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Criterion for noise-induced synchronization: Application to colloidal alignment
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Colloidal bodies of irregular shape rotate as they descend under gravity in solution. This rotational response
provides a means of bringing a dispersion of identical bodies into a synchronized rotation with the same orientation
using programed forcing. We use the notion of statistical entropy to derive bounds on the rate of synchronization.
These bounds apply generally to dynamical systems with stable periodic motion with a phase φ(t), when subjected
to an impulsive perturbation. The impulse causes a change of phase expressible as a phase map ψ(φ). We derive
an upper limit on the average change of entropy 〈�H 〉 in terms of this phase map; when this limit is negative,
alignment must occur. For systems that have achieved a low entropy, the 〈�H 〉 approaches this upper limit.
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I. INTRODUCTION

An important phenomenon in systems of many independent
agents is synchronization: Some influence external to each
agent induces them to evolve from uncorrelated motion to
highly correlated motion. In physics, the synchronization
of nuclear spins creates the powerful coherent signals that
make magnetic resonance imaging possible [1]. In physiology
the body’s circadian rhythm creates synchrony in numerous
somatic processes [2]. In the macroscopic world synchro-
nization appears in applause [3], in birth-death cycles of
organism populations [4], and in the synchronized firing of
neurons [5]. One demonstrated means of synchronization is
to expose all the agents to a stochastic disturbance or noise
identical for all the agents [4,6,7]. Here we show how the
rate of synchronization is constrained by simple properties of
the noise. We demonstrate these constraints using a recently
identified form of synchronization from colloid science.

Usually, synchronization is thought to be achieved through
some mutual coupling or common periodic external forces [8].
However, we focus on the less-considered effect of common
nonperiodic forces or common noise on synchronization. The
synchronization of noninteracting limit cycle oscillators with
common noise pulses was first studied by Pikovskii in 1984
[9]. Using phase-reduction methods, it was later shown that
broad classes of randomly driven noninteracting limit-cycle
oscillators will synchronize to a single locally stable limit
cycle [10] or to a partially synchronized state [11].

When one restricts the common external signal to be
telegraph noise or impulse noise, the behavior of these
nonlinear elements can be reduced to a phase map, relating
the phase immediately prior to an impulse to the altered
phase long after the impulse, when the system has returned
to stable periodic motion [7,12]. Experiments verified that
the functional form of the phase map governs the way small
differences in phase between two identical oscillators decay
under repeated impulses [13].

Here we take a statistical approach to the process of
synchronization. We quantify the rate of progress toward
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the synchronized state in terms of statistical entropy of a
probability distribution [14]. Given the probability distribution
of initial phases of the oscillators, the phase map readily
determines the distribution after the impulse. The statistical
approach allows powerful bounds on how the entropy can
change as the result of an impulse. Extending previous work
[15], we show that the average entropy change from an impulse
is necessarily more negative than a quantity calculated from
the phase map called the “spreading parameter.” Moreover,
at late stages of synchronization, when the probability is
strongly concentrated, we show under weak conditions that
the entropy change becomes equal to the spreading parameter,
generalizing the results in Ref. [13]. Previous work recognized
that when this parameter was negative, synchronization must
occur [12]. The present work quantifies the rate of this
synchronization in a new way.

In order to show the utility of these new bounds, we
investigate a novel form of noise-induced synchronization
arising in colloidal dispersions. A colloidal dispersion is an
assembly of micron-scale bodies suspended in a liquid. Within
soft matter physics, there is increasing interest in manipulating
colloidal dispersions of identically made biological or manu-
factured objects [16,17]. Uses and practical limitations of their
rotational response have been much explored recently [18–21].

Under gravity these bodies gradually drift downward [22].
Sufficiently irregular bodies respond to constant force by
rotating so that a specific axis in the body aligns with the force.
Thereafter these bodies precess around this axis with a constant
angular velocity [23,24]. A set of identical bodies in a dilute
dispersion rotate together, with random orientations around
this axis. This orientation amounts to a phase angle. By suitable
random changes in the direction of forcing, the bodies evolve
into a common phase, so that they have a common orientation.
This evolution amounts to noise-induced synchronization.

In Sec. II we recall the equation of motion governing the
rotation of a colloidal body under external forcing; we then
describe a random forcing procedure leading to a phase map.
In Sec. III we define the spreading parameter of a phase-map
system and derive the bounds on entropy dictated by it,
as announced above. In Sec. IV we illustrate how altering
the forcing of a colloidal system alters the phase map to
create various synchronization behaviors consistent with these
bounds. Finally, in Sec. V we discuss limitations of our work
and implications for future work.
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II. ROTATIONAL RESPONSE TO EXTERNAL FORCE

A. Linear response matrix

We consider a rigid body in a fluid with some external
force, �F (t), acting at the center of buoyancy and hydrodynamic
drag forces acting on the body’s surface [15]. We consider
the dynamics in the “creeping flow” regime, in which inertial
forces are negligible and the force transmitted to a moving
particle by the medium is proportional to the particle’s velocity.
The hydrodynamic forces �F and torques �M are related to the
body’s velocity �v and angular velocity �ω via a proportionality
matrix. This matrix can be represented in dimensionless block
form: [ �v

�ωR

]
= 1

6πηR

(
A TT

T S

)[ �F
�M/R

]
. (1)

Here η is the viscosity of the fluid, R is the hydrodynamic
radius of the object, and T, A, and S are 3 × 3 submatrices
[19,22]. These depend on the shape of the body and the position
of its center of buoyancy within the body. For simplicity we
choose units such that 6πη and R are unity. We choose the
center of buoyancy as our origin, thus eliminating the external
torque on the body, and we describe the rotational motion of
the body by the 3 × 3 “twist matrix” T:

�ω = T �F . (2)

This �ω immediately gives the time derivative of a rotating T
[15]:

Ṫ =
[(

T �F
)×

,T

]
, (3)

where the brackets denote a commutator and �v× is the cross
product matrix of a vector �v with entries given by [�v×]ik :=
εijkvj [24].

Choosing a constant �F in the laboratory frame, we consider
the dynamics in a rotating reference frame fixed in the object.
T becomes constant and we obtain a differential equation for
�F : �̇F = −�ω × �F = �F × T �F .

We now consider bodies whose T matrices have only one
real eigenvector. We refer to these as “axially-aligning” bodies
as explained below. Such bodies have one real eigenvalue,
denoted λ. The eigenvector of λ defines two opposite directions

denoted by unit vectors η̂ and −η̂. Evidently, �̇F vanishes when
�F lies along ±η̂: the motion is steady, with constant �ω. The

self-aligning property is incompatible with a symmetric T
(which has three real eigenvalues). Thus a self-aligning T
must have an antisymmetric part. The antisymmetric part of T
depends linearly on the position of the center of buoyancy,
governed by the mass distribution within the object [24].
There is necessarily a position where this antisymmetric
part vanishes; this position is known as the center of twist.
Whenever the center of buoyancy is sufficiently far from the
center of twist, two eigenvalues of T become complex and the
object becomes axially aligning. Thus, axially aligning objects
form a large class. We shall consider only axially aligning T
from now on.

For these T’s the two orientations η̂ and −η̂ behave
differently. One of these—denoted η̂∗—is a stable steady state.
That is, any initial force direction evolves to the η̂∗ direction

ê1

ê2

ê3

ŷ x̂

ẑ

F(a)

φ

ẑ, ê3, F

(b)

ŷ
ê2

ê1

x̂

FIG. 1. (a) An orthographic projection of an axially aligned body
with labeled body axes ê1,ê2,ê3. (b) A top view of the body with the
φ angle being the angle between the ê2 and the laboratory y axis. The
force is applied in the laboratory positive z axis as pictured.

[25]. The force aligns along the η̂∗ axis—hence the name
“axially aligning.” For future use we define a body-fixed basis
ê1,ê2,ê3 where ê3 is the aligning direction η̂∗ as shown in
Fig. 1.

Looked at from the laboratory frame, a body in a steady
state imposed by some constant �F rotates about this �F with
a constant angular speed given by �ω = λ �F . In this frame the
stability of the η̂∗ direction means that any orientation of the
body evolves to make its ê3 direction align with �F , i.e., �F · ê3 =
|F |. (If ê3 is initially in the − �F direction, the motion is steady
but unstable; any slight rotation of the body causes a large
rotation of ê3 into the stable + �F direction.)

Without loss of generality, we assume our force is along
the z axis of the laboratory and we now assume the body is
in steady state motion. In what follows we define τ := 2π

for notational convenience [26]. We then define an azimuthal
angle φ ∈ [0,τ ] to be the angle between ê2 and the laboratory’s
y axis, also shown in Fig. 1. For any particular body in steady-
state motion, this φ increases at the constant rate ω. Given a
normalized constant force oriented along the body’s ê3 axis,
then ω is given by

�ω = T �F = λ �F = λê3. (4)

The axis of rotation ê3 and the azimuthal angle φ then
completely specify the orientation of the body.

We now consider a dilute dispersion of many such bodies
with identical T matrices subjected to the same force �F , but
with negligible interactions. Once a steady state is established,
all bodies in the ensemble have a common ê3 direction. They
differ only in their φ angles. These depend on the history of
the sample.

B. Impulsive changes in forcing and phase map

In this section we first describe a very simple forcing
procedure that can be characterized by a phase map. Our
system, when perturbed, returns to its aligned state after
some transient period denoted T . In the laboratory frame,
we consider a simple tilt in the applied force by an angle θ

after waiting for a time t1 > T . This tilted force then acts for a
further time t2, also longer than the transient time T . The force
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Fθ (t) thus obeys

�Fθ (t) =
{
ẑ for t ∈ (0,t1)
x̂ sin θ + ẑ cos θ for t ∈ (t1,t1 + t2) . (5)

When we switch the direction of the applied force at a time t1,
each body rotates to align with the new axis. After the transient
motion, all of the bodies will return to rotating around the tilted
�F . Since the angular velocity is constant and the same for each

body in the ensemble, no further alignment of the bodies can be
achieved after the transient period. Thus, at the final time t2 the
bodies again differ from one another by a constant amount in
their azimuthal angles, which we denote as φ̃. The complicated
transient may cause two similarly oriented bodies to become
more similar, or it may make them more different.

To decide whether the ensemble as a whole is becoming
more aligned, we first make an explicit definition of the
azimuthal angles φ and φ̃. We note that both the new and
the old �F in Eq. (5) lie in the x-z plane; thus, the y axis is
common to both the new and old plane of rotation. The instant
before the switch in forcing angle and the resulting transient
motion, we use each body’s axis, ê2 and our laboratory frame
y axis to define φ for each body in the ensemble. After �Fθ

has switched into the x-z plane and all of the bodies in the
ensemble have realigned, each body’s ê2 and the laboratory’s
y axis again differ by some azimuthal angle φ̃(t). This allows us
to define a smooth function ψθ (φ) : S1 → S1 that maps initial
orientations to final orientations. After the transient φ̃ increases
linearly in time. This means that for times t2 > T φ̃(t2) can
be expressed as a time-dependent term ωt plus a fixed offset
ψθ (φ1), where φ1 is the phase angle at time t1, immediately
before the tilt:

φ̃(t2) = ωt2 + ψθ (φ1). (6)

This equation defines the phase map ψθ (φ). It is evidently the
final phase difference extrapolated back to the moment of tilt.

For θ = 0, there is no change in the applied force and
the object maintains its current steady state with no transient
motion. With no transient motion, ψ0 is the identity function.
Since our differential equations depend smoothly on initial
conditions, the deformation of ψθ from ψ0 must also be smooth
and ψθ must have a conserved winding number around S1 [15].
This ψθ (φ) is a phase map for our system [13].

This ψθ formulation captures everything important about
the dynamics of this system with regard to axially aligning
bodies under the tilted force program defined in Eq. (5). Using
it, we may infer the distribution of phase angles after a single
tilt, or after many tilts.

We can characterize an axially aligned ensemble by a
probability distribution p(φ), which gives the probability
of a randomly selected body having the orientation φ as
measured in our laboratory frame. Then our goal, complete
synchronization, corresponds to the probability distribution
being a δ function.

III. ENTROPY CHANGE UNDER A PHASE MAP

The preceding section showed that the effect of an impulsive
change in forcing on a colloidal object can be described by
the phase map. Thus, in this section we consider an arbitrary
dynamical system, which, like the colloidal object, has a stable

steady state characterized by a phase φ that increases at a
constant rate. The system may be altered by some sort of
impulsive perturbation that changes this phase to ψ(φ) after
the system has returned to a steady state. Earlier work [27,
p. 95] considered the effect of periodic impulses. Here we
consider the effect of randomly timed impulses [9].

We first consider the effect of allowing our ensemble to
rotate for a given time. This produces a uniform shift in the
initial orientation or phase angle φ for the entire ensemble and,
since there is no transient motion, does not change the overall
distribution of phases in the ensemble. The phase φ̃ after the
shift is then given by φ + α, where φ is the initial phase and α

is the size of the shift. The new probability distribution, p̃(φ̃),
is merely shifted to the new phase angles, p(φ) = p̃(φ̃).

Now we consider how the probability distribution trans-
forms under the additional action of ψθ , which for simplicity
we now denote as ψ . The phase after this operation is given
by

φ̃ := ψ(φ + α). (7)

To diagnose the effectiveness of a ψ to achieve synchro-
nization, we do not attempt to show that the entire circle
eventually maps to a single angle. Instead we follow the
approach of Ref. [15] and quantify the decrease in randomness
of an initially uniform probability distribution p. We use
information theoretic entropy [14], H , to quantify the disorder
of the ensemble. Given some probability distribution function
p, the functional H [p] is defined as

H [p] := −
∫

p log (p), (8)

where log is the natural logarithm. We note that as p ap-
proaches a δ function distribution, H [p] approaches negative
infinity. Additionally, H [p] is maximal when p is constant.

A. Monotonic ψ

For a monotonic ψ function, our probability distribution
transforms simply:

p̃(φ̃) = p(φ)

ψ ′(φ + α)
, (9)

where φ = ψ−1(φ̃) − α. For this case, Moths and Witten [15]
showed that on average the entropy must decrease indefinitely
with each impulse.

B. Nonmonotonic ψ

Moths and Witten showed that it is always possible to
choose a θ > 0 small enough that ψθ will be monotonic [15].
However, from numerical simulations it was observed that
there were nonmonotonic ψ that also led to orientational
ordering. Thus, we seek a more general condition, valid
for nonmonotonic ψ , that would guarantee an indefinitely
decreasing entropy. Here Eq. (9) no longer applies and a
generalized treatment is needed.

We consider some smooth ψ function with a finite number
K − 1 of extrema such as the one illustrated in Fig. 2
[28]. (Here we have shifted φ and φ̃ so that ψ(0) = 0 and
ψ(τ ) = τ ). Since ψ increases by τ over the range of φ,
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FIG. 2. (a) A sketch of a nonmonotonic ψ to assist with notation
with the extrema shown as oversized dark-colored (red) dots.
(b) Sketch of the three inverse functions related to our example ψ .
We highlight the domain of each inverse as a light-colored (orange)
thick line along the horizontal axis and the associated target as a
dark-colored (green) thick line along the vertical axis.

these extrema divide the domain into K intervals where ψ(φ)
is monotonic. Labeling the extremal φ’s as φ1,...,φK−1, the
K monotonic intervals are then [0,φ1],[φ1,φ2],...,[φK−1,τ ].
Since ψ is strictly monotonic on each interval [φk−1,φk], ψ

has K well-defined inverses ψ−1
k : φ̃ → φ. The domain for

each ψ−1
k is [φ̃k−1,φ̃k], where φ̃k = ψ(φk + α). An example

of such a ψ function with labeled φ and φ̃ is shown in Fig. 2(a).
Each monotonic interval in φ contributes separately to the

new probability distribution, p̃, according to the absolute value
of Eq. (9). We denote p̃k to be the contribution to the new
probability distribution from the kth interval. Formally written,

p̃k(φ̃) = p(φ(k))

|ψ ′(φ(k) + α)| , (10)

where φ(k) = ψ−1
k (φ̃) − α. The p̃k vanishes when there is no

kth preimage. Summing the contributions from all intervals,
we have p̃ = ∑

p̃k .
With a well-defined probability distribution characterizing

how the orientations of the ensemble change, we can now ask
whether or not the ensemble becomes more ordered or less
ordered.

We now consider the entropy after a transient with shift α,
H̃α = H [p̃]. Our goal is to rewrite H̃α into the form H̃α =
H + �Hα , where H is the entropy of the ensemble before the
application of ψ(φ + α). To do so we rewrite H̃α in terms of
the individual contributions p̃k defined above,

H̃α = −
∮

S1
p̃(φ̃) log

(
p̃(φ̃)

)
dφ̃

= −
∮

S1

(
K∑

k=1

p̃k(φ̃)

)
log

⎛
⎝ K∑

j=1

p̃j (φ̃)

⎞
⎠dφ̃, (11)

where each p̃k(φ̃) is given by Eq. (10) for φ̃ ∈ [φ̃k−1,φ̃k] and
p̃k(φ̃) = 0 elsewhere.

We note that the function f (t) = t log(t) is a continuous
and convex function satisfying the following inequality:

−
(

K∑
k=1

ak

)
log

(
K∑

k=1

ak

)
� −

K∑
k=1

ak log(ak), (12)

where each ak is positive [29, p. 101].
We use this inequality to obtain an upper bound on Eq. (11),

which we denote as Hx for simplicity:

H̃α � −
∮

S1

K∑
k=1

[p̃k(φ̃) log(p̃k(φ̃))]dφ̃ := Hx. (13)

Since the limits of the sum are independent of φ̃, we bring
it outside of the integral. Additionally each p̃k(φ̃) is nonzero
only over a certain interval so the bounds of integration for
each integrand can be reduced:

Hx = −
K∑

k=1

∮
S1

p̃k(φ̃) log
(
p̃k(φ̃)

)
dφ̃

= −
K∑

k=1

sgn(φ̃k−1 − φ̃k)
∫ φ̃k

φ̃k−1

p̃k(φ̃) log
(
p̃k(φ̃)

)
dφ̃.

(14)

The sgn factor assures that the limits of integration are in
the conventional increasing order. As we can see in Fig. 2(b),

this is not always the case, since for the integral
∫ φ̃2

φ̃1
, φ̃1 is

larger than φ̃2.
Having separated the integral into separate parts summed

together we are in a position to perform a change of
variables with φ̃ = ψ(φ + α) and then sgn(φ̃k−1 − φ̃k)dφ̃ =
|ψ ′(φ + α)|dφ and Hx simplifies to

Hx = −
K∑

k=1

∫ ψ−1
k (φ̃k)−α

ψ−1
k (φ̃k−1)−α

p(φ)

|ψ ′(φ + α)|

log

(
p(φ)

|ψ ′(φ + α)|
)∣∣ψ ′(φ + α)

∣∣ dφ

= −
K∑

k=1

∫ φk

φk−1

p(φ) log

(
p(φ)

|ψ ′(φ + α)|
)

dφ. (15)

By our construction of the intervals, [φk−1,φk], we can
combine our sum over integrals into one integral over the unit
circle and then substitute in H [p] using its definition Eq. (8):

Hx = −
∮

S1
p(φ) log

(
p(φ)

|ψ ′(φ + α)|
)

dφ

= H [p] +
∮

S1
p(φ) log

∣∣ψ ′(φ + α)
∣∣ dφ.

Using H̃α � Hx to compare H̃α = H [p] + �Hα with the
above we find that �Hα �

∮
S1 p(φ) log |ψ ′(φ + α)|dφ. Thus,

to ensure change in entropy �Hα < 0, it is sufficient to require
that

∮
S1 p(φ) log |ψ ′(φ + α)|dφ < 0.

We cannot expect that �Hα will be less than zero for all
choices of p and α. Indeed, if p is concentrated in a region
where |ψ ′| > 1 our �Hα would be positive and the entropy
would have increased.
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Though the entropy may increase for particular p and α,
it need not increase when averaged over α. We let the shift
α ∈ [0,τ ] be chosen randomly and we obtain an upper bound
for the expected value of �Hα , denoted as 〈�Hα〉α:

〈�Hα〉α := 1

τ

∮
S1

�Hαdα

� 1

τ

∮
S1

p(φ)dφ

∮
S1

log
∣∣ψ ′(u)

∣∣du

� 1

τ

∮
S1

log
∣∣ψ ′(u)

∣∣du. (16)

The right side of Eq. (16) is simply the average of log |ψ ′(u)|
over the unit circle, denoted as 〈log |ψ ′|〉. We define this
quantity derived from the phase map as the spreading param-
eter. Evidently this upper bound on 〈�Hα〉α is independent
of the probability distribution p(φ) although �Hα itself
depends heavily on p(φ). The importance of 〈log |ψ ′|〉 is well
appreciated in the literature. Previous work [7,30] showed that
it is equal to the average Lyapunov exponent 〈�〉 governing
the exponential spreading of two nearby phase angles under
a phase mapping. Equation 16 goes farther by relating this
property of nearby points to the entropy, a general measure
of disorder. We give further discussion of the entropy and its
relationship to other measures of synchronization in Sec. V.

Thus far, we have only been considering the change in
entropy for a single iteration, but now we wish to consider
the change in entropy after many iterations. In general, the
average change in entropy after N iterations would be given
by �HN = 1

N

∑N
n=1 �Hαn

[pn], where pn is the probability
distribution function before the nth iteration and αn is the
randomly chosen shift angle at the nth step.

To obtain the expected value for the average change in
H after N iterations, we take some random sequence of
(α1,α2,...αN ) in the space of [0,τ ]N . We know that while each
pn is dependent on all the previous αm, it is independent of αn:

〈
�HN

〉 = 1

N

N∑
n=1

〈�Hαn
[pn]〉αn

= 1

N

N∑
n=1

〈�Hα〉α

� 〈log |ψ ′(u)|〉u. (17)

From this we obtain our general constraint for our forcing
program to achieve complete alignment:

〈log |ψ ′|〉 < 0.

If the spreading parameter is negative, then 〈�H 〉 is
guaranteed to be negative as well. When 〈�H 〉 is negative, the
entropy of the system H will, on average, decrease indefinitely
after many iterations. As the number of iterations approaches
infinity, H will approach negative infinity. As this occurs, our
probability distribution will, on average, be concentrated into
a set of zero measure on the unit circle by the central limit
theorem [15].

When the spreading parameter is negative, Eq. (16) enforces
a minimal average decrease of the entropy after a pulse for
any given state of the ensemble; thus, Eqs. (16) and (17)

give a gauge of how well a given forcing protocol reduces
randomness.

One may now ask whether 〈�H 〉 can also remain negative
when the spreading parameter is positive. Below we argue that
it cannot, so that alignment occurs if and only if the spreading
parameter is negative.

C. Entropy decrease when entropy is small

When the spreading parameter is negative, the previous
section implies that the entropy becomes indefinitely small
after many iterations of the force shift. In this regime we argue
that the inequality of Eq. (16) becomes an equality. That is, a
new constraint pushes 〈�H 〉 toward its upper bound. Indeed,
〈�H 〉 should approach the spreading parameter as H [p] →
−∞ even when the spreading parameter is not negative. The
simplification occurs because a small H [p] means that the
probability measure p(φ) is concentrated into an arbitrarily
small fraction of the circle. Our arguments below consider a
subset of such p(φ)’s, namely those which vanish except for a
finite number of small segments of the circle whose maximum
width is ε. Evidently H → −∞ as ε → 0 for such p(φ)’s.

The bound of Eq. (16) arises from the convexity property
given in Eq. (12), applied to the final entropy H̃α and the
quantity Hx . We now revisit this convexity property for the case
where the initial distribution p(φ) is strongly concentrated.
Now we seek a constraint limiting the separation between Hα

and Hx . We may readily choose the K weights ak in Eq. (12),
so as to maximize or minimize the difference between the left
and right sides of Eq. (12). We may reduce the difference to
zero by choosing all but one of the ak to vanish. To maximize
the difference, we must fix the sum of the ak , denoted A.
Then, the difference is maximal when all the ak are equal so
that ak = A/K [31]. Using this maximum condition we infer

K∑
k=1

ak log

(
K∑

k=1

ak

)
−

K∑
k=1

ak log ak

� A log A − A log(A/K) = A log(K).

(18)

We now apply this relation to Hx − H̃α from Eqs. (11) and
(13) above. Using these equations,

Hx − H̃α =
∮

S1
dφ̃

⎧⎨
⎩

K∑
k=1

p̃k(φ̃) log

⎡
⎣ K∑

j=1

p̃j (φ̃)

⎤
⎦

−
K∑

k=1

p̃k(φ̃) log[p̃k(φ̃)]

}
. (19)

The integrand in Eq. (19) has the same form as the left
side of Eq. (18), identifying ak as p̃k(φ̃). We may restrict
φ̃ to those values with nonvanishing probability p(φ̃), since
the integrand vanishes where p̃(φ̃) vanishes. For values of
φ̃ where p̃(φ̃) does not vanish, at least one of the p̃k(φ̃) must
contribute. We call the number of nonzero p̃k the “multiplicity”
for this φ̃ and denote it as C(φ̃). Evidently C can be no
larger than the number of monotonic regions K . However,
for strongly confined initial distributions p(φ) that vanish over
large regions, the multiplicity can easily be smaller than K .
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FIG. 3. Illustration of multiplicity C when probability is strongly
concentrated. Dark-colored (blue) bars denote regions of nonzero
probability on the φ axis. Here each bar maps into a single bar on
the vertical φ̃ axis and the multiplicity C(φ̃) defined in the text is 1.
The same one-to-one mapping is preserved for generic shift angles α.
However, for certain α’s, shown by light-colored (orange) bars, the
mapped regions overlap. The two bars in φ map into a single bar in
φ̃. For this α and φ̃ the multiplicity C(φ) > 1. As the width of the
segments decreases, the fraction of φ̃ for which this overlap occurs
becomes vanishingly small.

Figure 3 shows an example where K = 3 but C = 1 or 2. The
sums in Eq. (19) have C(φ̃) nonzero terms in them. Thus, we
may replace K in Eq. (18) by C(φ̃). The A factor is the sum of
the p̃k contributions; this is simply p̃(φ̃). Thus the right-hand
side of Eq. (18) amounts to p̃(φ̃) log C(φ̃). Replacing the
integrand in Eq. (19) by p̃(φ̃) log C(φ) yields

Hx − H̃α �
∮

S1
dφ̃p̃(φ̃) log C(φ̃). (20)

As noted in Eq. (15) H̃α − Hx is simply the difference
between the entropy change �Hα and the unaveraged
spreading parameter

∮
S1 p(φ) log |ψ ′(φ + α)| dφ. Thus, the

inequality of Eq. (20) amounts to∮
S1

p(φ) log
∣∣ψ ′(φ + α)

∣∣ dφ − �Hα

�
∮

S1
dφ̃p̃(φ̃) log C(φ̃). (21)

Upon averaging over α, the left side becomes
〈log |ψ ′|〉 − 〈�Hα〉α , which was shown to be greater
than zero in Eq. (16). Combining with Eq. (21) we infer

0 �
〈
log
∣∣ψ ′∣∣〉− 〈�Hα〉α �

〈∮
S1

dφ̃p̃(φ̃) log C(φ̃)

〉
α

. (22)

This inequality is evidently strongest when the multiplicity
C is smallest. We now argue that when p(φ) is confined to
arbitrarily narrow segments, C approaches 1 and the right
side of Eq. (22) approaches 0. Figure 3 shows why narrowing
the segments leads to smaller C(φ̃)’s. At a given value of φ̃

on the vertical axis, there is typically no probability, and thus
no contribution to C. For a small fraction of this axis shown
by colored bars, C is defined. For the typical case, shown
in dark color (blue), the probability at every φ̃ comes from
exactly one bar of nonzero probability in p(φ). This C is only

greater than 1 in situations like that shown by the light-colored
(orange) bars. Here two different bars of nonzero p(φ) have
mapped into the same φ̃ over a small subsegment, via different
monotonic intervals of ψ(φ). In general, C can only be greater
than 1 when two or more bars overlap in this way.

We now reduce the widths of the bars by some common
factor. This has no effect on φ̃’s for which where there was
no overlap: C remains 1. However, in cases of overlap like
the light bars, the subsegment of overlap evidently decreases.
There is no φ̃ for which C increases, and there are overlap
regions for which C decreases. Thus, p̃(φ̃) log C must decrease
for any normalized distribution p̃. There is no bound to this
decrease except when C(φ̃) approaches 1 for all φ̃. Thus the
right side of Eq. (22) approaches 0 and 〈�Hα〉α must approach
〈log |ψ ′|〉. This reasoning strongly indicates that for generic
phase maps ψ(φ) and generic concentrated p(φ), the change
of entropy must approach 〈log |ψ ′|〉 as observed.

IV. NUMERICAL INVESTIGATION

In this section we investigate the effect of our tilting
protocol via specific numerical calculations. Our numerical
work is of two kinds. One set of tests is based on integrating
Eq. (2) through a sequence of tilting forces for a given T. A
second set of tests infers the final state from the ψθ functions
of this T. We wish to check that (a) the orientational ordering
behavior is as expected, (b) whether or not the spreading
parameter in Eq. (17) is a good guide to how the entropy
will evolve for a given case.

Our study is conducted via a sequence of four procedures,
denoted A–D, which we now describe.

A. Creating an ensemble of initial objects

(A1) We first generate a 3 × 3 matrix with entries randomly
chosen from the unit interval until a matrix with a complex
eigenvalue is found. We designate this to be our original
axially-aligning body, represented by T0.

(A2) We apply a constant force along the z axis. The
differential equation governingT0’s response to a general force
in the x-z plane is obtained from Eq. (3). We record it here for
later reference:

Ṫ(t) =
⎡
⎣
⎛
⎝T ·

⎛
⎝sin θ

0
cos θ

⎞
⎠
⎞
⎠

×

,T

⎤
⎦, (23)

where θ is the angle the force makes with the z axis. Thus,
to find the response of T to a force along the z axis,
we solve Eq. (23) with θ = 0. We solve this differential
equation for sufficiently long time tmax, until the solution’s
stable real eigenvector, given by ê3, is properly aligned with
the laboratory’s z axis. For simplicity, we designate this
properly axially aligned body and the matrix that describes
its orientation as T.

(A3) We then define the body axis ê2 such that ê2 of T is
parallel the y axis of our laboratory frame. This gives us a
common axis to define our azimuthal angles, φ. Thus, for any
T, the angle −φ is defined as the positive rotation about ê3

needed to rotate ê2 into the y axis.
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(A4.1) To create an initial ensemble of identical bodies,
500 angles were drawn randomly from [0,τ ], which were used
to make 500 different rotations of T about the z axis. In the
language developed in Sec. III, we can think of these 500
angles as our initial azimuthal angles, φj , for the bodies in
our ensemble j = 1,2,...500. Notationally, these initial 500
angles, {φj }0, designate 500 different angles that correspond
to our initial ensemble, {Tj }0, where a Tj is a φj rotation of
T about the z-axis. We use the subscript zero to indicate that
this is the initial ensemble of our iterative scheme.

(A4.2) Another useful ensemble is one that has nearly a
delta function probability distribution. In this case, we proceed
as in Eq. (A4.1), but we obtain 500 angles drawn randomly
from [0, τ

100000 ].

B. Determining function ψθ (φ)

The steps for determining the phase map ψθ (φ) are
illustrated in Fig. 4. (B1) We first use Eq. (23) with the
nonzero tilt angle θ to evolve the {Tj } ensemble from their
initial values generated in (A4.1), {Tj }0 for the time tmax.
(B2) The matrix of each body is explicitly rotated about the
laboratory’s y axis by −θ , so that each body’s ê3 axis is again
parallel to the laboratory’s z axis. (B3) Using the body axis
ê2 defined with T, we obtain the 500 corresponding values
of ψ resulting from the transient motion of (B1). Unlike the
construction of ψ function found in Ref. [15], this construction
says nothing about what the value of ψ(0) should be [32].
(B4) The one-to-one matching of initial φ to corresponding ψ

defines our function ψ(φ) by interpolation with a third-degree
polynomial curve between points with periodic boundary
conditions.

C. Evolving the ensemble over many tilts

(C1) The forcing program acts on some ensemble, {Tj }0

like those constructed in (A4.1) or (A4.2) and the program has
N steps, where N is the number of times in our sequence {tn}.
Each tn is chosen randomly from [0, τ

ω
], where ω is the angular

velocity of the body during steady state motion obtained from
Eq. (4).

(C2) The nth step of the forcing program involves evolving
the entire ensemble, {Tj }n−1, using Eq. (23) with the chosen
tilt angle θn for a predetermined, sufficiently long period of
time tmax. We evolve the resulting ensemble further using the
same equation for a time tn taken from {tn}. If n is odd, θn = θ ,
the tilt angle determined in (B1), and when n is even, θn = 0.
By the rotation at the end of the nth step we have obtained the
new ensemble {Tj }n.

(C3) At the end of each step, we take measurements of the
ensemble {Tj }n. For each body that is in the ensemble, Tj ,
we find the angle φj about the ê3 body axis as we did in (B2).
This gives us a distribution angles at the nth iteration, {φj }n.
From the distribution we estimate the entropy, H of the system
Eq. (8) using a nearest-neighbor estimate [33]:

H [{φj }] = 1

M

M∑
j=1

log λj + log [2M − 2] + γ, (24)

φ1
φ2

φ3

ψ(φ3)

ψ(φ2)

ψ(φ1)

(a)

(b)

(c)

(d)

FIG. 4. A depiction of the B protocol that is used to compute
the ψθ (φ) function. In the two rows labeled (a) we show three
representative bodies with from the ensemble j = 1, 2, and 3, as
seen from the z axis (top row) and from the y axis (second row). Each
body’s ê3, pictured as the darkest colored (blue) thin arrow, is already
aligned with the laboratory z axis as enforced by a common force
�F . The initial angles φ are measured from the laboratory’s y axis

to the body’s ê2, pictured as the lightest colored (green) thin arrow.
Row (b) shows the bodies immediately after �F has been tilted. Row
(c) shows the bodies at some time after they have realigned with this
�F . Rows (d) show these bodies rotated nondynamically so that the

aligned direction is again along z, in the bottom row, seen from the z

axis, the angles ψ are indicated.

where λj is the angular distance between φj and its nearest
neighbor along the circle, M = 500 for our work and γ is the
Euler-Mascheroni constant.

D. Alternative evolution via ψ function

(D1) We can also carry out our forcing program without
simulating the dynamics at every step. Again, using Eq. (23),
the tilt angle θ and sequence of times {tn} must first be
specified. (D2) We then compute two functions following
steps outlined in Sec. IV B: ψθ (φ) and ψ−θ (φ). We note that
ψθ (φ) = ψ−θ (φ + τ

2 ) − τ
2 so all of our analytical arguments

remain valid since the derivatives are equal up to a shift in φ.
(D3) The program acts on the initial 500 angles, {φj }0 that
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were used to define the ensembles constructed in (A3.1) or
(A3.2). As before, the program has N steps, where N is the
length of our sequence {tn}.

(D4) The nth step of the forcing program involves directly
applying the function ψθi

(φ) + αi modulo τ to the each
azimuthal angle in {φj }n−1. If n is odd, θn = θ , and when
n is even, θn = −θ . Meanwhile, αn = ωtn, where tn is the nth
term in the sequence of randomly chosen times, {tn}. At the
end of the nth step we have obtained the new ensemble of
azimuthal angles {φj }n.

(D5) At the end of each step, we estimate the entropy, Eq. (8)
of the angles {φj }n that define the ensemble. Again, we use the
nearest neighbor estimate Eq. (24), this time slightly modified
to account for the limits of double-floating point precision so
as to avoid indefinite values.

E. Results

We performed the simulations described above for several
twist matrices T. Here we present the results for a single T that
was randomly generated [34]. Figure 5 shows the results for
five simulations of the forcing program on this T. For all five
simulations we used the same sequence sequence of random
times, {tn}, so that the angle θ of the forcing program was the
primary differentiator. Additionally, in Fig. 6, we demonstrate
how the alignment process differs for different sequences of
random times {tn} as measured by the entropy evolution during
each of 30 sequences.

In the left frame of Fig. 5(a), we have a ψ function
that is monotonic, and we would expect the corresponding
alternating forcing program will achieve alignment. The center
plot is a density plot showing how the initially uniform
probability distribution evolves with successive iterations.
The right frame shows the evolution of the entropy H with
successive iterations. The solid line has a slope equal to the
spreading parameter, 〈log |ψ ′|〉, indicating the expected rate of
decrease of the entropy. The entropy indeed fluctuates around
this line with a similar average slope. Figure 6(a) shows that
these fluctuations decrease greatly when one averages the
entropy over 30 different simulations.

Similarly, in the left frames of Figs. 5(b) and 5(c) the
tilt angles have been increased so that the ψ functions are
increasingly nonmonotonic. In the center frames of Figs. 5(b)
and 5(c), we again show how the probability distribution
evolves during 100 iterations. Row b shows a marked increase
in the rate of alignment. In the right-hand frames the spreading
parameter slopes are generally shallower than the observed
rates of decrease, illustrating a case when the spreading
parameter bound Eq. (17) is not saturated. Since ψ is
nonmonotonic, we may only obtain an upper bound the average
change in entropy, which is demonstrated for this particular
simulation in the right frames of Figs. 5(b) and 5(c). This
upper bound relationship on the decrease in entropy is clearer
when viewed next to the average of 30 different simulations
in Fig. 6(c). While the upper bound appears to be violated
in Fig. 6(b), this discrepancy can be attributed to the limits
of numerical precision of our simulation when the entropy
becomes sufficiently small.

When considering the graphs depicting the change in
entropy over many iterations, one will notice that there are

periods in which the entropy increases and the alignment is
somewhat degraded. One should expect some variability, since
there are intervals with |ψ ′| > 1 that lead to unalignment as
well as intervals that lead to alignment. Since we are choosing
a random sequence of times, we would expect that there may
be “unlucky” parts of that sequence that lead to this variability.

In the left frames of Figs. 5(d) and 5(e) we again have ψ that
are not monotonic, but now they have a spreading parameter
that is positive, indicating an increase in entropy. Since we wish
to test for such an increase, we generate an initial ensemble
that starts out in a nearly synchronized state using (A3.2) for
our simulations depicted in the center frames of Figs. 5(d)
and 5(e). The spreading parameter is still expected to be an
upper bound on the change of entropy and we see in the right
frames of Figs. 5(d) and 5(e) that is mostly the case. In view of
Eq. (22) we also expect that in the beginning of the simulation,
while the ensemble is nearly aligned, the spreading parameter
should be equal to the change in entropy, which is consistent
with the Figs. 6(d) and 6(e).

V. DISCUSSION

The work presented above broadens understanding of
noise-induced synchronization on two fronts. On the one
hand, it provides a simple and general connection between
the phase map induced by random impulses and the degree of
synchronization it produces. On the other hand, it illustrates
how noise-induced synchronization behaves in the new context
of colloidal alignment. Here we discuss the latter subject
first, noting salient features of the numerical experiments and
suggesting implications for colloidal phenomena. We identify
the known phenomenon of clustering [11] in relation to our
colloidal study and briefly assess the practical applicability of
this method. Next we discuss the present results using entropy
in light of current methods of quantifying synchronization.
We suggest ways that our entropy-based predictions might be
generalized to broader types of noise.

A. Colloidal alignment

As noted above, our numerical results in Fig. 6 on the
colloidal system confirm our theoretical claims. First, the
average rates of decrease of the of the entropy were found to be
consistent with our spreading parameter, identified as a Lya-
punov exponent in prior work. Second, the decrease became
equal to the bound in all cases where the initial entropy was
small, as our arguments implied. Third, the averages predicted
by our derivations are well-behaved: one may determine these
averages readily using a moderate number of trials.

In our simulations the predicted average gave useful
information about results of a single forcing sequence. That
is, entropies in individual aligning sequences far from the
predicted average are rare. For example, in the system of
Fig. 6(b) one may predict the number of iterations needed
to attain a target entropy of −10. The average entropy has
reached this target in about 17 iterations. Of the 30 runs
contributing to the average, all reached the target in less than
60 iterations, near twice the predicted number. This suggests
that the probability of finding entropies greater than −10 after
60 iterations is less than three percent. Similar behavior holds
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FIG. 5. The first column shows the ψ(φ) functions obtained as described in Sec. IV B, for both positive and negative θ . Using the method
of Sec. IV C, the evolution of p(φ) is shown in the second column using a density plot with the iteration step of the program increasing upward
along the vertical axis. The inset in row (a) indicates the density scale. As anticipated, the final p(φ) for (a), (b), and (c) is concentrated near
a single angle that jumps discontinuously with each time step. For rows (d) and (e), an initially concentrated p(φ) rapidly spreads to cover a
broad range of angles. The third column shows the evolution of the entropy using explicit dynamics of Sec. IV C in light color (yellow) and
the phase map of Sec. IV D in dark color (blue). The two methods agree except for the smallest entropies. Here fluctuations due to numerical
roundoff error give larger values for Sec. IV C method. Straight lines have slope equal to the spreading parameter 〈log |ψ ′|〉. While the sign of
the prediction agrees with the behavior in all cases, the rates of decrease agree only qualitatively.

throughout the regime where the observed average follows
the predicted average (i.e., where numerical errors did not
degrade the simulation). With high probability the number of
iterations needed to attain a given entropy is within a factor

2 of the predicted number. This statistical regularity seen in
our colloidal dynamics suggests that our predicted averages
may be similarly useful for synchronization of more general
systems.
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FIG. 6. Repeated simulations of the evolution of the entropy using
the method found in Sec. IV D using the corresponding ψ functions
in Fig. 5. Separate runs of the simulations are differentiated by 30
different time sequences, {tn}. The average entropy evolution is in
dark gray. The solid line has a slope equal to the spreading parameter,
the upper bound on the average growth rate.

One aspect of the colloidal system that is ripe for study is
the effect of different kinds of external perturbation or noise.
The noise investigated above was the simplest kind treated
in the noise-induced synchronization literature: a sequence of

randomly timed identical impulses. But since synchronization
is observed to occur under much more general noise conditions
in the literature, we expect similar generalizations to be possi-
ble in our context. Indeed, our methodology can immediately
generalized to the case of impulses of statistically varying
amplitude θ . The effect of changing the amplitude, as seen in
Fig. 5, is simply to change the ψ(φ) function. As shown in the
text, any ψ(φ) that has a negative spreading parameter must
reduce the entropy on average. Thus, a random mixture of such
impulses must also reduce the entropy indefinitely by the same
reasoning that we used for identical impulses. The literature
considers two other aspects of the noise: correlated spacing
[35] and incomplete relaxation between impulses [11,36].
Here, too, it was found that these generalized noises allowed
synchronization. One is led to speculate that a broad class of
random external driving might produce synchronization in our
system as well.

This notion leads to an intriguing prospect for a colloidal
dispersion. We imagine that the objects are dispersed in a
turbulent fluid, in which each fluid element is undergoing
chaotic acceleration. Locally this acceleration is spatially
uniform so that objects within a small region see the same
random sequence of accelerations. As a result one expects
nearby objects to become orientationally aligned [37].

Achieving synchronized motion in the colloidal system
brings practical benefits. In a colloidal dispersion synchro-
nization means orientational alignment. With such alignment
an anisotropic response such as scattering can provide a
new level of information. The measurement now reflects the
properties of the objects at a particular orientation; it shows the
effect of different orientations as the objects rotate. Further,
any response that affects the motion of the objects produces
the same motion in all of the aligned objects. This offers ways
to manipulate the objects that are not possible without the prior
alignment.

Though our system offers a novel case of noise-induced
synchronization, our investigation of it has been far from
complete. As noted above, different shapes can lead to a great
range of aligning behavior. This includes bodies that do not
have a globally stable aligning direction. Our study treated only
one body as a function of the amplitude (θ ) of the perturbations
on it. Nevertheless, prior works [15] and our own qualitative
experience, lead us to believe the synchronization we observed
was typical of bodies that self-align along a unique axis.

B. Broader implications

Our experience with the colloidal system illustrates both the
benefits and the limitations of our entropic approach to quanti-
fying the synchronization process. Our approach complements
the prevalent one based on the averaged Lyapunov exponent
〈�〉. This 〈�〉 quantifies the relative motion of adjacent points
φ on the limit cycle. This 〈�〉 provides powerful information
about the synchronization process. Further, as noted above
[7,30], the average 〈�〉 can be determined from the phase map
ψ(φ): 〈�〉 = 〈log |ψ ′|〉. Naturally, this 〈�〉 accounts for the
final convergence of the probability distribution p(φ) towards
a common single phase, when all the points are adjacent.
Thus it accounts for measures of synchronization such as
the variance of φ or its Fourier coefficients in this final
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regime. Moreover, for weak forcing (with monotonic ψ(φ)) the
Lyapunov exponent quantitatively describes synchronization
[12,38] throughout the synchronization process.

Though these regimes give strong constraints on synchro-
nization, they do not cover a regime of great interest, where
the forcing is not weak and where the synchronization is
far from complete. Here the probability p(φ) evolves from
a completely disordered state towards a more ordered one.
To quantify this evolution requires an appropriate measure
of disorder. As shown above, the entropy provides a useful
measure. Using entropy, Eq. (17) gives a rigorous lower limit
on the order added on average by a noise pulse in terms of 〈�〉
or equivalently 〈log |ψ ′|〉 for any initial state of disorder. Thus,
〈�〉 indicates the growth of order in regimes not previously
treated in the literature. This adds justification for the use of
〈�〉 as a figure of merit for phase synchronization [39].

The inequality of Eq. (17) suggests that the entropy may
decrease faster than the bound dictated by 〈log |ψ ′|〉 or 〈�〉.
Our observations in Fig. 6 confirm this extra ordering effect.
Indeed, much of the synchronization or desynchronization
process is not captured by the behavior of nearby pairs of
points. Specifically, two points on the cycle may come close
together after a pulse even when they were far apart before
the pulse. These events necessarily occur whenever ψ(φ) is
not monotonic, and they significantly impact the probability
distribution p(φ). These events enter our formalism via the
multiplicity factor C(φ̃) of Sec. III C. (Such discontinuities
also happen in reverse: two initially adjacent points may map
into distant points. Such events are captured in computing 〈�〉,
as noted, e.g., in Ref. [30].) Since 〈�〉 gives an incomplete
characterization of development of order, one needs an
independent way to quantify the degree order of a given p(φ).
The entropy provides such a way.

The entropy differs from the conventional measures of
synchronization used in the noise-induced synchronization
literature. Thus some justification for departing from conven-
tion is in order. The conventionally used Fourier moments
Rk [12,38,40] readily quantify the approach to a single phase
angle, but give an uncertain measure of ordering in general.
The same is true for the φ-φ correlation function [41],
equivalent to |Rk|2. If several tight clusters are shifted in their
relative positions on the phase circle, the Rk’s may change
substantially but the entropy does not: the entropy of a set of
probabilities does not depend on how these are arranged. Still,
our main reason for using the entropy is that it was necessary
in order to arrive at our main result, Eq. (16), which mandates
the growth of order in a simple and general way. We know of
no way to express this behavior using Rk or other measures of
ordering.

Our simulations showed interesting behavior even when
the spreading parameter was positive. Here when the initial

state had small entropy, the average rate of increase agreed
with the spreading parameter. However, this increase crosses
over to a state of constant entropy indicating partial order.
This constant appears to increase as the spreading parameter
increases. Similar behavior has been noted in the noise-induced
synchronization literature [11]. There the concentration of
the phase angles into a few narrow intervals is known as
“clustering.” It appears that the entropy language may be a
useful way to quantify this clustering.

A drawback of the entropy measure is that it does not
literally measure synchronization. It does not distinguish
between concentration of probability at a single point versus
concentration at multiple points. Despite this limitation, the
entropy does give a valuable measure of synchronization, as
discussed above. Further, in our colloidal simulations, in all
the cases where the entropy decreased to a numerically limited
level, the final state had converged to a single narrow region
of phases.

VI. CONCLUSION

A significant class of colloidal dispersions can in principle
be aligned by impulse noise. The potential benefits of this
alignment are great, as noted above. Yet the experimental
feasibility of gaining these benefits has yet to be explored.
This work provides a new path to understand, optimize and
generalize this type of alignment. To develop these methods
seems promising for further study.

Additionally we have shown how entropy may be used to
study the rate of synchronization in more general systems.
Since the behavior of entropy can be related to simple
quantities related to the intrinsic, deterministic dynamics,
it can aid the current rapid progress [6,11,30,38–40,42,43]
in understanding how noise can create order in dynamical
systems.
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