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Subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model
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We study the subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model.
For the subthreshold situation, two cases where the stationary states are equilibrium point and limit cycle are
considered, where different natures of vibrational resonance are observed via theoretical and numerical methods.
Especially when the frequency of the high-frequency driving force is near the so-called canard-resonance
frequency, the firing rate can be significantly enhanced at the presence of noise. For the suprathreshold situation,
we show that the local maxima of the response amplitude are located at the transition boundaries of different
phase-locking patterns. The minimal required forcing amplitudes of high-frequency signal of the firing onset
are just multiples of the spiking frequency. Furthermore, phase portraits and time series show that the presence
of the global maxima of the response results from not only the suprathreshold but also the subthreshold phase-
locking modes. In spite of the distinct characteristics for two stationary states on subthreshold oscillation, the
suprathreshold vibrational resonance showed no qualitative difference between the two cases.
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I. INTRODUCTION

Stochastic resonance (SR) has engaged much attention
since it was first proposed by Benzi et al. [1]. Due to its
counterintuitive features and potential applications, SR has
been investigated in optical systems, electronic and magnetic
systems, neuronal systems, etc. [2]. It shows that there exists
an optimal strength of noise so that the transmission of
the weak signal in a nonlinear system could be enhanced.
Because of the random nature of noise, researchers have been
looking for other alternatives to produce similar SR behaviors,
e.g., rectangular pulse trains [3] or suitable chaotic signals
[4]. Among these alternatives, high-frequency signal (HFS),
compared with the weak low-frequency signal (LFS), is of
great interest to many researchers since bichromatic signals
are very important in many fields, e.g., acoustics, laser physics,
engineering, and neuroscience [5]. The resonant amplification
of the signal output induced by HFS was first named vibrational
resonance (VR) by Landa and McClintock [6]. Since then, VR
has been studied theoretically, numerically, and experimentally
in many systems [5,7–12].

In excitable neuronal systems, information transmission is
vital and VR seems to be an efficient way to improve its trans-
port. In this paper, we investigate VR in the FitzHugh-Nagumo
(FHN) neuron model [13]. It is a simple but paradigmatic
model for establishing neuron activities, and is defined as
follows [7,12]:

εẋ = x − 1
3x3 − y,

ẏ = x + a + A cos (ωt) + B cos (�t),
(1)

where x and y represent the fast membrane potential variable
and the slow variable related to the conductivity of the potas-
sium channels, respectively. ε is the time separation parameter.
Without external inputs, a is a bifurcation parameter so that for
a > 1, the system will have only one equilibrium point (x∗,y∗),
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where x∗ = −a, y∗ = a3

3 − a. For a slightly smaller than 1,
the system will undergo a supercritical Hopf bifurcation, so
a small limit cycle will emerge. Most studies on VR of the
FHN model ignored the subthreshold oscillation, where VR is
realized by the periodic modulation of LFS; i.e., for one half
period of LFS, the neurons spike most, while for the other
half, they spike least. However, subthreshold oscillations have
been observed in vivo [14,15] and in vitro [16,17]. It was shown
that afferent discharge generated ectopically in the cell soma of
dorsal root ganglion (DRG) neurons is critically dependent on
subthreshold membrane potential oscillations [15]. Moreover,
it was proved that subthreshold oscillations could influence the
firing behaviors in theoretical neuron models [18–21]. Thus,
it is worth investigating its roles in VR.

For the suprathreshold case, when the input of HFS induces
spikes, VR has been extensively investigated in excitable
systems due to its unambiguous manifestation whether theo-
retically [7] or numerically and experimentally [12]. A single
peak which is analogous to the SR case is characterized
by the response amplitude Q. Moreover, it has been shown
that multiple VR can be induced by time delayed feedback
in overdamped uncoupled and coupled bistable systems and
in Duffing oscillators [10,22,23]. As for excitable systems,
especially for the FHN model, similar multiple VR has been
obtained by constant and time-varying delay [24,25]. Previous
studies were mostly devoted to the single parameter of HFS,
mainly to the amplitude. Global views on both amplitude
and frequency of HFS of VR have begun to be noticed in
Refs. [8,9]. Yang et al. [8] provided a global view by tuning
both amplitude and frequency of HFS to find the relation
between the different phase-locking modes and VR, which
shows each maximum of response is exactly located at the
transition boundary of phase patterns. As the bichromatic
signals are added in the fast variable in their paper, we want
to check whether these results are true when the bichromatic
signals are added in the slow variable.

We fix ε = 0.1 throughout this paper so that subthreshold
oscillation survives under small perturbations. A cos(ωt) and
B cos(�t) are LFS and HFS, respectively. A = 0.005 was
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FIG. 1. The phase portrait of the FHN neuron model. The red
dashed lines are nullclines and the green line is the separatrix
by numerical integration. Any initial point under the separatrix
undergoes a large excursion (spike) and terminates around the
equilibrium point. Blue arrows represent the vector field. Inset: the
local magnification of the intersection between the nullclines, where
xd and yd represent the distance between the separatrix and the
equilibrium point (a > 1) or the limit cycle (a < 1) along the x and
y directions, respectively (bold black lines).

set for weak LFS and ω � � was assumed. The phase
portrait of the FHN neuron model is illustrated in Fig. 1. In
the following, both the subthreshold and suprathreshold VR
will be investigated. This paper is organized as follows: The
subthreshold VR will be studied in Sec. II where two cases
of resting state, equilibrium point (a > 1) and limit cycle
(a < 1), are investigated separately. The suprathreshold VR
will be investigated in Sec. III. Finally, some conclusions and
discussions are given in Sec. IV.

II. SUBTHRESHOLD VIBRATIONAL RESONANCE

For the subthreshold vibrational resonance, we fix ω = 0.1.
Two separate cases, i.e., a > 1 and a < 1, are studied since
they have different stationary states (equilibrium state and limit
cycle oscillation).

A. Case 1. a > 1

We choose a = 1.01. The system will have only one equi-
librium point. Since we consider the subthreshold vibrational
resonance, B is settled small enough as there is no spike when
HFS is added. In this case, we separate the slow and fast motion
by [11]

x(t) = X(t) + ψ(t,τ ), (2)

where X(t) is the slow motion and ψ(t,τ ) is the fast motion
of the 2π period of fast time τ = �t , and the mean value of
ψ(t,τ ) with respect to τ is

ψ̄ = 1

2π

∫ 2π

0
ψ(t,τ )dτ = 0. (3)

First, we eliminate variable y in Eq. (1) by some simple
calculations:

εẍ = (1 − x2)ẋ − x − a − A cos(ωt) − B cos(�t). (4)

Substituting Eqs. (2) and (3) into Eq. (4), and separating
the slow and fast motion, we obtain

ε ¨̃X + [(X̃ − a)
2 + ψ2 − 1] ˙̃X + X̃ = −A cos(ωt), (5a)

εψ̈ + [(X + ψ)2 − 1]ψ̇ + (ψ2 − ψ2)Ẋ + (1 + 2XẊ)ψ

= −B cos(�t), (5b)

where we have used X̃ = X − x∗ [(x∗,y∗) is the stable
equilibrium point] and

∫ 2π

0 f (ψ) ∂ψ

∂t
dτ = ∫ 2π

0 f (ψ)�∂ψ

∂τ
dτ =∫ 2π

0 f (ψ)�dψ = 0 in Eq. (5a). f (ψ) is ψ or ψ2. Assuming
� � 1, we have ψ̈ � ψ̇,ψ,ψ2, and according to X ≈ −1
(because A is small enough and a is very close to 1), we can
simplify Eq. (5b) as

εψ̈ = −B cos (�t). (6)

The solution to Eq. (6) is ψ = B
ε�2 cos(�t); thus we have

ψ2 = B2

2ε2�4
, (7)

and Eq. (5a) turns to

¨̃X + d ˙̃X + 1

ε
X̃ = −A cos (ωt)

ε
, (8)

where d = 1
ε
[ B2

2ε2�4 − 1 + (a − X̃)
2
]. Due to the nonlinear

damping term d in Eq. (8), direct solution is hopeless. Instead,
we use the following approximation. A = 0.005, which is
much smaller than ε, so that in the limit t → ∞ we have AX̃ =

A

ε
√

(ωr
2−ω2)2+d2ω2

< A
ε(ωr

2−ω2) ≈ 5 × 10−3, where AX̃ is the

amplitude of X̃ (we will see later that AX̃ ≈ 5.5 × 10−3) and
ωr =

√
ε−1, which corresponds to the subthreshold oscillation

frequency or the so-called canard-resonance frequency [18].
Thus, d > 0 for all values of B and �. We omit X̃ in d, so Q

can be approximated as

Q = A

ε

√(
ω2

r − ω2
)2 + d̂2ω2

, (9)

where d̂ = 1
ε
( B2

2ε2�4 − 1 + a2). Let

S = (
ω2

r − ω2
)2 + d̂2ω2. (10)

Then we can calculate the minimum and maximum of
Q which correspond to the maximum and minimum of S,
respectively. For fixed �, S is a function of B. The extremum
of S is obtained by calculating SB = 2d̂ d̂Bω2 = 0. According
to SBB = 2d̂2

Bω2 + 2d̂ d̂BBω2 > 0, the only maximum of Q is
when B = 0. We can verify it by computing Q numerically
which is given by [18] Q =

√
Qsin

2 + Qcos
2, where

Qsin = ω

2πn

∫ 2πn
ω

0
2x(t) sin(ωt)dt,

(11)

Qcos = ω

2πn

∫ 2πn
ω

0
2x(t) cos(ωt)dt.
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FIG. 2. Response amplitude Q versus HFS amplitude B for
different HFS frequencies �. (a) Numerical results. (b) Theoretical
results for Eq. (9). Parameters: a = 1.01, A = 0.005, ω = 0.1. Note
that the range of response for theoretical results is much smaller than
that for numerical simulation.

The Heun method is used to integrate Eq. (1) with time step
10−3, n = 100, and ten period times of LFS are discarded as
transients. The results are illustrated in Fig. 2(a). We can see
that the addition of HFS decreases the transmission of LFS and
this decreasing phenomenon is enhanced when the amplitude
of HFS increases. The value and the change of Q are tiny
while the rate of change becomes larger when � decreases.
The theoretical results [Eq. (9)] underestimate the numerical
results [the deviation mainly stems from the simplification
of Eq. (5b)] but the changes are qualitatively the same [see
Fig. 2(b)].

Note that for the above discussion, we have assumed
� � 1. The changes of Q-B curves seem to be monotonic
for decreasing �. It is still unknown whether this kind of
monotonicity will persist when � is not assumed large enough,
especially when it is near the subthreshold frequency ωr =√

ε−1. Accordingly, the response amplitude Q is calculated
versus three different frequencies of HFS as in Fig. 3(a). We
can see from Fig. 3(a) that the monotonicity as in Fig. 2
no longer persists due to the resonance between HFS and
canard oscillation. When the frequency of HFS is far from the
canard frequency (either below or over), the response Q seems
to change slowly as discussed above. When the frequency
of HFS is near the canard frequency, at first, the increase
of B will enhance response amplitude Q and after some
critical value of B, it will drop to an even deeper value than
that for frequencies not close to the canard frequency which
represents a suppression of response to LFS. The profile of
Fig. 3 for � = 3 resembles the classical vibrational resonance
curve. There is a single peak at B = 0.011 which shows the
enhancement of the response amplitude by HFS. It should be

FIG. 3. Response amplitude Q versus HFS amplitude B for
different frequencies �. Other parameters are the same as in Fig. 2.

FIG. 4. (a) Phase portrait of Eq. (1). xw denotes the width of
orbit at y = a3

3 − a. Please note the asymmetry along the y direction.
Parameters: a = 1.01, � = 3, B = 0.011. (b) Variation in width of
the orbit, xw , as a function of B for different HFS frequencies �.

noted that after the resonance, the increasing energy of the
HFS input seems not to influence the response to the LFS
(flatter curve after around B = 0.025). The mechanism for
the subthreshold vibrational resonance could be explained as
follows. Each orbit circled around the fixed point (x∗,y∗) has
a frequency associated with the radius of the orbit. The nearer
the orbit to the fixed point, the larger the frequency of the orbit
(the frequency approaches ωr when the orbit approaches the
fixed point). There is an optimal amplitude of HFS whereby
the orbit will be pulled to the radius where the frequency of the
orbit matches the frequency of HFS. In that case, the resonance
happens and the response to the LFS input will be mostly
enhanced. So for HFS with a smaller frequency, the peak of Q

will emerge at a larger amplitude [see Fig. 3(b)]. To ensure the
presence of the peak, the frequency has a narrow range in that
for a too small frequency of HFS, the optimal amplitude of
HFS may already induce spikes which will be contrary to our
purpose here to study the subthreshold VR and for a too large
one there would be no resonant amplitude B as is illustrated in
Fig. 2 (the only maximum should be B = 0). The flatter parts
of the curves in Fig. 3(b) showed the orbits were pulled away
from the resonant area and that the response amplitude of LFS
was not affected by the amplitude change of HFS.

We verify our result in a more intuitive and convenient
way by the width of the orbit of x [11], denoted as xw [the
definition of xw is clarified in Fig. 4(a)]. We choose the width of
orbit at y = a3

3 − a because the orbit circled around the fixed
point (x∗,y∗); therefore the definition of xw could always be
meaningful. The results are illustrated in Fig. 4(b) (in fact, the
width of the orbit of y is also applicable here). From Fig. 4(b),
we can see the curves are qualitatively the same as Fig. 3(a).
The peak at B = 0.011 showed that the width of the orbit
defined in Fig. 4(a) reached the maximum as a signature of the
vibration resonance.

More details can be revealed by the phase portraits of
Eq. (1). As in Fig. 5, generally, with the increase of B, the
radius of the trajectories will increase. For � away from the
canard frequency (� = 2, 4), the radius is much smaller than
that for � near the canard frequency (� = 3). For � = 3,
the optimal amplitude of HFS is at B = 0.011, where the
difference between the inner and outer radius is maximized
which corresponds to the previously calculated orbit width in
Fig. 4. Further increasing the amplitude of HFS expands both
the inner and outer radius. However, the inner radius increases
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FIG. 5. Phase portraits of Eq. (1). From top to bottom: B = 0.011
and 0.03. From left to right: � = 2, 3,4. Other parameters are the
same as in Fig. 3.

faster than the outer radius which accounts for the decrease of
the orbit width, thus decreasing the response amplitude to the
LFS.

B. Case 2. a < 1

We choose a = 0.998 (slightly after Hopf bifurcation). In
this case, without external input, the stationary state is limit
cycle oscillation instead of equilibrium point. The situation
becomes complicated when LFS and HFS are inputted at
the presence of this limit cycle. We numerically calculated
response amplitude Q. The results are in Fig. 6. We can see
in this case the response amplitude Q is totally different from
the previous case.

For � large enough [see Fig. 6(a)], initially, Q will increase
with the increasing amplitude of HFS and after a critical value
of B is exceeded, it begins to decrease. The transition point
occurs at smaller B for smaller �. The periodiclike changes
of Q indicate periodiclike enhancement and attenuation of the
response to LFS. The general trend is that Q decreases as
the increase of B along with the periodiclike changes (e.g.,
� = 5) and the decreasing rate increases with decreasing �. It
is interesting to see that this trend resembles the former case.

For � near the canard-resonance frequency, in addition
to the obvious common characteristics, we can see that the
profiles of Figs. 3(a) and 6(b) have two different features.
First, for a = 1.01, there is only one peak (B = 0.011), while
for a = 0.998, there are two adjacent peaks (B = 0.006 and
B = 0.008). Second, the difference between the maximum and
minimum of Q for the latter is more significant than the former.

FIG. 6. Response amplitude Q versus HFS amplitude B for
different frequencies �. Parameters: a = 0.998, A = 0.005, ω = 0.1.
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FIG. 7. Phase portraits of Eq. (1). From top to bottom: B = 0.006,
0.008, and 0.013. From left to right: � = 2, 2.8,4. Other parameters
are the same as in Fig. 6.

We conclude these two features are related to the presence of
the limit cycle.

Again, we numerically calculate the phase portraits of
Eq. (1) for a = 0.998. As is in Fig. 7, the radius seems
to be unchanged for � = 2, 4. When � = 2.8, resonances
happen for B = 0.006 and 0.008, which is in accordance with
Fig. 6(b). The sudden decrease in Fig. 6(b) after B = 0.008
is induced by simultaneously decreasing the outer radius and
increasing the inner radius, compared with the relative mild
decrease in Fig. 3(a) where the outer radius always increases
by increasing B.

What does subthreshold VR mean to neurons?
Although in neuronal systems, only the spikes themselves

are important for the information transport, we can see that
subthreshold VR may assist the neurons to fire. As noise is
ubiquitous in neurons [26], additive Gaussian white noise ξ (t)
is added into Eq. (1) as

εẋ = x − 1
3x3 − y,

ẏ = x + a + A cos (ωt) + B cos (�t) + √
Dξ (t),

(12)

where 〈ξ (t)〉 = 0, 〈ξ (t)ξ (τ )〉 = Dδ(t − τ ). D is the strength
of the noise. We calculate the average firing rate r0 defined as
[26]

r0 = Sc(NT )

NT
, (13)

which denotes the mean number of spikes per unit time. Sc(·)
is the spike count which calculates the number of spikes in
the time window (0, NT ); T is the period of LFS; N = 100
and ten period times are discarded as transients. The results
are in Fig. 8. The typical bell-shaped forms can be observed
for both a = 0.998 and 1.01. The peaks show the resonances
between HFS and the subthreshold oscillation. The firing
rate is much higher for a = 0.998 than for a = 1.01. The
reason can be explained by the decrease of xd or yd (see
definition in Fig. 1) at the presence of the limit cycle in the
case a = 0.998. Another phenomenon is that the resonant
frequency is advanced for the limit cycle case. Therefore, it
could be anticipated that subthreshold VR would also facilitate
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FIG. 8. Firing rate r0 versus �. Parameters: N = 100, D = 2 ×
10−4, A = 0.005, ω = 0.1. For a = 1.01, B = 0.011; for a = 0.998,
B = 0.008. The firing rate is obtained by averaging ten sample paths.

synchronization and propagation in neuron populations which
will be our future work.

III. SUPRATHRESHOLD VIBRATIONAL RESONANCE

Continuing to increase the HFS amplitude will induce
spikes. Vibration resonance happens when there is a value
of HFS amplitude such that the neuron spikes most for one
half period of LFS and least for the other half. However,
further increasing of the amplitude could also produce VR.
Yang et al. [8] proved these VRs are actually located at
the transition boundaries of different phase-locking patterns
(locking between the frequency of HFS and spikes). For their
model, the bichromatic signals were added to the fast variable.
As the signals are added into the slow variable in Eq. (1), we
want to check if the mechanisms explained by Ref. [8] still
hold.

We choose a = 0.998 as our example. In contrast to the
former section, to get rid of the interference of the subthreshold
oscillation, we adopt the measure Qth in Eq. (11) (instead
of Q) [18], where for x(t) < xth, x(t) is replaced by −1;
for x(t) � xth, x(t) remains unchanged. xth is set as 0. The
range of the amplitude of HFS is [0, 0.4] which contains
the subthreshold interval. Still, we use the Heun method to
integrate Eq. (1). The results are illustrated in Fig. 9. It is found
that the local maxima of response amplitude are still located
at the transition boundaries of the phase-locking patterns as in
Ref. [8]. Figure 10 illustrates the relations between VRs and
phase-locking modes for a fixed amplitude (B = 0.2) and a
fixed frequency (� = 3.4) of HFS.

The minimal required forcing amplitude B of the firing
onset is obtained at the forcing frequency about � = 2.5
which is near the subthreshold frequency, as is still true
compared with Ref. [8]. However, another local minimum of
the firing onset exists at about � = 3.75 which was not present
in Ref. [8]. It can be numerically validated that the firing
frequency is around 1.25; the two minima are just multiples of
the firing frequency and their ratios correspond to the locking
ratios (note that 2.5 is also close to the canard-resonance
frequency which makes B the global minimum at � = 2.5).

FIG. 9. Qth versus B and �. Left: three-dimensional (3D) plot.
Right: contour plot and phase-locking areas, where the locking ratio
marked in white as m:n means m spikes per n cycles of HFS.
Parameters: a = 0.998, w = 0.251, A = 0.005.

Thus, we can expect local minima at other multiples of 1.25,
e.g., 1.25 at 1:1 phase-locking area. Coincidentally, the local
minima in Ref. [8] coincide with the transition boundaries
of phase patterns and the time separation ratio of theirs is
ε = 0.02, much smaller than ours, along with the logarithmic
form of coordinates, all of which covered up the phenomenon
discussed here.

However, the local minimal required forcing amplitudes
just predict the onset of firing but not the maxima of response
amplitude. Clearly, two maxima of response amplitude Qth

can be seen in the left panel of Fig. 9. The first one is around
� = 2.5, which is close to the subthreshold frequency and the
multiple of the firing frequency. The second one is around
� = 3.5, whereas it does not seem to correspond to any
known frequency or its multiples. We take a deep look to
investigate the mechanism by calculating the time series on
these parameters (see Fig. 11). Phase-locking modes can be
seen by comparing x(t) and HFS on the firing state [1:2 for � =
2.5 and 1:3 for � = 3.5; see the dashed circles in Figs. 11(a)
and 11(b)]. Besides, subthreshold oscillations also demon-
strate phase-locking modes. For � = 2.5, 1:1 subthreshold
phase-locking is found, since � is near the resonance fre-
quency (m:n subthreshold phase locking is defined as m large
subthreshold oscillations per n cycles of HFS; accordingly,

FIG. 10. Relations between VRs and phase-locking modes for a
fixed amplitude and a fixed frequency of HFS. (a,c): B = 0.2; (b,d):
� = 3.4. Other parameters are the same as in Fig. 9. L is the locking
ratio which measures the value of spiking frequency divided by the
HFS frequency.
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FIG. 11. (a–b) Time series of x(t) (blue), LFS (red), and HFS
(green). Dashed (solid) circles exhibit the locking ratios between
the spikes (the subthreshold oscillations) and the HFS. (c,d) Phase
portraits corresponding to (a,b). Parameters: (a,c) B = 0.017, � =
2.51; (b,d) B = 0.119, � = 3.52. Other parameters are in the text.
The amplitudes of LFS and HFS have been magnified for a better
view.

we name the phase locking in Fig. 9 or Fig. 10 as m:n
suprathreshold phase locking). It is interesting that despite the
fact � = 3.5 is not the multiple of subthreshold oscillation fre-
quency, the subthreshold oscillation is “adjusted” by making
a small oscillation between two relatively larger oscillations
[please compare Figs. 11(c) and 11(d)]. As a consequence,
1:2 subthreshold phase locking is found [see Figs. 11(b)
and 11(d)]. Through the above analysis, the two maxima of
response amplitude Qth can be explained by two kinds of
phase locking, namely, subthreshold and suprathreshold phase
locking. We have also verified situations for a = 1.01 and other
values of w, e.g., w = 0.1, which showed similar results. It
should be noted that in spite of the different natures of a = 1.01
and 0.998 in the subthreshold case, the suprathreshold case for
them showed no qualitative distinction.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have studied the subthreshold and
suprathreshold VR in the FitzHugh-Nagumo neuron model
theoretically and numerically. For the subthreshold VR, two
different cases were considered, namely, a = 1.01 and a =
0.998. They showed different features for both large fre-
quencies (much larger than the canard-resonance frequency)
and small frequencies (near the canard-resonance frequency)
of HFS. When � is much larger than the canard-resonance
frequency, the general trend of the response amplitude Q

for both cases is that Q decreases with the increase of the
HFS amplitude B and as the HFS frequency decreases the
decreasing rate increases. But in detail, nonmonotonic de-
crease for case 2 was found with the periodiclike enhancement
and attenuation of the response to LFS, in contrast to the

monotonic decrease for case 1. Yet, due to the tiny value
of the response amplitude Q, it remains to be validated
whether it is possible to find these changes and the differences
between the two cases experimentally. When � is near the
canard-resonance frequency, the typical bell-shaped forms
demonstrate the VR phenomenon, whereas for case 1, there is
only one peak but for case 2, there are two. The results can be
verified by the width of the orbit of x in Fig. 4 and the phase
portraits in Fig. 5 (or Fig. 7). Moreover, although subthreshold
oscillation is not important in information transmission [18],
subthreshold VR does enhance the neuron firing behavior
at the presence of noise which is demonstrated by the well
pronounced peaks of the firing rate. Especially in neuronal
networks, the authors have found the nontrivial phenomenon
induced by the distance-dependent delay [27], so it would
be of great interest to investigate the interplay between
subthreshold VR and inevitable delay in different types of
network topologies.

For the suprathreshold VR, we verified that the maxima
of response amplitude Qth of the FHN neuron model with
HFS and LFS added to the slow variable y were still located
at the transition boundaries of phase-locking patterns, as
was compared with the fast variable situation in Ref. [8].
However, it was found that two local minimal required forcing
amplitudes B of the firing onset were located at � = 2.5 and
3.75, as a result of the frequency matching between the spiking
frequency (around 1.25) and HFS frequency (multiples of
1.25). We predict other multiples of spiking frequency, e.g.,
1.25 and 5, could also induce local minimal required forcing
amplitude B of the firing onset. Furthermore, it was found that
the two maxima of Q at � = 2.5 and 3.5 were achieved by
two kinds of phase locking: subthreshold and suprathreshold
phase locking.

The focus on vibrational resonance has long been not only
of mathematical interest but also of practical value, especially
in neuroscience. Previous studies were mostly devoted to the
single parameter of HFS, mainly to the amplitude. Global
views of both amplitude and frequency of HFS on VR were
seldom investigated. It has been verified that the frequency
of LFS also has significant impacts on the quantic oscillator
with monostable potentials [11]; thus it deserves future work to
investigate the combined influence of amplitude and frequency
of LFS, or in other words, VR’s selectivity to LFS (which LFS
is most enhanced by the system?). Besides, since neurons exist
in vivo in the form of clusters, it is of practical significance to
do research on VR in neuronal networks [28,29] and its roles in
propagation [12,30]. In this paper, it is found that subthreshold
VR can improve the firing rate at the presence of noise, so it
could be anticipated that subthreshold VR may also enhance
synchronization and propagation in neuronal networks.
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