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Nonequilibrium quantum chains under multisite Lindblad baths
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We study a quantum XX chain coupled to two heat reservoirs that act on multiple sites and are kept at different
temperatures and chemical potentials. The baths are described by Lindblad dissipators, which are constructed
by direct coupling to the fermionic normal modes of the chain. Using a perturbative method, we are able to find
analytical formulas for all steady-state properties of the system. We compute both the particle or magnetization
current and the energy current, both of which are found to have the structure of Landauer’s formula. We also
obtain exact formulas for the Onsager coefficients. All properties are found to differ substantially from those
of a single-site bath. In particular, we find a strong dependence on the intensity of the bath couplings. In the
weak-coupling regime, we show that the Onsager reciprocal relations are satisfied.
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I. INTRODUCTION

When a system is placed in contact with two reservoirs
maintained at different temperatures or chemical potentials,
it will usually tend to a nonequilibrium steady state (NESS)
characterized by the presence of finite currents between the
two baths. This physical scenario includes a wide range of
important problems in condensed matter physics, with the most
traditional examples being measurements of thermal conduc-
tivity [1] and electron transport in metals and semiconductors
[2,3]. However, it also encompasses many other problems,
such as ballistic transport of electrons in mesoscopic devices
[4–8], hopping of ultracold atoms in optical lattices [9–11],
magnon transport in YIG crystals [12–14], and spintronics
[15,16].

Having a robust theoretical framework to study the proper-
ties of the NESS is therefore of importance to a broad range of
areas. However, this is usually an extremely difficult endeavor,
due mainly to two reasons. First, the problem is heavily
dependent on the possible scattering mechanisms that may
affect the current-carrying excitations, an effect that is usually
modeled using Boltzmann’s equation [1,3,17], Kubo’s linear
response formula [17–19], or the Landauer-Bütiker formalism
[4–8]. Second, in contrast with thermal equilibrium, the NESS
will in general be sensitive to the specific details of the coupling
between the system and the baths. For classical systems, this
may be described using Nosé-Hover [20] or Langevin or
Fokker-Planck equations [21,22]. These methods have been
used extensively in the past to study heat flux and Fourier’s
law in classical chains of oscillators [23–32].

The NESS of quantum systems, on the other hand, may
be modeled using techniques from open quantum systems
[33–37], such as the quantum Langevin equation or the
quantum master equation. One way to implement these
methods is by starting with a microscopic derivation. That
is, to start with a model for the system-bath interaction and
then trace out the bath under suitable approximations. This
approach was used, for instance, in Refs. [38–40] to study the
heat flux through harmonic chains. However, in many cases
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the complexity of the model may easily render such approach
unfeasible.

A more straightforward method is to implement Lindblad
dissipators designed only for a specific part of the system.
The idea is illustrated in Fig. 1(a), which depicts a chain
of spins or harmonic oscillators coupled to two reservoirs
kept at different temperatures and/or chemical potentials. The
baths are then modeled by dissipators chosen such they would
correctly thermalize the site in which they act, provided they
were uncoupled from the rest of the system. Recently, this
method has been used by a number of authors to study the
NESS of open quantum systems [41–54].

In this paper we wish to consider alternatively the case
of a multisite bath, illustrated in Fig. 1(b). Now, the baths
act on groups of particles and are such that they correctly
thermalize the entire group in which they act. This idea was
first considered using numerical simulations in Refs. [47,49]
for the case of two-spin baths (for a different approach to this
idea, see Refs. [55–57]). In this paper our goal is to implement
these multisite baths in a model that is analytically tractable
and allows the generalization to an arbitrary number of sites,
including the thermodynamic limit. As a working model, we
will consider a quantum XX spin chain or, what is equivalent,
the tight-binding model for electrons hopping in a lattice. Due
to the quadratic nature of this system, the multisite baths may
be implemented for any chain size by coupling the Lindblad
operators directly to the normal modes of the chain. This
will not only produce the correct target state, but will also
produce the correct thermalization rates. Moreover, it is prone
to analytical investigations, for any chain size. As we will show,
despite the simplicity of the model, the NESS shows a much
more sophisticated structure than that of the single-site bath.

As a consequence of the exact duality between the quantum
XX spin chain and the tight-binding model, all physical results
have two complementary interpretations. In the case of the
tight-binding model, the particle current will stand for the
electric current in the system. As we will show, in this interpre-
tation, our construction will resemble the ballistic conduction
of electrons commonly studied in mesoscopic devices [5–7].
Indeed, we will show that the steady-state particle current may
be written as a Landauer formula [4]. Moreover, since we have
control of both temperature and chemical potential gradients,
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FIG. 1. Schematic illustration of multisite baths. Each bath is
characterized by a temperature T and a chemical potential μ. (a) A
chain connected to two single-site baths. (b) A chain connected to
two multisite baths. (c) Multisite baths acting precisely on each half
of the chain.

we are also able to study thermoelectric (Peltier-Seebeck)
effects and obtain exact formulas for the Onsager coefficients.

Conversely, if our system is interpreted as a quantum XX
spin chain, then the particle flux becomes the magnon flux.
The situation then approaches the experiments in Ref. [14]
involving the flux of magnons in engineered YIG crystals.
In these experiments magnons are usually injected using a
time-dependent local magnetic field generated by a microstrip
antenna. These magnons are then parametrically converted due
to natural four-term interaction processes inside the system.
The final result, as discussed in Ref. [12], is that the microstrip
antenna functions like an effective chemical potential for
magnons.

II. MULTISITE LINDBLAD BATHS

A. XX chain and Lindblad dissipators

Consider a one-dimensional quantum XX chain with L sites.
The Hamiltonian of the system is

H = −h

2

L∑
n=1

σ z
n − t

2

L−1∑
n=1

(
σx

n σ x
n+1 + σy

n σ
y

n+1

)
, (1)

where the σα
n are the usual Pauli matrices. Here h represents the

magnetic field and t represents the exchange constant between
two neighboring spins. This Hamiltonian may be converted
to a fermionic representation through the Jordan-Wigner
transformation [58,59] by introducing a new set of operators
ηn according to

ηn =
⎡
⎣n−1∏

j=1

eiπσ+
j σ−

j

⎤
⎦σ−

n , (2)

where σ±
n = (σx

n ± iσ
y
n )/2. These operators satisfy the usual

fermionic algebra

{ηn,η
†
n′ } = δn,n′ , {ηn,ηn′ } = 0 (3)

and, in terms of them, Eq. (1) is converted into

H = −h

L∑
n=1

η†
nηn − t

L−1∑
n=1

(η†
nηn+1 + η

†
n+1ηn), (4)

which is the fermionic representation of the XX chain. Equation
(4) also coincides exactly with the tight-binding Hamiltonian,
describing the tunneling of electrons through a lattice (typical
values of t are in the order of 1 eV). In this case t represents the
probability amplitude for an electron to tunnel to a neighboring
site, whereas h represents the on-site energy of the electrons.
The magnetization σ z

n and the site occupation numbers η
†
nηn

are related by σ z
n = (2η

†
nηn − 1), so a fully occupied site is

translated into a state fully magnetized in the +z direction,
whereas a fully unoccupied site represents a fully magnetized
state in the −z direction.

Equation (4) is diagonalized trivially by moving to Fourier
space, but since we work with fixed boundary conditions,
we must use a pseudomomentum orthogonal transformation
matrix

Snk =
√

2

L + 1
sin(nk), k = π

L + 1
, . . . ,

Lπ

L + 1
. (5)

The pseudomomenta k take on L distinct values in the interval
k ∈ [0,π ]. The L × L matrix S, with entries Snk is both
orthogonal and symmetric. We now introduce a new set of
fermionic operators according to

ηk =
∑

n

Snkηn, (6)

where we use the indices to distinguish between the two sets
of operators, with momentumlike indices such as k and q

referring to the Fourier transforms of the original operators,
labeled with n. In terms of these new operators the Hamiltonian
(4) is put in diagonal form:

H =
∑

k

εk η
†
kηk, εk = −h − 2t cos k. (7)

Suppose now that we wish to couple the entire chain to
a reservoir at a temperature T and a chemical potential μ.
This can be accomplished under the context of the Lindblad
master equation, by adding a dissipative term to the system’s
von Neumann equation, describing the time evolution of the
density matrix ρ; viz,

dρ

dτ
= −i[H,ρ] + D(ρ) (8)

(we use τ for time in order to avoid confusion with the letter
t , used for the tunneling rate). The choice of the dissipator
D(ρ) is not unique. Ideally, one should always attempt to
derive it from an underlying microscopic theory describing
the coupling between the system and the bath, in which case
the final structure ofD(ρ) will depend on the Hamiltonian H of
the system. Of course, for models such as the one being studied
here, this microscopic approach is unfeasible since we do not
have any actual physical model for the bath. This problem
is commonly avoided by using phenomenological dissipators
(i.e., dissipators that have not been derived from a microscopic
theory). Although this may give physically reasonable results,
it is well known that such choices of dissipators may also lead
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to physically wrong answers in certain cases. This is one of
the main difficulties in using Lindblad master equations in the
study of nonequilibrium phenomena.

Fortunately, for the particular Hamiltonian (7), it is possible
to contemplate a general structure for the Lindblad dissipators,
which correctly relaxes the chain toward the Gibbs thermal
state while satisfying detailed balance. This can be done from
a microscopic theory using a bath described by an infinite
number of bosonic degrees of freedom, which is coupled
linearly (in the ηk) to the system. Moreover, it assumes that
the normal modes ηk evolve independently of each other [as
they must since the Hamiltonian (7) factors into a sum of
independent Hamiltonians for each mode].

The derivation of this dissipator is done the Appendix. The
result is

D(ρ) =
∑

k

2γkn̄k

[
η
†
kρηk − 1

2
{ηkη

†
k,ρ}

]

+ 2γk(1 − n̄k)

[
ηkρη

†
k − 1

2
{η†

kηk,ρ}
]
, (9)

where

n̄k = 1

e(εk−μ)/T + 1
(10)

is the Fermi-Dirac distribution for mode k and γk are positive
constants. All information about the system-bath coupling,
such as which particular sites are coupled to the bath, is
contained within the γk . Since we have no information about
the system-bath coupling, we will leave our results as general
functions of γk and, eventually, we also assume for simplicity
that γk = γ for all k.

The master equation (8), with H given by Eq. (7) and
D(ρ) given by Eq. (9), will relax the system from any
initial density matrix ρ(0) to the grand canonical Gibbs state
ρ(∞) ∝ e−(H−μN)/T . It can also be shown that this process
satisfies detailed balance. That is, if we let |i〉 denote the
eigenvectors of H − μN , with corresponding eigenvalues �i ,
then the time evolution of the diagonal entries pi = 〈i|ρ|i〉 will
evolve independently of the off-diagonal entries, according to
the Pauli master equation

dpi

dt
=

∑
j

{Wi,jpj − Wj,ipi},

where the transition rates Wi,j satisfy the usual detailed balance
relation

Wj,i

Wi,j

= e−(�j −�i )/T .

In fact, this relation is a direct consequence of the Kubo-
Martin-Schwinger condition of the bath degrees of freedom.

It is also interesting to look at the expectation values of the
correlations 〈η†

kηk′ 〉 = tr(η†
kηk′ρ). Using Eq. (8) we find

d

dτ
〈η†

kηk〉 = 2γk(n̄k − 〈η†
kηk〉) (11)

d

dτ
〈η†

kηk′ 〉 = −(γk + γk′)〈η†
kηk′ 〉, k′ �= k. (12)

Hence, all cross correlations relax to zero, whereas the
occupation numbers relax to the equilibrium Fermi-Dirac
occupations n̄k .

B. Partial coupling to the baths

We now consider the situation depicted in Fig. 1, where
our XX chain of size L is coupled to two heat baths kept at
different temperatures and chemical potentials. We divide the
chain into three parts, which we will henceforth refer to as
A, B, and C. The size of each part is La , Lb, and Lc, so the
total size of the chain is L = La + Lb + Lc. For simplicity,
we choose Lc = La . We will also be interested in the case that
Lb = 0, which is illustrated in Fig. 1(c).

The Hamiltonian of the chain is given by Eq. (4). For
bookkeeping purposes, we rename the fermionic operators
ηn as follows: ηn = an with n ∈ [1,La], ηLa+n = bn, with
n ∈ [1,Lb] and ηLa+Lb+n = cn with n ∈ [La + Lb + 1,L]. The
three sets of operators an, bn, and cn still satisfy the Fermionic
algebra in Eq. (3). We then divide the Hamiltonian (4) as

H = Ha + Hb + Hc + Vab + Vbc, (13)

where

Hα = −h

Lα∑
n=1

α†
nαn − t

Lα−1∑
n=1

(α†
nαn+1 + α

†
n+1αn). (14)

Here and henceforth α ∈ {a,b,c} will serve both as a label
for each chain and to denote the corresponding creation and
annihilation operators.

As for the interactions between the chains, we now
introduce a slight modification in the original model and write
it as

Vab = −g(a†
La

b1 + b
†
1aLa

) (15)

Vbc = −g(b†Lb
c1 + c

†
1bLb

). (16)

That is, we use a different coupling constant g, instead of t .
When g = t we recover the uniform chain in Eq. (4). The
assumption that g �= t means that the hopping rate inside the
chains is different from the hopping rate between different
chains. The reason for this choice is that, as will be shown
below, when g 	 t , the problem is amenable to analytical
calculations using perturbation theory.

We now wish to couple chains A and C to independent
heat baths. To accomplish this we first diagonalize each chain
individually by defining orthogonal transformation matrices
exactly as in Eq. (5), but with the appropriate sizes, La , Lb,
and Lc. To avoid confusion, we will denote the corresponding
matrices by Sα , where α ∈ {a,b,c}. Notice also that for each
matrix Sα , the allowed values of k may be different [cf. Eq. (5)].

We then define new operators ak , bk , and ck exactly as in
Eq. (6), which diagonalize the three chains individually:

Hα =
∑

k

εα,k α
†
kαk, εα,k = −h − 2t cos k. (17)

In principle we could write εk instead of εα,k , but this notation
is convenient for bookkeeping. It also emphasizes the fact
that the allowed values of k themselves depend on α. In
momentum space, the interaction terms in Eqs. (15) and (16)
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GUIMARÃES, LANDI, AND DE OLIVEIRA PHYSICAL REVIEW E 94, 032139 (2016)

become

Vab = −g
∑
k,q

Sa
La,k

Sb
1,q(a†

kbq + b†qak) (18)

Vbc = −g
∑
q,k

Sb
Lb,q

Sc
1,k(b†qck + c

†
kbq). (19)

In order to couple chains A and C to heat reservoirs, we
now write the quantum master equation for the system as

dρ

dτ
= −i[H,ρ] + Da(ρ) + Dc(ρ), (20)

where

Dα(ρ) =
∑

k

2γα,kn̄α,k

[
α
†
kραk − 1

2
{αkα

†
k,ρ}

]

+ 2γα,k(1 − n̄α,k)

[
αkρα

†
k − 1

2
{α†

kαk,ρ}
]

(21)

and

n̄α,k = 1

e(εα,k−μα)/Tα + 1
(22)

is the Fermi-Dirac distribution for each individual chain. For
simplicity, we will usually assume that γα,k = γ but, again,
the notation γα,k may be useful for bookkeeping purposes.

As discussed above, the individual chains, with their
corresponding dissipators, will satisfy detailed balance, but
when we couple them together, detailed balance is violated.
An important question is, therefore, whether or not one may
recover detailed balance for certain parameter ranges. Below
we will show that this happens when γ is sufficiently small.
From a physical standpoint we indeed expect that γ 	 t ,
since γ describes the rate at which particles are injected
in the system, whereas the tunneling rate t describes the
typical propagation times of the excitations through the chains.
Moreover, as shown in Ref. [54], if γ ∼ t , particle-particle
interactions become important and the noninteracting model
in Eq. (4) would no longer be valid. Notwithstanding, in this
paper we will consider all values of γ , with the purpose of
understanding exactly how it modifies the NESS and detailed
balance.

C. Lyapunov equation for the covariance matrix

The quadratic nature of our model allows for the problem
to be cast as a closed system of equations for the entries of the
L × L covariance matrix:

θαk,βq = 〈α†
kβq〉 = tr(α†

kβqρ). (23)

It is convenient to divide θ into a 3 × 3 block structure

θ =
⎛
⎝ θA θAB θAC

θ
†
AB θB θBC

θ
†
AC θ

†
BC θC

⎞
⎠. (24)

The time evolution of θ may be found directly from Eq. (20)
and reads:

dθ

dτ
= i[W,θ ] − {�,θ} + 2D, (25)

where W , � and D are L × L matrices. The matrices �

and D stem from the dissipative part of the dynamics and

read

� = diag(γa,k,0,γc,k) (26)

D = diag(γa,kn̄a,k,0,γc,kn̄c,k). (27)

The matrix W , on the other hand, is a unitary contribution
[stemming from the first term in Eq. (20)] and may be written
as

W = W0 − gW1, (28)

where

W0 = diag(εa,k,εb,k,εc,k) (29)

and

W1 =
⎛
⎝ 0 Sab 0

ST
ab 0 Sbc

0 ST
bc 0

⎞
⎠. (30)

Here Sab and Sbc are rectangular matrices with entries

(Sab)k,q = Sa
La,k

Sb
1,q , and (Sbc)q,k = Sb

Lb,q
Sc

1,k. (31)

We are interested in the steady-state solution of Eq. (25),
which reads.

{�,θ} − i[W,θ ] = 2D. (32)

This is a linear matrix equation for θ . It can be solved
numerically by writing it as a Lyapunov equation

Aθ + θA† = 2D,

where A = � − iW . Efficient Lyapunov solvers are nowadays
implemented in most numerical libraries. The numerical
solutions were used to check the correctness of all results
shown in this paper.

III. PERTURBATIVE SOLUTION

The analytical solution of Eq. (32) for arbitrary size is
quite complicated. However, the problem may be treated
analytically if we assume that g 	 t and expand θ in a power
series in g:

θ = θ0 + gθ1 + g2θ2 + . . . . (33)

It is convenient to define the linear matrix operator

ϒ(θ ) = {�,θ} − i[W0,θ ] (34)

so that Eq. (32) may be written as

ϒ(θ ) = 2D − ig[W1,θ ]. (35)

Inserting Eq. (33) into this formula and collecting terms of
the same order in g then yields the following sequence of
equations:

ϒ(θ0) = 2D (36)

ϒ(θ1) = −i[W1,θ0] (37)

ϒ(θ2) = −i[W1,θ1], (38)
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etc. These equations may then be solved sequentially. From
extensive numerical analyses of Eq. (32), we have concluded
that high values of g do not lead to any new physical effects.
Hence, in this paper we will restrict the discussion up to linear
order in g, Eqs. (36) and (37).

Matrix equations are most easily handled using outer
products, which we introduce through a vector basis |α,k〉
(the use of Dirac’s notation is not at all necessary, but simply
convenient). All matrices appearing in Eq. (35) may now be
written in terms of outer products |α,k〉〈β,q|. For instance,
the matrices �, D, and W0 in Eqs. (26), (27), and (29) are all
diagonal and read:

� =
∑
α,k

γα,k|α,k〉〈α,k| (39)

D =
∑
α,k

γα,kn̄α,k |α,k〉〈α,k| (40)

W0 =
∑
α,k

εα,k |α,k〉〈α,k|. (41)

We similarly decompose the covariance matrix θ in Eq. (23)
by introducing two completeness relations:

θ =
∑

α,k,β,q

|α,k〉〈α,k|θ |β,q〉〈β,q|. (42)

The operator ϒ(θ ) in Eq. (34) may now be conveniently written
as

ϒ(θ ) =
∑

α,k,β,q

[γα,k +γβ,q − i(εα,k − εβ,q)]

× |α,k〉〈α,k|θ |β,q〉〈β,q|, (43)

where γa,k = γc,k = γ and γb,k = 0.
With these results we may readily solve the zeroth-order

Eq. (36). Since it represents the situation where the three chains
are uncoupled, its solution will be a diagonal matrix whose
entries are simply the equilibrium occupation numbers:

θ0 =
∑
α,k

n̄α,k|α,k〉〈α,k|, (44)

where n̄α,k is given in Eq. (22). However, since chain B is not
coupled to any reservoirs, its zeroth-order occupation numbers
n̄b,q remain undetermined from this equation. As we will show
below, they can be fixed from the first order Eq. (37). (The
off-diagonal elements of θB are zero; it is only the diagonal
elements which remain undetermined.)

Next we turn to the first-order Eq. (37). In this case it
is convenient to separate the cases Lb �= 0 and Lb = 0 [cf.
Fig. 1(c)]. We begin with the latter.

A. Solution when Lb = 0

When Lb = 0 all formulas of the previous subsection
remain valid, provided that the indices α be restricted to
α ∈ {a,c}. Moreover, to solve Eq. (37) we need [W1,θ0] and
the matrix W1 in Eq. (30) needs to be modified in this case. It
now becomes, in outer product notation,

W1 =
∑
k,q

Sa
La,k

Sc
1,q |a,k〉〈c,q| + trans, (45)

where “trans” stands for transpose. Using this result together
with Eq. (44), we then find that

− i[W1,θ0] =−i
∑
k,q

Sa
La,k

Sc
1,q(n̄c,q − n̄a,k)|a,k〉〈c,q| + trans.

(46)

Substituting this in Eq. (37) then allows us to conclude that
the only nonzero entries of θ1 will be

〈a,k|θ1|c,q〉 = i
Sa

La,k
Sc

1,q(n̄a,k − n̄c,q)

2γ − i(εa,k − εc,q)
. (47)

In reference to the block structure in Eq. (24), this corresponds
to the elements θAC . The complete covariance matrix, up to first
order, is therefore θ = θ0 + gθ1, where θ0 is given in Eq. (44)
and θ1 is given in Eq. (47).

As can be seen in Eq. (47), the result depends only on
energy differences εa,k − εc,q , which are defined in Eq. (17).
Hence, the constant h cancels out in the denominator and
remains only in the Fermi-Dirac occupation numbers. We will
therefore absorb h into the definition of the chemical potentials
μα , which is tantamount to setting h = 0.

B. Solution when Lb �= 0

Next we turn to the case Lb �= 0, so once again α ∈ {a,b,c}.
The commutator −i[W1,θ0], using Eqs. (30) and (44), becomes

− i[W1,θ0] = −i
∑
k,q

[
Sa

La,k
Sb

1,q(n̄b,q − n̄a,k)|a,k〉〈b,q|

+ Sb
Lb,q

Sc
1,k(n̄c,k − n̄b,q )|b,q〉〈c,k| + trans

]
.

(48)

Combining this with Eq. (34) then gives us the nonzero entries
of θ1:

〈a,k|θ1|b,q〉 = i
Sa

La,k
Sb

1,q(n̄a,k − n̄b,q )

γ − i(εa,k − εb,q)
(49)

〈b,q|θ1|c,k〉 = i
Sb

Lb,q
Sc

1,k(n̄b,q − n̄c,k)

γ − i(εb,q − εc,k)
. (50)

Unlike Eq. (47), in this formula the denominator depends on
γ and not 2γ , which is a consequence of the fact that γb,q = 0.

Equations (49) and (50) still depend on n̄b,q , which is not
yet fixed. That can be accomplished by imposing a symmetry
conservation based on the time evolution of 〈b†qbq〉. Using
Eq. (20) we find that

d〈b†qbq〉
dτ

= i〈[Vab,b
†
qbq]〉 + i〈[Vbc,b

†
qbq]〉

and, using Eqs. (18) and (19), we have

i〈[Vab,b
†
qbq]〉 = 2g

∑
k

Sa
La,k

Sb
1,q Im〈a,k|θ |b,q〉 (51)

− i〈[Vbc,b
†
qbq]〉 = 2g

∑
k

Sb
Lb,q

Sc
1,kIm〈b,q|θ |c,k〉. (52)
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In the steady state d〈b†qbq〉/dτ = 0 so these two quantities
should be equal; i.e.,∑

k

Sa
La,k

Sb
1,qIm〈a,k|θ |b,q〉 =

∑
k

Sb
Lb,q

Sc
1,kIm〈b,q|θ |c,k〉.

(53)

The equality holds only for the sum as a whole and not for
the individual elements. Inserting Eqs. (49) and (50) into this
result then determines n̄b,q uniquely.

To write down the final result we recall that from Eq. (17),
εc,k = εa,k . Using also the explicit values of Sα in Eq. (5), we
may then write

n̄b,q =
∑

k f (k,q)(n̄a,k + n̄c,k)

2
∑

k f (k,q)
, (54)

where

f (k,q) = sin2 k

γ 2 + 4t2(cos k − cos q)2
. (55)

This result is physically intuitive: n̄b,q is given by a weighted
average of the occupation numbers of chains A and C. Notice
that this result makes no mention to the size of chain B, so that
q may be interpreted as a continuous function varying in the
interval q ∈ [0,π ].

An important particular case is that of La = Lc = 1,
corresponding to Fig. 1(a). In this case, from Eq. (5), we find
that k will take on just a single value: k = π/2. Consequently,
Eq. (54) is reduced to

n̄b,q = n̄a + n̄c

2
, (56)

which is independent of q. This is the typical behavior expected
from a ballistic system [41,43]: the occupation in the middle
of the chain is the simple average of the occupation at the
boundaries.

Another particular case is that when Lb = 1, corresponding
to a single spinless quantum dot in contact with two perfectly
conducting leads. If we assume that Ta = Tc and that the
chemical potentials are inversely polarized (μa = −μc = μ),
then it follows that n̄b = 1/2 for any μ.

In Fig. 2 we illustrate the possible behaviors of n̄b,q in
Eq. (54). The parameters used were Ta = Tc = 0.05t and

FIG. 2. (a) The occupation numbers of chain B, n̄b,q , computed
from Eq. (54) with Ta = Tc = 0.05t , μ = 0 and La = Lc = 50. (b)
Total number of excitations in chain B, 〈Nb〉/Lb, as a function of
μ = μa = μc. The different curves correspond to different values of
γ /t and the solid points refer to the occupations of chains A and C.

La = Lc = 50. The size Lb does not need to be specified
since q may be treated as a continuous variable in Eq. (54).
Figure 2(a) shows the individual occupation numbers for
μa = μc = 0 and Fig. 2(b) shows the total occupation of chain
B, 〈Nb〉/Lb [cf. Eq. (64) below], as a function of μa = μc = μ.
Different curves correspond to different values of the bath
coupling γ and the solid points refer to the exact occupations
of chains A or C. As can be seen in both images, when γ /t 	 1
the behavior of chain B mimics closely the behavior of chains
A and C. Conversely, when γ /t � 1 the normal modes are
flattened out, leading to a distortion in the 〈Nb〉 vs μ curve.
The size La = 50 was chosen to illustrate some of the finite
size effects that appear in the problem, in this case manifested
by the ripples observed in the black curve (γ = 0.01) of
Fig. 2(a). These ripples disappear quickly if La is increased
further.

In order to better understand the results of Fig. 2, it is
useful to study the case where chains A and C tend to the
thermodynamic limit (while Lb remains arbitrary). In this limit
we may convert sums, such as Eq. (55), into integrals using
the recipe

∑
k = (La/π )

∫ π

0 dk, which stems from the discrete
values of k in Eq. (5). The ensuing integral will have a shape
that will be encountered often below. It is therefore best to
consider first a general integral of the form:

M = 1

π

∫ π

0
dk

M(k)

γ 2 + t2(cos k − cos q)2
, (57)

where M(k) is an arbitrary function. This is the form of
Eq. (55), with M(k) = sin2 k and t → 2t (up to an irrelevant
constant factor). It is possible to determine the behavior of
this function when γ /t 	 1 and γ /t � 1. In the latter, we
simply neglect the second term in the denominator, which
gives

M = 1

πγ 2

∫ π

0
dk M(k). (58)

That is, the result becomes independent of q. Conversely, in
the limit γ /t 	 1 we see from Eq. (57) that the most important
contribution to the integral will come from the region where
k ∼ q. In this case we may transform this integral into a
contour problem and use the residue theorem to find that

M = 1

γ t

M(q)

sin q
, (59)

which is roughly the behavior of a δ function, up to a factor of
γ t sin q.

Using these results we may study the behavior of n̄b,q in
Eq. (54) in the limits of low and high γ . We find that

(γ /t 	 1) n̄b,q  n̄a,q + n̄c,q

2
(60)

(γ /t � 1) n̄b,q  2

π

∫ π

0
dk sin2 k

(n̄a,k + n̄c,k)

2
. (61)

We therefore see two very different physical results. When
γ /t 	 1, n̄b,q tends to the simple arithmetic average of the
occupations of the chains A and C. But when γ /t � 1,
n̄b,q becomes independent of q, tending to an average of all
occupations numbers of chains A and C.
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We may also find an exact formula for Eq. (61) in the limit
T → 0 [the corresponding formula for Eq. (60) is trivial]. In
this case we may write n̄α,k = �(μ − εα,k), where �(x) is
the Heaviside function. We also define the Fermi momentum
from the relation εkF

= μ, which gives kF = arccos(−μ/2t).
Consequently, we find that when γ /t � 1,

n̄b,q = C(μa) + C(μc)

2
, (62)

where

C(μ) = 2

π

∫ π

0
dk sin2 k �(μ − εk)

= 1

π
[μ

√
4t2 − μ2 + cos−1(−μ/2t)]. (63)

At μ = 0 we get n̄b,q = 1/2, thence corresponding to the blue
curve in Fig. 2(a). Moreover, since this result is independent
of q, the total occupation 〈Nb〉/Lb is then given by the same
formula. That is, Eq. (63) as a function of μ corresponds
exactly to the red and blue curves in Fig. 2(b).

IV. PARTICLE CURRENT

We will now use the results from the previous section
to study the steady-state particle current generated by the
unbalance between the two baths. Let

Nα =
∑

k

α
†
kαk (64)

denote the total number of particles in chain α, and N =
Na + Nb + Nc denote the total number of particles in the
system. The equation for the time evolution of N may be
obtained directly from Eq. (20). Since [H,N ] = 0, it becomes
simply

d〈N 〉
dτ

= tr[NaDa(ρ)] + tr[NcDc(ρ)]. (65)

This equation shows that the reservoirs of A and C are the only
two possible channels through which particles may flow into
or out of the system. In the steady-state d〈N 〉/dτ = 0 and we
therefore obtain

J := tr[NaDa(ρ)] = − tr[NcDc(ρ)]. (66)

The quantity J represents the current of particles through the
system. When J > 0 it means particles are entering the system
from reservoir A. The electric current can be obtained from J

by multiplying by the electric charge −e.
Using Eqs. (9) and (64) one may readily show that

J = 2γ
∑

k

(n̄a,k − 〈a†
kak〉) (67)

with a similar formula in terms of 〈c†kck〉. It is also possible
to obtain alternative formulas for the current, which coincide
with Eq. (67) in the steady state, but may be more convenient
to work with. This is important because, as seen in Eq. (44),
deviations in the occupation numbers 〈a†

kak〉 will be of order
g2. Hence, to use Eq. (67) we would need to continue the
expansion of the covariance matrix up to terms g2.

Instead, we may look for an alternative formula starting
from the equation describing the time-evolution of Na , also

obtained from Eq. (20). It reads

d〈Na〉
dτ

= i〈[Vab,Na]〉 + tr[NaDa(ρ)]. (68)

Thus, we see that particles may flow away from chain A either
to its reservoir or toward chain B (or chain C when Lb = 0).
Comparing with Eq. (66) we see that in the steady state we
should have

J = −i〈[Vab,Na]〉 (69)

and using Eqs. (18) and (64) this finally becomes

J = −ig
∑
k,q

Sa
La,k

Sb
1,q〈a†

kbq − b†qak〉. (70)

In the steady state this formula is equivalent to Eq. (67).
However, it has the advantage. but can be used together with
the first-order solution for the covariance matrix (an analogous
formula could be defined for chain C). When Lb = 0 it should
be replaced by

J = −ig
∑
k,q

Sa
La,k

Sc
1,q〈a†

kcq − c†qak〉. (71)

A. Current when Lb = 0

When Lb = 0 the relevant entries of the covariance matrix
are given in Eq. (47). Using the specific values of εα,k in
Eq. (17) and of Sα in Eq. (5), and exploiting the symmetry of
Eq. (71) with respect to k and q, we may write the particle
current as

J = 4g2γ

(La + 1)2

∑
k,q

sin2 k sin2 q (n̄a,k − n̄c,k)

γ 2 + t2(cos k − cos q)2
. (72)

As expected, J = 0 if g = 0 or γ = 0. When g = 0 we are
uncoupling the two chains and when γ = 0 we are uncoupling
the chains from their respective heat reservoirs. The current is
also zero if n̄a,k = n̄c,k , as of course expected.

It is convenient to define

I(k) = sin2 k

(La + 1)

∑
q

sin2 q

γ 2 + t2(cos k − cos q)2
(73)

so that Eq. (72) may be written as

J = 4g2γ

(La + 1)

∑
k

I(k)(n̄a,k − n̄c,k). (74)

This equation has the structure of Landauer’s formula for the
ballistic conduction of electrons through tunneling junctions
[4–7]. To illustrate this we present in Fig. 3 results for the
current when μa = μ/2 and μc = −μ/2, so that the potential
difference (voltage bias) is μ. Here and henceforth, all currents
will be given in units of g2γ /t2. As can be seen in the figure,
the particle current shows a series of discrete jumps, as in
electron tunneling experiments [5]. These jumps reflect the
discreteness of the occupation numbers n̄α,k and are smoothed
out as the temperature increases (illustrated in the image by
the red curve).

Next we turn to the case of infinitesimal imbalances. That
is, we take μa = μ + δμ/2, μc = μ − δμ/2, Ta = T + δT /2
and Tc = T − δT /2, where δμ and δT are assumed to be
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FIG. 3. The particle current J (in units of g2γ /t2) as a function
of the chemical potential difference (voltage bias) μ computed using
Eq. (72) with La = 40 and γ /t = 1. The black curve corresponds to
Ta = Tc = 0 and the red curve to Ta = Tc = 0.02t .

infinitesimal. In this case we may expand n̄a,k and n̄c,k in a
power series. As a result, Eq. (72) may be written as

J = δμ
∂F

∂μ
+ δT

∂F

∂T
, (75)

where

F = 4g2γ

(La + 1)

∑
k

I(k) n̄k. (76)

We therefore see that F plays the role of a nonequilibrium free
energy, from which the different contributions to J may be
obtained by differentiation.

Examples of the currents ∂F/∂μ and ∂F/∂T are shown
in Figs. 4 and 5 as a function of the chemical potential μ,
for γ /t = 1 and T/t = 0.02. The different images correspond
to different sizes La and the superimposed red-dashed curve
corresponds to the thermodynamic limit [Eq. (78) below].
The curves show the strong presence of finite-size effects,
which manifest themselves as sharp peaks occurring when
μ = −2t cos k [recall the discrete structure of k in Eq. (5)].
As the size increases, these strong oscillations give place to a
smooth curve, which gives a nonzero current only around the
interval μ ∈ [−2t,2t], corresponding to the bandwidth of εk .
It is also worth mentioning that these finite-size oscillations
are characteristic of low temperatures. If T/t ∼ 1 they are
replaced by smooth curves.

B. Thermodynamic limit

In the thermodynamic limit Eq. (73) becomes

I(k) = sin2 k

π

∫ π

0

sin2 q dq

γ 2 + t2(cos k − cos q)2
. (77)

Similarly, Eqs. (72) and (76) are transformed to

J = 4g2γ

π

∫ π

0
I(k)(n̄a,k − n̄c,k)dk (78)

and

F = 4g2γ

π

∫ π

0
I(k)n̄kdk. (79)

FIG. 4. The particle current due to a gradient in the chemical
potential, (∂F/∂μ) vs μ plotted using Eq. (76) with γ /t = 1 and
T = 0.02t . Each curve correspond to a different value of La = Lc,
respectively: (a) 1, (b) 4, (c) 10, (d) 20, (e) 50, (f) 80, (g) 120, and
(h) 160. The red dashed lines correspond to the thermodynamic limit,
Eq. (78).

These equations were used to plot the red curves in Figs. 4
and 5.

The integral in Eq. (77) falls under the category of Eq. (57).
Hence the corresponding low- and high-γ behaviors may be
read off directly from Eqs. (58) and (59):

I(k) =
⎧⎨
⎩

| sin k|3
γ t

, if γ 	 t

sin2 k
2γ 2 , if γ � t

. (80)
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FIG. 5. The particle current due to a temperature gradient,
(∂F/∂T ) vs μ plotted using Eq. (76) with γ /t = 1 and T = 0.02t .
Each curve correspond to a different value of La = Lc, respectively:
(a) 1, (b) 4, (c) 10, (d) 20, (e) 50, (f) 80, (g) 120, and (h) 160. The red
dashed lines correspond to the thermodynamic limit, Eq. (78).

For completeness, we also mention that for intermediate values
of γ , this integral may be computed analytically and reads

I(k) = sin2 k

t2

{[
λ1 + (

λ2
1 + λ2

2

)1/2]1/2

γ
√

2
− 1

}
, (81)

where λ1 = γ 2 + t2 sin2 k and λ2 = 2γ t cos k. The depen-
dence of γ on the particle current is investigated in Fig. 6 for
both an imbalance in the chemical potential and an imbalance
in the temperature. We will now discuss how to obtain the
analytical forms of these functions in the case that T → 0.

At zero temperature we may again use that n̄k = �(μ − εk),
which implies that ∂n̄k/∂μ = δ(μ − εk). Recalling also the
definition of the Fermi momentum as kF = arccos(−μ/2t),

FIG. 6. Influence of the coupling constant γ in the particle
current, at zero temperature and at the thermodynamic limit. (a)
(∂F/∂μ) vs μ and (b) (∂F/∂T ) vs μ. The curves were computed
using Eqs. (82) and (84).

we find for Eq. (79) the following simple result:

∂F

∂μ
= 4g2γ

π

I(kF (μ))
2t sin kF (μ)

, (82)

where the factor in the denominator comes from transforming
δ(μ − εk) into δ(k − kF ). Using the approximate results in
Eq. (80) we then obtain the explicit forms, valid for μ ∈
[−2t,2t]:

∂F

∂μ
=

{
g2

2πt4 (4t2 − μ2), γ /t 	 1
g2

2πt2γ

√
4t2 − μ2 γ /t � 1

, (83)

which match well the black (γ /t = 0.001) and green (γ /t =
10) curves plotted in Fig. 6(a).

Similarly, we may analyze the behavior of ∂F/∂T as T →
0. Of course, if T = 0 there can be no temperature imbalance,
so we must look for the lowest contribution in T . To do that
we perform a Sommerfeld expansion [2,60] by writing the
integral in Eq. (79) as∫ k

0
I(k)n̄kdk =

∫ 2t

−2t

I(k(ε))

dε/dk

dε

e(ε−μ)/T + 1

= O(T 0) + π2

6
T 2 ∂

∂ε

[I(k(ε))

dε/dk

]
ε=μ

,

where the first term is independent of temperature. Conse-
quently, we find that ∂F/∂T may be written as

∂F

∂T
= 4πTg2γ

3

∂

∂μ

[ I(kF (μ))

2t sin kF (μ)

]
. (84)

Using Eq. (80) for the low- and high-γ behavior of I, we
finally conclude that

∂F

∂T
=

⎧⎨
⎩

−πg2T μ

3t4 , γ /t 	 1

− πg2T μ

6t2γ
√

4t2−μ2
γ /t � 1

, (85)

which, again, hold only for μ ∈ [−2t,2t]. These two formulas
match precisely the black (γ /t = 0.001) and green (γ /t = 10)
curves plotted in Fig. 6(b). This shows that when γ /t 	 1 the
current due to a temperature gradient is linear in μ, but when
γ /t � 1, it acquires sharp peaks near the band edges.
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C. Current when Lb �= 0

We now turn to the particle current when the size of chain B
is nonzero. The definition of J in this case is given in Eq. (70),
with the relevant matrix elements given in Eq. (49). The current
then comes

J = 8g2γ

(La + 1)(Lb + 1)

∑
k,q

sin2 k sin2 q(n̄a,k − n̄b,q )

γ 2 + 4t2(cos k − cos q)2
,

(86)
where, recall, the allowed values of k and q are different since
La and Lb are arbitrary. This equation also depends on the
occupation numbers n̄b,q , which are given in Eq. (54).

When La = Lc = 1 Eq. (86) reduces to

J = 4g2γ

(Lb + 1)
(n̄a − n̄c)

∑
q

sin2 q

γ 2 + 4t2 cos2 q
, (87)

which is simply a constant coefficient multiplied by the
occupation difference (n̄a − n̄c). A homogeneous (g = t) XX
spin chain under a single spin bath was studied in Ref. [43],
which found for the current the exact formula

J = γ

t2 + γ 2

n̄a − n̄c

2
. (88)

The difference between this result and Eq. (87) is due to the
fact that we assumed a nonhomogeneous chain (g �= t). If we
take g = t and if we continue the series expansion of θ up to
higher orders, we recover exactly Eq. (88), as easily verified
from numerical simulations.

Examples of Eq. (86) are shown in Fig. 7 for γ /t = 10 and
γ /t = 1, with different choices of La and Lb. When γ /t � 1,
as shown in Eq. (61), the occupation numbers n̄b,q become
independent of q. Consequently, in this case the current J in

FIG. 7. Particle current J/δμ vs μ for different sizes of the middle
chain [see legend in (b)], computed using Eq. (86) with T = 0.02t

for different combinations of La and γ /t : (a) La = 50, γ /t = 10,
(b) La = 100, γ /t = 10, (c) La = 50, γ /t = 1, and (d) La = 100,
γ /t = 1. The dashed black curve corresponds to Eq. (82).

Eq. (86) becomes independent of the size Lb of chain B. This is
visible in Figs. 7(a) and 7(b), which correspond to γ /t = 10,
where we see that the curves for different values of Lb

practically coincide. Moreover, we also see that these curves
mimic the behavior of the current when Lb = 0, represented
here by the dashed black curves plotted from Eq. (82). Thus,
we conclude that when γ /t � 1, the presence of chain B does
not affect in any way the current through the system. When
γ /t = 1 [Figs. 7(c) and 7(d)], on the other hand, a dependence
in Lb becomes visible. However, even though the changes
are substantial when moving from Lb = 1 to Lb = 2, the
curves for Lb = 4 and Lb = 10 already practically coincide.
Notwithstanding, none of the curves coincide with that from
Lb = 0, thus showing that when γ /t = 1, the presence of
chain B does have an effect on the properties of the current.

The behavior of Eq. (86) when γ /t 	 1, on the other hand,
is much more intricate since it will depend sensibly on the
sizes La and Lb. The reason for this is that the flux will have
substantial contributions whenever (cos k − cos q) ∼ 0. But k

and q take on a mesh of discrete values, as denoted in Eq. (5)
(with La and Lb, respectively). Consequently, the behavior of
J will change substantially for different combinations of La

and Lb.
Instead, let us suppose for simplicity that chains A and C

tend to the thermodynamic limit, whereas the size of chain B
remains arbitrary. In this case we may convert the sum over k

in Eq. (86) to an integral, to find

J = 8g2γ

π (Lb + 1)

∑
q

∫ π

0
dk

sin2 k sin2 q(n̄a,k − n̄b,q )

γ 2 + 4t2(cos k − cos q)2
. (89)

Next we may use Eq. (59) to approximate the result for γ /t 	
1. Using also Eq. (60) we then find that

J  2g2γ

Lb + 1

∑
q

sin3 q(n̄a,q − n̄c,q). (90)

Comparing this with Eq. (72), and noticing also Eq. (80),
we conclude that when γ /t 	 1 the flux through chain B will
behave somewhat like the flux for Lb = 0 studied in Sec. IV B.
However, it will be governed by Lb, instead of La . This idea
is illustrated in Fig. 8, where we plot Eq. (89) for Lb = 10 and

FIG. 8. J/δμ vs μ for different values of γ /t , with Lb = 10 and
T/t = 0.02. When γ /t 	 1, the curve approaches Fig. 4(c).
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several values of γ /t . As can be seen, when γ /t decreases
the current approaches the behavior of Fig. 4(c), which was
computed with Lb = 0, and La = Lc = 10.

V. HEAT CURRENT AND ONSAGER COEFFICIENTS

We now discuss the energy and heat currents through the
system, and also compute the Onsager coefficients for this
problem. To find a formula for the energy current we may
repeat the procedure that led us to Eq. (70), but with the
Hamiltonian H instead of N . Starting with Eq. (20) we find
the following equation for the time evolution of 〈H 〉:

d〈H 〉
dt

= tr[HDa(ρ)] + tr[HDc(ρ)]. (91)

Thus, the flux of energy in the steady state will be

JE = tr[HDa(ρ)] = tr[HaDa(ρ)] + tr[VabDa(ρ)], (92)

where

tr[HaDa(ρ)] = 2γ
∑

k

εa,k(n̄a,k − 〈a†
kak〉)

tr[VabDa(ρ)] = gγ
∑
k,q

Sa
La,k

Sb
1,q [〈a†

kbq〉 + 〈b†qak〉].

The first equation requires knowledge of the second-order
expansion of Eq. (33). A formula based on the first-order
solution may be found by looking at the time evolution of
〈Ha〉, again obtained from Eq. (20):

d〈Ha〉
dt

= i〈[Vab,Ha]〉 + tr[HaDa(ρ)]. (93)

Thus, we see that

tr[HaDa(ρ)] = −i〈[Vab,Ha]〉
= −ig

∑
k,q

εa,kS
a
La,k

Sb
1,q〈a†

kbq − b†qak〉.

Combining the results we conclude that the energy flux in
Eq. (92) may therefore be written as

JE = g
∑
k,q

Sa
La,k

Sb
1,q[〈a†

kbq〉(γ − iεa,k) + 〈b†qak〉(γ + iεa,k)].

If Lb = 0, we should write instead

JE = g
∑
k,q

Sa
La,k

Sc
1,q[〈a†

kcq〉(γ − iεa,k) + 〈c†qak〉(γ + iεa,k)].

(94)

A. Energy current when Lb = 0

For simplicity, we will restrict the discussion of the energy
current to the case Lb = 0. In this case, similarly to Eq. (72),
we obtain for the energy current (94) the following result:

JE = 4g2γ

(La + 1)2

∑
k,q

sin2 k sin2 q (n̄a,k − n̄c,k)(εk + εq)/2

γ 2 + t2(cos k − cos q)2
.

(95)

It is also convenient to define

IE(k) = sin2 k

La + 1

∑
q

sin2 q(εk + εq)/2

γ 2 + t2(cos k − cos q)2
(96)

so that Eq. (95) becomes

JE = 4g2γ

La + 1

∑
k

IE(k) (n̄a,k − n̄c,k). (97)

In the case of infinitesimal imbalances the energy current
becomes

JE = δμ
∂G

∂μ
+ δT

∂G

∂T
, (98)

where

G = 4g2γ

La + 1

∑
k

IE(k)n̄k. (99)

Examples of ∂G/∂μ and ∂G/∂T are shown in Figs. 9 and 10
for conditions similar to those used in Figs. 4 and 5. As can
be seen, the role of finite-size effects is similar to the previous
case.

In the thermodynamic limit we may convert IE(k) in
Eq. (96) into an integral and then use Eq. (57) to explore
the limits where γ /t 	 1 and γ /t � 1. We then get

IE(k) 
{

εk | sin k|3
γ t

= εkI(k), if γ 	 t

εk sin2 k

4γ 2 = εkI(k)
2 , if γ � t

. (100)

The presence of the factor of 1/2 in the second equation has, as
we will show below, important consequences to the behavior
of the system. For intermediate values of γ /t , the integral may
also be computed analytically but the result is cumbersome
and will not be presented.

Using these results we find that the flux in Eq. (97) may be
written as

JE 
{

4g2γ

π

∫ π

0 dk I(k)εk(n̄a,k − n̄c,k), if γ 	 t

4g2γ

π

∫ π

0 dk I(k)
2 εk(n̄a,k − n̄c,k), if γ � t

, (101)

which may be compared directly with Eq. (78). Similarly,
Eq. (99) becomes

G 
{

4g2γ

π

∫ π

0 dk I(k)εkn̄k, if γ 	 t

4g2γ

π

∫ π

0 dk I(k)
2 εkn̄k, if γ � t

, (102)

which may be compared with Eq. (79).
At zero temperatures, Eqs. (82) and (84) remain valid for the

energy current, provided we replace I with IE . We therefore
find that

∂G

∂μ
=

⎧⎨
⎩

g2μ(4t2−μ2)
2πt4 , γ /t 	 1

g2μ
√

4t2−μ2

4πt2γ
γ /t � 1

(103)

and

∂G

∂T
=

⎧⎨
⎩

πg2T (4t2−3μ2)
6t4 , γ /t 	 1

πg2T

6γ t2
(2t2−μ2)√

4t2−μ2
γ /t � 1

. (104)

These results, together with the general dependence when T =
0, are shown in Fig. 11.
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FIG. 9. The energy current due to a gradient in the chemical
potential, (∂G/∂μ) vs μ plotted using Eq. (99) with γ /t = 1 and
T = 0.02t . Each curve correspond to a different value of La = Lc,
respectively: (a) 2, (b) 4, (c) 10, (d) 20, (e) 50, (f) 80, (g) 120, and (h)
160. The red dashed lines correspond to the thermodynamic limit.

B. Onsager coefficients

From the first law of thermodynamics, the current of energy
should have a term due to the current of heat and another
due to the current of particles. That is, we should have JE =
JQ + μJ , where JQ is the heat current through the system.
Since we know J and JE , we may then use this to compute
the heat current:

JQ = JE − μJ. (105)

The currents J and JQ may be cast in the language of Onsager’s
coefficients [61] by defining the imbalances as (δμ)/T and
−δ(1/T ). Then the fluxes J and JQ should satisfy(

J

JQ

)
=

(
�11 �12

�21 �22

)(
(δμ)/T

−δ(1/T )

)
, (106)

FIG. 10. The energy current due to a temperature gradient,
(∂G/∂T ) vs μ plotted using Eq. (99) with γ /t = 1 and T = 0.02t .
Each curve correspond to a different value of La = Lc, respectively:
(a) 2, (b) 4, (c) 10, (d) 20, (e) 50, (f) 80, (g) 120, and (h) 160. The red
dashed lines correspond to the thermodynamic limit.

FIG. 11. (a) ∂G/∂μ vs μ and (b) (∂G/∂T ) vs μ for T = 0 in the
thermodynamic limit.
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FIG. 12. Onsager coefficients computed from Eqs. (108) and
(110), in the thermodynamic limit, with T = 0.02t and different
values of γ /t , as shown in (b).

where the �ij are the Onsager coefficients. According to
Onsager’s reciprocity relations [61], we expect that �12 = �21.
Moreover, the entropy production rate in the NESS is defined
as

� = J (δμ)/T − JQδ(1/T ) (107)

and it should be a non-negative quantity. This will be satisfied
for any infinitesimal unbalance provided the determinant of
the Onsager matrix, �11�22 − �12�21, is non-negative.

We now use all our previous results to obtain the Onsager
coefficients. Using Eq. (75) we find that

�11 = T
∂F

∂μ
, �12 = T 2 ∂F

∂T
. (108)

Similarly, using Eqs. (75) and (98) we may write

JQ = δμ

[
∂G

∂μ
− μ

∂F

∂μ

]
+ δT

[
∂G

∂T
− μ

∂F

∂T

]
. (109)

Thus, the other Onsager coefficients are

�21 = T

[
∂G

∂μ
− μ

∂F

∂μ

]
, �22 = T 2

[
∂G

∂T
− μ

∂F

∂T

]
. (110)

Examples of the Onsager coefficients, computed in the
thermodynamic limit, are shown in Fig. 12 for different values
of γ . As can be seen, the direct coefficients �11 and �22 are
always positive, as expected. The corresponding determinant
is also always positive, thus ensuring a positive entropy
production. However, the cross coefficients �12 and �21 only
coincide for small values of γ . This is illustrated specifically
in Fig. 13, where we compare �12 and �21 for γ /t = 0.0001
and γ /t = 0.001. As can be seen, only for the smallest value
of γ /t does the two quantities coincide.

FIG. 13. Comparison between the cross-Onsager coefficients �12

and �21 for γ /t = 0.0001 and 0.001, with T = 0.02t .

This fact can actually be demonstrated analytically, using
Eqs. (79) and (102). The coefficient �12 in Eq. (108) reads

�12 = 4g2γ

π

∫ π

0
dk I(k)T 2 ∂n̄

∂T
, (111)

which holds for any value of γ . However, for the coefficient
�21 in Eq. (110) we must distinguish between the different γ

regimes. From Eq. (102), if γ /t 	 1, then we will have

�21 = 4g2γ

π

∫ π

0
dk I(k)T (εk − μ)

∂n̄

∂μ
. (112)

Since [cf. Eq. (10)]

∂n̄k

∂T
= εk − μ

T

∂n̄k

∂μ

we conclude that when γ /t 	 1, �12 = �21. Conversely, in the
case when γ /t � 1, no such equality holds due to the factor
of 1/2 in the second line of Eq. (102). This therefore explains
the results in Fig. 13.

The reciprocity relation �12 = �21 is a direct consequence
of detailed balance in the system [61]. These results therefore
indicate that in our multisite setup, the system should only
satisfy detailed balance when γ /t 	 1. This is further corrob-
orated by the results in Fig. 2, where we found that only for
low γ /t did chain B correctly thermalize locally, something
expected from a system satisfying detailed balance.

VI. CONCLUSIONS

The nonequilibrium properties of open quantum chains
is known to be extremely sensitive to the type of dissipator
employed. In addition, unless one has detailed experimental
knowledge of the system-bath coupling, the structure of the
dissipator is not unique. Hence the importance of understand-
ing the properties of the NESS under the influence of different
dissipators. In this paper we have discussed in detail the
properties of multisite baths, where the Lindblad dissipator
acts on groups of spins and is such that the entire group, if
isolated, is correctly thermalized. For our system, which is
quadratic (in the language of second quantization), this type of
dissipator is readily constructed by coupling to the normal
modes of the Hamiltonian. Indeed, it is worth mentioning
that this approach can be used for any quadratic Hamiltonian,
fermionic or bosonic. Hence, together with the perturbative
solution presented here, this multisite bath structure opens
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avenues to the research of many other systems in statistical
mechanics and condensed matter in general.

We have shown that the multisite baths introduce physical
properties, which are substantially richer from those of a
single-site bath. Using a perturbative method we have shown
that the particle and energy currents have the structure of
Landauer’s formula, and we have been able to find analytical
formulas for the Onsager coefficients. In all results, we have
observed a sensitive dependence on the coupling constant
γ . When γ /t 	 1, which is the situation expected experi-
mentally, the system obeys the Onsager reciprocal relations
and the middle chain correctly thermalizes to its Fermi-Dirac
distribution. Conversely, when γ /t � 1 we find that all modes
tend to contribute equally, leading to substantial modifications
in the properties of the system.
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APPENDIX: MICROSCOPIC DERIVATION
OF THE LINDBLAD DISSIPATOR

In this Appendix we will show how to derive the dissipator
(9). The basic idea will be to assume that, since the Hamiltonian
(7) factors into a sum of commuting terms for each normal
mode, we may treat each mode individually. We therefore
only need to consider a Hamiltonian H = εη†η for one normal
mode [here η is a simplified notation for each of the ηk defined
in Eq. (6) and not the original ηn of Eq. (2)]. The total dissipator
will then be a sum of the dissipators of each mode.

We will further assume that this normal mode is coupled
to an infinite number of bosonic degrees of freedom with
Hamiltonian HB = ∑

� ��b
†
�b�, where b� are bosonic oper-

ators satisfying [b�,b
†
�′] = δ�,�′ . The interaction Hamiltonian

is assumed to

HI =
∑

�

f�(η + η†)(b� + b
†
�), (A1)

where f� are certain coupling constants. The only assumption
here is that the bath couples linearly in the η (or, more precisely,
in the ηk). Notice that since the normal modes ηk are linearly
related to the original operators ηn [cf. Eq. (4)], it does not
matter if the bath is coupled to the normal modes ηk or to the
ηn. This will only change the constants f�.

Under the assumption of weak coupling and in the rotating
wave approximation we may trace out the bath and write a
corresponding Lindblad dissipator. This is most readily done
using the method of eigenoperators, which is discussed in
detail in Ref. [35]. An arbitrary operator O(ω) is termed an
eigenoperator of H when

[H,O(ω)] = −ωO(ω)

for some given frequency ω. According to the derivation in
Ref. [35], we must construct the eigenoperator associated to
O = (η + η†), which is the operator coupling to the bath. Due
to the diagonal structure of H = εη†η, it follows that this

eigenoperator will be

O(ω) = η δω,ε + η† δω,−ε . (A2)

Intuitively speaking, the coupling (η + η†) to the bath induces
transitions in the system and ω represents the allowed
energy transitions due to this coupling. For our case the only
allowed transitions have energy differences ε and −ε.

In terms of the eigenoperators O(ω), the Lindblad dissipator
corresponding to the bath coupling (A1) will be [35]:

D(ρ) =
∑

ω

�(ω)

[
O(ω)ρO†(ω) − 1

2
{O†(ω)O(ω),ρ}

]
,

(A3)

where

�(ω) =
∫ ∞

−∞
dteiωt tr

{
(eiHBtBe−iHB t )B

e−HB/T

tr(e−HB/T )

}

is the Fourier transform of bath correlation functions, with
B = ∑

� f�(b� + b
†
�) [see Eq. (A1)]. Substituting Eq. (A2) into

Eq. (A3) we get

D(ρ) = �(ε)
[
ηρη† − 1

2 {η†η,ρ}]
+�(−ε)

[
η†ρη − 1

2 {ηη†,ρ}]. (A4)

The quantities �(ω) may be resolved further by computing
the Fourier transform and using the integral representation of
the δ function. As a result we get

�(ω) = 2π
∑

�

f 2
� [δ(ω − ��)[1 + n̄B(��)]

+ δ(ω + ��)n̄B(��)],

where n̄B(x) = 1/(ex/T − 1) is the Bose-Einstein occupation
number for the bath frequencies. Next we assume that the bath
frequencies �� cover a continuum of values (as expected from
photonic or phononic baths) so that we may convert the � sum
into an integral over �. We define the spectral density

γ (�) =
∑

�

2πf 2
� δ(� − ��)

in terms of which we may write

�(ω) =
∫ ∞

0
d� γ (�)[δ(ω − �)[1 + n̄B(�)]

+ δ(ω + �)n̄B(�)].

This can be further simplified to

�(ω) =
{
γ (ω)[1 + n̄B(ω)], if ω > 0
γ (−ω)n̄B(−ω), if ω < 0 . (A5)

The appearance of the Bose-Einstein occupation numbers in
a fermionic problem may at first seem strange. But that is
indeed correct, since they appear due to the effect of the
bath, which is bosonic. Notwithstanding, the Fermi-Dirac
occupation numbers n̄F (x) = 1/(ex/T + 1) may be introduced
naturally as follows.

From Eq. (A4), we must now compute �(±ε). In doing so
we must differentiate between ε > 0 and ε < 0. Suppose first
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that ε > 0. Then we use the identities
n̄B(ε)

2n̄B(ε) + 1
= n̄F (ε),

1 + n̄B(ε)

2n̄B (ε) + 1
= 1 − n̄F (ε) (A6)

to write Eq. (A5) as

�(ε) = γ (ε)[2n̄B(ε) + 1][1 − n̄F (ε)]

�(−ε) = γ (ε)[2n̄B(ε) + 1]n̄F (ε).

To simplify the problem we will restrict the discussion
to the case where 2nB(ε) + 1 = coth(ε/2T )  1. This will
generally be true for Fermionic systems. The relevant energies
here are εk = −h − 2t cos k [Eq. (7)] so this approximation
will in general be reasonable, except for those momentum
values where εk ∼ 0. Notwithstanding, with simplicity in
mind, we will continue to assume this to hold. As a result,
we get

�(ε) = γ (ε)[1 − n̄F (ε)], �(−ε) = γ (ε)n̄F (ε).

Hence, Eq. (A4) finally becomes

D(ρ) = γ (ε)[1 − n̄F (ε)]
[
ηρη† − 1

2 {η†η,ρ}]
+ γ (ε)n̄F (ε)

[
η†ρη − 1

2 {ηη†,ρ}]. (A7)

This dissipator has precisely the structure of each of the terms
in Eq. (9).

Next we consider the case ε < 0. In this case we
use the identity n̄B(−x) = −[1 + n̄B(x)] to write Eq. (A5)

as

�(ε) = γ (−ε)n̄B(−ε) = −γ (−ε)[1 + n̄B(ε)]

�(−ε) = γ (−ε)[1 + n̄B(−ε)] = −γ (−ε)n̄B(ε).

Next we use Eq. (A6) once again but, this time, we note that
since ε < 0, coth(ε/2T )  −1. Consequently, we will get

�(ε)  γ (−ε)[1 − n̄F (ε)]

�(−ε)  γ (−ε)n̄F (ε).

As a result we will get a dissipator, which is essentially the
same as Eq. (A7), but with γ (ε) replaced by γ (−ε).

We may write both cases in a unified way as

D(ρ) = γ (|ε|)[1 − n̄F (ε)]
[
ηρη† − 1

2 {η†η,ρ}]
+ γ (|ε|)n̄F (ε)

[
η†ρη − 1

2 {ηη†,ρ}], (A8)

which is valid for arbitrary ε. This concludes our derivation of
the dissipator (9). The total dissipator for all modes ηk will be
a sum of dissipators with the structure (A8), each with its own
Fermi-Dirac occupation number n̄k and coupling constants
γk . Since we have no direct physical model for the oscillator
bath, it is not possible to determine the functional form of the
coupling constants γk . It is also important to notice that the
terms 2n̄B(ε) + 1, which we have approximated to unity, may
be included inside the definition of the γk if one wishes. This
would merely introduce a temperature dependence on the γk .
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