
of critical links.

Next, we consider those links that cause the maximal
observed outage, which we call supercritical links. The number
of such supercritical links is first decreasing with cluster size
and than increasing again [cf. Fig. 5(b), blue curve], until the
number of supercritical links eventually matches the number
of critical links in the limit of large cluster size. Only a few
links cause a maximum outage for intermediate cluster sizes,
whereas for large cluster sizes almost every link causes a
maximal outage. We conclude that large clusters are favorable
in the sense that only few transmission lines can cause an
outage. On the other hand, if such an outage occurs, the impact
is much more severe, i.e., more consumers are affected.

A. German transmission grid

So far, all results have been obtained for the regular square
grid topology. To test our findings on a realistic grid topology,
we consider a model for the German high-voltage transmission
grid. The model grid is based on data from the SciGRID
project [25], where only the 380-kV level is considered.
The objective is to test our algorithm on a more realistic,
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(a) (b) (c) (d)

FIG. 6. Example for a cascade of line failures in the German grid model, with transmission capacity K = 10 s−2 and threshold fth = 0.35.
Triangles denote generators, and disks denote consumers. (a) Initial power flow. (b) The cascade is initiated by removing the link marked with
a red circle. (c) Another link fails. (d) Another four links fail, and the simulation is stopped because the grid is not fully connected anymore.
We mark the disconnected component containing the unsupplied nodes and other failed lines in red.

nonregular topology, for which it is sufficient to consider the
topology of the German grid, isolated from the rest of the
pan-European electricity network. As before, we consider a
binary distribution of generators and consumers and a constant
line power transmission capacity. We also apply the cascading
failure algorithm described above and consider R = 1000
realizations. Figure 6 demonstrates a cascade of single-line
failures in the German grid model for a binary distribution
of generators and consumers. Here, we use the parameters
P = 1 s−2, K = 10 s−2, α = 1 s−1, and fth = 0.35.

We analyze cascading failures for various threshold values
fth. The results for the cumulative probabilities p̄(Nc) are
shown in Fig. 7. With decreasing fth, the values of the average
cumulative probability p̄(Nc) are increasing. This behavior is
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FIG. 7. Average cumulative probability p̄(Nc) (8) as function
of the number of unsupplied consumers Nc for the German grid
model for various threshold values fth (colored lines, red axis). The
distribution of initial consumer clusters p̄(Ng) is shown as the black
line (black axis). Error bars show the standard error [cf. Eq. (8)].

similar to that of the square grids (cf. Fig. 2). Note that the
German grid model contains 254 nodes and 317 links, so its
size is comparable to a 12 × 12 square grid, which has 264
links, so we can compare the results with the corresponding
probability density p̄(Nc) shown in Fig. 2. We observe clear
differences: First, for the German grid p̄(Nc) does not decay
continuously but shows abrupt steps. Second, the decay of
p̄(Nc) for large Nc depends strongly on the threshold fth. For
large fth the decay is clearly exponential. For fth = 0.4 the
decay is slow and may indicate a power-law decay, although the
statistics does not allow to extract a definite power exponent.
There might be a critical value of the threshold fth below which
the cumulative probability density becomes critical and decays
with a power law. Thus, we may conclude that the difference
in the topological structure of the German high-voltage grid
as compared to the square grids leads to marked differences in
the probability of cascading failures, whose origin needs to be
studied in more detail. We also show in Fig. 2 the distribution of
consumer clusters p̄(Ng) (black line) existing in the grid before
the cascade. We observe that for the smallest threshold value,
fth = 0.4, the tail of the cumulative probability distribution
of unsupplied consumers Nc is similar to the tail of the
distribution of clusters, indicating that the probability of large
outage sizes is closely related to the occurrence of large clusters
in the German grid topology.

V. CONCLUSIONS AND OUTLOOK

Single line failures can induce a cascade of failures leading
to power outages for a potentially large number of consumers.
Although cascading failures have been studied before, most of
the studies were based on simple flow models. In this article
we contribute to a more realistic model for cascading failures
based on an AC load flow model. We developed an algorithm
for cascading failures which is widely applicable to different
network topologies and parameter ranges.

First, we analyzed regular square grids with a random place-
ment of generators and consumers. We considered different
threshold values for the transmitted power Fth. We identified
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a scaling law with a power-law exponent for the probability to
obtain a minimum number of unsupplied consumers (blackout
size) in dependence of the system size. In contrast to the
simplified model of Ref. [14], we do not find evidence for a
critical ratio of the threshold power Fth but rather find the same
dependence in a wide range of threshold values fth. Moreover,
we find a power-law decay with power q = 1.6 ± 0.2 which is
comparable to the one found in Ref. [14], q ≈ 1.4. We do not
find a direct relation between the distribution of initial clusters
and the resulting blackout sizes after the cascading failures.
Often, clusters of consumers are found to split into multiple
parts during a cascade of line failures, which might explain
why the observed blackout size is often smaller than the initial
cluster size.

Second, we studied regular square grids with a periodic
arrangement of consumer clusters of fixed size. We demon-
strated that large consumer clusters often lead to large outages,
whereas small clusters typically lead to only small outages for
the initial failure of a single line. In contrast, the number of
critical links, i.e., links which cause a cascade if they fail,
is decreasing with increasing cluster size. Here we can also
identify a direct relation between consumer cluster sizes and
the number of unsupplied consumers after a cascade has been
initiated.

Finally, we studied a real-world topology, a model for
the German high-voltage transmission grid. In this irregular
grid structure, we find a qualitatively similar behavior for the
complementary cumulative probability p̄(Nc) that a blackout

of a certain minimum size occurs, but we also observe clear
differences: First, for the German grid, p̄(Nc) does not decay
continuously but shows abrupt steps, which could be only due
to the small number of observations. Second, the decay of
p̄(Nc) for large Nc depends strongly on the threshold fth. For
large fth the decay is clearly exponential. For fth = 0.4 the
decay is slow and may indicate a power-law decay, although
the statistics does not allow us to extract a definite power
exponent. There might be a critical value of the threshold
fth below which the cumulative probability density becomes
critical and decays with a power law.

Thus, we may conclude that the difference in the topological
structure of the German high-voltage grid as compared to the
square grids leads to marked differences in the probability
of cascading failures. Its origin and dependence on various
topological measures will have to be studied in more detail
in future research. It remains to find criteria for the question
which arrangements of generators and consumers are bene-
ficial for a particular grid topology in order to minimize the
chance and extent of blackouts. In future research we will
also study the influence of heterogeneous transmission line
capacities and more realistic distributions for the consumed
and generated power at each node.
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