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Scaling of thermal hysteretic behavior in a parametrically modulated cold atomic system
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We observe the hysteresis of a spontaneous symmetry breaking (SSB) transition in a parametrically modulated
magneto-optical trap by sweeping the total number of atoms and study thermal hysteretic behavior in the system
by measuring the scaling exponent of hysteresis. It is shown that the relaxation time of the order parameter in the
SSB transition becomes larger near the critical number. The scaling exponent of the hysteresis area with number
sweeping rate is found to be 0.64 ± 0.04, which is consistent with the value in the mean-field model.
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I. INTRODUCTION

It is important to understand nonequilibrium phenomena in
a far-from-equilibrium system because most natural phenom-
ena take place in nonequilibrium conditions. To understand
nonequilibrium phenomena, various nonlinear oscillators,
such as Duffing and parametric oscillators, have been studied
in electric circuits, nano-mechanical beam oscillators, and
trapped-ion systems [1–3]. In addition, modulated magneto-
optical trap (MOT) systems are also a good platform for
studying nonlinear oscillators [4,5]. In these systems, Duffing
and parametric oscillators were implemented by modulating
the intensity of lasers [6,7]. In this study, we consider a
parametrically modulated MOT system, in which it is easier
to control the parameter of the system than in other systems.
Furthermore, it takes on a few seconds in our system to perform
an experiment and observe the same phenomena that would
require several minutes in other systems.

Hysteresis, a nonequilibrium phenomenon with varying the
temperature of a system, is one of the most interesting topics
that have been studied in various fields such as molecular
switching using spin crossover [8–10], temperature-driven
metal-insulator transition in solid-state devices [11,12], and
antifreeze proteins in bionic systems [13,14]. The phenomenon
of thermal hysteresis was reported in the mean-field model
[15]. We note that the scanning rates of temperature are
typically several K per minute in the systems reported in
Refs. [8–11,13,16,17], and therefore, it would require several
minutes to observe hysteresis in these systems. In contrast,
the number sweeping rate of our system is about 105–106 s−1.
Therefore, it is possible to observe hysteresis within a few
seconds.

In the mean-field model the closed hysteresis loop area (A)
scales with the rate of temperature R as

A = A0 + bRn, (1)

where n is the scaling exponent of the hysteresis and A0 and b

are constants. It is known that n approaches two thirds, which
is universal for both the mean-field and field theoretical models
[15,18].

In our system, the external field such as an oscillating
magnetic field in the Ising model can be implemented by
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employing an additional modulation of the intensity of the
trapping laser. We studied the dynamic scaling behavior of
parametrically modulated MOT system under the oscillating
bias field in a preceding work, which will be reported in a
separate paper. For the experiments with sinusoidal magnetic
field, the system has different scaling exponents of the
hysteresis by an external field as the temperature of the system,
i.e., the hysteresis loop area by sinusoidal external field can
be scaled with different values below the critical temperature
and above critical temperature [19]. Thus, the hysteresis by
sweeping of the total number of atoms has different scaling
behavior from the hysteresis by the bias field.

In this study, we observed the hysteretic behavior of
a spontaneous symmetry breaking (SSB) transition in a
modulated atomic system by sweeping the total number of
atoms linearly in this study. We determined the universality
class of the hysteresis by obtaining the scaling exponent of the
hysteresis loops.

II. THEORY

A. Relaxation time

The SSB transition originates from the two collective
behaviors of the trapped atoms in our system [6,20]. One
is the noise-induced transition caused by the fluctuations
of the atomic motion in the MOT. It originates from the
reabsorption of the emitted photons and acts like a repulsive
force between the trapped atoms [5,20]. A slight imbalance
of the populations of two atomic clouds is removed by the
transition. Therefore, the noise-induced transition conserves
the symmetry of system. The transition rate of our system can
be written as [21]

W ≡ C exp (−S/D), (2)

where C is a constant, S is the activation energy corresponding
to the height of the potential barrier between the two atomic
clouds, and D is the noise intensity of the system. The
activation energy S is the important quantity to determine the
dynamics of system. In the presence of external changes, the
activation energy can be rewritten as S = S(0) + S(1) where
S(0) is the activation energy without number sweeping and S(1)

is associated with external perturbations.
The other collective behavior is the light-induced long-

range interaction called the shadow force, caused by the
shielding effect on atoms from laser light by other atoms
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[20,22,23]. It acts like an attractive force, therefore an atom
in one atomic cloud which has less number of atoms tends to
move to the other side. In the one-dimensional approximation,
the force exerted on one atom at the coordinate zi by other
atoms can be described by F i = −fsh

∑
j sgn(zi − zj ), where

fsh is a constant representing the shadow force due to the
single atom [21]. The dynamics of the system is described
by the combination of the two collective effects. When the
total number of atoms exceeds the critical number, the shadow
force is dominant and the symmetry of system, which has been
preserved by the noise-induced transition, is now broken, and
the SSB transition occurs.

To theoretically describe the symmetry breaking transition
with sweeping of the total number of atoms, the dynamic
evolution of the two clouds respectively with N1 and N2 atoms
can be found from the following master equations:

dN1(t)

dt
= −W12N1(t) + W21N2(t) + R

2
, (3)

dN2(t)

dt
= −W21N2(t) + W12N1(t) + R

2
, (4)

where

Wij ≡ W0 exp

[
− λ

Ni − Nj

N

]
(5)

are the transition rates between the two clouds with i,j =
1,2. W0(∼ exp[−S(0)/D]) is the transition rate in the absence
of number sweeping of the atomic clouds. In this paper, we
define that N1 is the atomic cloud which has the larger number
of atoms. We note that N = N1 + N2 is the total number of
atoms and λ ≡ θ + 1 = N/Nc represents the normalized total
number of atoms where Nc is the critical number of the SSB
transition and θ is the reduced total number of atoms. R is
the sweeping rate of the total number of atoms, i.e., the speed
of the changing number of atoms. In the experiment R has
a uniform speed and is related with the angular speed of a
neutral density (ND) filter which can control the intensity of
the repuming laser.

Solving Eqs. (3) and (4) for the normalized number
difference between the two clouds, x = (N1 − N2)/N , which
corresponds to the order parameter of the SSB phase transition,
we obtain:

1

2W0

dx

dt
= −x cosh[(θ + 1)x] + sinh[(θ + 1)x]. (6)

Since the total number of atoms was swept with a uniform
rate, it becomes a function of time. Thus, the reduced number
can be written as θ (t) = θ0 + R′t , where R′ = R/Nc. When
the total number of atoms is changed with time, the light-
induced interatomic interaction caused by the shadow force is
changed accordingly with the total number of atoms. Because
of this variation in the interaction, the order parameter relaxes
toward a new equilibrium state that is appropriate to the total
number of atoms at that time. This relaxation time is expected
to become large when the total number approaches the critical
number.

To obtain the relaxation time for some reduced total number
of atoms, we expand the right-hand side of Eq. (6) about the
point which is the stationary solution of the Eq. (6), x = xs

[24]. The stationary value, xs , can be obtained from Eq. (6)

by setting the left-hand side in Eq. (6) to zero. At θ < 0, i.e.,
N < Nc, we have xs=0 and Eq. (6) becomes

η
dx

dt
∼= −|θ |x. (7)

Hence, the order parameter is given by

x = x0 exp

[
− |θ |t

η

]
, (8)

where η = 1/(2W0), and x0 = x(t = 0). When θ > 0, i.e.,
N > Nc, we have xs = tanh[(θ + 1)xs] and Eq. (6) can be
expanded about xs up to first order in x − xs as

η
dx

dt
∼= −[

1 − (θ + 1)
(
1 − x2

s

)]
cosh[(θ + 1)xs]

×(x − xs). (9)

The solution of Eq. (9) is simply given by

x = (x0 − xs) exp

[
− ε

η
t

]
+ xs, (10)

where ε = [1 − (θ + 1)(1 − x2
s )] cosh [(θ + 1)xs].

Finally the relaxation time τ is obtained as

τ =
{ η

|θ | , for θ < 0,
η

ε
, for θ > 0.

(11)

It is expected to increase when the reduced total number of
atoms approaches the critical point.

B. Model of hysteresis

To identify the universality class of the hysteresis in our
system, we analyze the SSB transition. Denoting the numbers
of trapped atoms in the two atom clouds of the parametrically
modulated MOT as N1 and N2, respectively, P1(N1), the
probability that cloud 1 has N1 atoms at certain time, can
be obtained from the following master equation [21]:

Ṗ1(N1) = −[μ(N1) + ν(N1)]P1(N1)

+ ν(N1 − 1)P1(N1 − 1)

+μ(N1 + 1)P1(N1 + 1),

μ(N1) = N1W12(N1; N ),

ν(N1) = (N − N1)W12(N − N1; N ), (12)

where μ is the transition rate from cloud 2 to cloud 1 and ν

is the transition rate from cloud 2 to cloud 1. The stationary
solution of Eq. (12) is given by

P st
1 (N1) = Z−1

(
N

N1

)
exp[−2αN1(N − N1)], (13)

where Z is a normalization constant, α = 1/Nc ∝ fsh/T , and
T is temperature of the system.

The reduced difference of the cloud populations, i.e.,
the order parameter of the phase transition, is determined
theoretically by the maximum of the stationary solution
P st

1 (N1) [21]. For x = (N1 − N2)/N � 1, the maximum
probability is given by

P st
1 (N1) = Z−1 exp

[
−N

(
1

12
x4 − 1

2
θx2

)]
. (14)
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This has an analogous form with the free energy of mean-field
model as [11]

F = 1
2 rM2 + 1

4uM4 + 1
6vM6 − HM, (15)

where r is the reduced temperature with respect to the critical
temperature, u and v are coefficients, and H is the external
field. We can suggest that L ≡ x4/12 − θx2/2 is free-energy-
like function per single atom of the system. In our case the sixth
power term in Eq. (15) is negligible and H is zero. Thus, the
parameter θ plays the role of the reduced temperature, which
is the deviation from the critical temperature and is the control
parameter. In contrast, x plays the role of the order parameter
of the phase transition [21]. Therefore, hysteresis of the SSB
transition, which occurs under the total number sweeping, has
an analogy to thermal hysteresis in other systems.

When the reduced total number of atoms (θ ) is negative, the
solution has one maximum at x = 0, and it has two maxima
when θ is positive [21]. The solutions are described by the
equation

x = tanh [(θ + 1)x], (16)

which generates the red solid curves in Fig. 4.

III. EXPERIMENTS

Figure 1 shows our experimental setup for the paramet-
rically modulated atomic trap of 85Rb atoms. The conven-
tional six-beam MOT had a pair of counter-propagating and
intensity-modulated trapping lasers along the anti-Helmholtz
coil axis (z axis) [25]. The magnetic field gradient b was
10 G/cm, and the trap laser intensity was about 0.294
mW/cm2. The detunings were about −2.05	 (	 = 2π × 6.06
MHz is the decay rate of the excited state of 85Rb) in the z axis
and −2.32	 in the x and y axes [26]. The intensity of trapping
lasers in the x and y axes were more than five times larger than
that in the z axis so that we may consider the one-dimensional
atomic motion in the z direction.

In our system, the SSB transition occurs as a result of the
shadow effect caused by the light-induced interaction between
atoms in the MOT when the total number of atoms exceeds the
critical number [6]. Because the relaxation time of the phase
transition increased as the system approached the critical point,
a phenomenon known as the critical slowing down, a hysteresis
was observed when we swept the control parameter, i.e., the

FIG. 1. A schematic diagram of the experimental setup.

FIG. 2. Typical CCD images of the system. The total number of
atoms is about (a) 2.46 × 107 (before SSB) and (b) 7.69 × 107 (after
SSB).

total number of atoms, in our system. We adjusted the total
number of atoms in the system by changing the intensity of the
repumping laser controlled by a neutral density filter mounted
on a step motor (Fig. 1). The sweeping rate of the total number
of atoms could be adjusted by changing the time interval of
each motor step. Then, we observed and obtained the dynamics
of atoms inside the MOT by performing florescence imaging
with a charge-coupled device (CCD) camera.

IV. RESULTS AND DISCUSSIONS

Figure 2 shows the typical stroboscopic images of atomic
clouds in the parametrically modulated MOT, which triggered
at half of the modulation frequency. When the total number
of atoms is below the critical value, the populations of the
two atom clouds are equal as shown in Fig. 2(a). This is
called a symmetric state. In contrast, the symmetry of the
atomic population is broken above the critical value of the
total atomic number as shown in Fig. 2(b), which is a SSB
state. The symmetric state [Fig. 2(a)] is equivalent to the
zero-magnetization state in the Ising model [6]. Thus, the
phase transition occurs as the system moves from the SSB

FIG. 3. Measured relaxation time to the equilibrium state for each
reduced number superimposed with the numerical result obtained
from Eq. (11) for Nc = 4.81 × 107 and R = 3.72 × 106 s−1.
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FIG. 4. Measured hysteresis loops for various sweeping rates
(pulse intervals). (a) 1.87 × 106 s−1 (10 ms) (b) 9.61 × 105 s−1

(20 ms), (c) 5.84 × 105 s−1 (30 ms), and (d) 5.7 × 105 s−1 (40 ms).
The red solid curves are the solutions of Eq. (16).

state to the symmetric state (from the symmetric state to the
SSB state) with a decrease (an increase) in the total atomic
number, which represents an analogy to the ferromagnetic–
paramagnetic phase transition in the Ising model. In Fig. 2,
the paramagnetic phase [Fig. 2(a)] and ferromagnetic phase
[Fig. 2(b)] are presented.

We obtained relaxation times experimentally by measuring
the time that the order parameter has been stabilized to a steady
state after stopping changing the number of atoms at some
points during the process of number sweeping. Figure 3 shows
the measured relaxation time at various reduced numbers of
atoms with the sweeping rate R = 3.72 × 106 s−1. As can be
seen in Fig. 3, the relaxation time increases as the reduced total
number of atoms approaches the critical number of the phase
transition and diverges at the critical point θ = θc (= 0) as
expected. In Fig. 3 the red solid curves represent the solutions
of Eq. (11).

Figure 4 shows the hysteresis curves as a function of the
reduced atom number for sweeping rates of 1.87 × 106 s−1,

9.61 × 105 s−1, 5.84 × 105 s−1, and 5.7 × 105 s−1. The red
curves in Fig. 4 are the results calculated numerically from
Eq. (16). The parameters θ i

c and θd
c are critical values of

the reduced number for the symmetric state to SSB state
transition (upon increasing) and the SSB state to symmetric
state transition (upon decreasing), respectively. The shadow
effect, i.e., the cause of the SSB transition, does not catch
up with the variation in the number difference between the
two clouds, because the time for the order parameter to relax
toward the equilibrium state becomes larger and larger when
the number of atoms approaches the critical number. Thus,
when the total number of atoms is swept across the critical
number with a uniform speed, the hysteresis loops can be
obtained during the transition as shown in Fig. 4. It can be seen
that the area of the hysteresis loop decreases as the sweeping
rate of the total number of atoms is decreased.

Figure 5(a) presents the scaling behavior of the hysteresis
loop area versus the sweeping rate of the total number of
atoms on the log-log scale. Each point in Fig. 5 was obtained
by averaging the experimental values more than three times
and the constant term A0 was derived by a linear fitting of
the hysteresis area A versus sweeping rate R plot. The scaling
exponent n for the system was 0.64 ± 0.04, which is quite close
to the value given in the mean-field theory [15]. Therefore, it
is clearly seen that the hysteresis induced by number sweeping
in the modulated MOT system exhibited a thermal hysteretic
behavior.

We define the hysteresis width by �θ = |θ i
c − θd

c |. It is well
known that the hysteresis width is described by the scaling law:

�θ ∼= Rβ, (17)

where β is the scaling exponent [16]. The scaling exponent
can be obtained by fitting the hysteresis width data to the
double logarithmic form of Eq. (17). The log-log plot of the
hysteresis width �θ versus the sweeping rate R is shown in
Fig. 5(b). The scaling exponent β of the hysteresis width was
found to be 0.44 ± 0.025. This value is very close to the value
of 0.465 predicted by the kinetic Ising model [27]. Following
the scaling theory of thermal hysteresis developed by Zhong
et al. in Ref. [15], the scaling exponent of the hysteresis
width should have the physical meaning of the resistance
characteristics in the glass transition. To describe resistance of
the system, the scaling exponent β should be compared with

(a) (b)
log log

lo
g

lo
g

FIG. 5. Log-log (base: e) plot of (a) hysteresis area A and (b) hysteresis width �θ versus number sweeping rate R. The solid red curves in
(a) and (b) are the logarithmic fits of Eqs. (1) and (17), respectively.
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the exponent n reported in the mean-field model [15,17,18].
The value obtained in our system was β ∼ 0.44 ± 0.025,
which is slightly smaller than the scaling exponent n in the
mean-field model. This implies that our system corresponds to
a thermal model with a rather low resistance.

V. CONCLUSION

In summary, we observed the thermal hysteretic scaling
behavior in a modulated MOT system. We obtained the
hysteresis loop by sweeping the total number of atoms with
a uniform speed. The scaling exponent of the hysteresis loop
area with sweeping was 0.64 ± 0.04, which was in excellent
agreement with the expected value in the mean-field model.

The scaling exponent of the hysteresis width was obtained to be
0.44 ± 0.025. We provided a new method for studying thermal
hysteresis. Moreover, if the number decreasing (increasing)
process was reversed before the system went to an equilibrium
state, the hysteresis loop was not closed at the end of the
decreasing (increasing) process [16]. This suggests a glassy
behavior, and thus a further study of the glass transition is in
progress.
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