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We investigate heat transport between two thermal reservoirs that are coupled via a large spin composed
of N identical two-level systems. One coupling implements the dissipative Dicke superradiance. The other
coupling is locally of the pure-dephasing type and requires to go beyond the standard weak-coupling limit by
employing a Bogoliubov mapping in the corresponding reservoir. After the mapping, the large spin is coupled to
a collective mode with the original pure-dephasing interaction, but the collective mode is dissipatively coupled to
the residual oscillators. Treating the large spin and the collective mode as the system, a standard master equation
approach is now able to capture the energy transfer between the two reservoirs. Assuming fast relaxation of the
collective mode, we derive a coarse-grained rate equation for the large spin only and discuss how the original
Dicke superradiance is affected by the presence of the additional reservoir. Our main finding is a cooperatively
enhanced rectification effect due to the interplay of supertransmittant heat currents (scaling quadratically with
N ) and the asymmetric coupling to both reservoirs. For large N , the system can thus significantly amplify current
asymmetries under bias reversal, functioning as a heat diode. We also briefly discuss the case when the couplings
of the collective spin are locally dissipative, showing that the heat-diode effect is still present.

DOI: 10.1103/PhysRevE.94.032135

I. MOTIVATION

The study of radiative effects in two-level systems has a
long history. Here, the spin-boson model [1] takes a very
prominent role. Originating from the interaction of a two-level
atom with the electromagnetic field [2], it is often used as
a toy model in many other contexts. Not surprisingly, it has
become a canonical model to explore fundamental methods
of open systems [3–5] and effectively arises in a rather large
number of physical systems and effects, including, e.g., the
dynamics of light-harvesting complexes [6], detectors [7], and
the interaction of quantum dots with generalized environments
[8].

Ideally, one aims at a reduced description taking only the
finite-dimensional spin dynamics into account. However, when
the number of spins is increased, the curse of dimensionality—
the exponential growth of the system Hilbert space with its
size—usually inhibits investigations of large spin-boson mod-
els. When additional symmetries come into play—e.g., when
the spins have the same splitting and couple collectively to
all other components—simplified descriptions are applicable.
Collective effects may for example dramatically influence the
dephasing behavior of the environment, leading to phenomena
such as super- and subdecoherence [9,10]. Furthermore, they
play a significant role in the modeling of light-harvesting
complexes [11–14]. Perhaps one of the clearest manifestations
of collective behavior is Dicke superradiance [15]. Here, the
collectivity of the coupling between N two-level atoms and a
low-temperature bosonic reservoir induces an unusually fast
relaxation. When the atoms couple independently, the time
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needed for relaxation does not depend on N . For a collective
coupling, however, the relaxation time scales as 1/N and the
maximum radiation intensity scales as N2 [16]. A setup in
which the collective coupling approximation is well justified
can be obtained by confining the two-level atoms in a region
much smaller than the wavelength of the electromagnetic
field, but such collective couplings may also be engineered
for instance using trapped ions [17] or optomechanical setups
[18].

Transient superradiant phenomena have been investigated
from many perspectives both theoretically [8,19,20] and
experimentally [21,22]. Our present study is motivated by the
fact that in certain regimes the transient superradiance can
be turned into a stationary supertransmittance—a stationary
current scaling with N2—when two collective weakly coupled
reservoirs [23] or a combination of weak collective dissipation
and driving [24,25] are considered. Superradiance has been
studied also in the context of single excitation transport
[26–29].

Naturally, when reservoirs of the same nature are coupled
with the same operators to the system [23,30], general sym-
metry arguments suggest that, under reversal of the thermal
bias, the heat current will simply revert its sign. By contrast,
when the reservoirs are coupled with different operators to the
system, one may notice asymmetries in the heat currents under
bias reversal. Typically, these are not very pronounced [31] and
are often expected to average out when multiple systems are
used in parallel. When the absolute value of the current is
significant in one nonequilibrium configuration but is strongly
suppressed under temperature exchange, one effectively im-
plements a heat diode [32–35]. The ideal heat diode would
display a very large heat conductivity in one bias configuration
and a complete suppression in the opposite.
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We show that by implementing distinct collective couplings
to source and drain reservoirs of different nature, asymmetries
in the heat conductance can be strongly amplified in the large-
N regime.

We present the model in Sec. II below, where, in particular,
we also discuss the mapping to a collective reservoir mode in
Sec. II B and possible implementation scenarios in Sec. II C.
For consistency, we also briefly recall the main features of
superradiant decay in Sec. II D. Then, we derive the quantum-
optical master equation and discuss its thermodynamic proper-
ties in Sec. III. We obtain a coarse-grained description for the
large spin dynamics and investigate the modification of Dicke
superradiance in Sec. IV A and the resulting heat currents
between the reservoirs in Sec. IV B. In this paper, by reservoirs
of different nature we mean that one is a standard heat bath
made of a collection of harmonic oscillators, while the other
reservoir is structured: it can be described by a single mode
strongly coupled to the spin ensemble and at the same time
coupled to an independent heat bath. The coupling between
the single mode and the spin ensemble can be locally of pure
dephasing or dissipative type. We will mainly consider the
pure-dephasing case since it is more tractable analytically.
Nevertheless, also the case of dissipative coupling is discussed
in Sec. V, showing that the main result of our paper, namely
the cooperative rectification effect, still applies. A summary of
our results is given in Sec. VI.

II. MODEL

A. Hamiltonian

Our model is described by the total Hamiltonian H =
HS + HI + HB , which we decompose in a standard way into
a system, an interaction, and a reservoir (bath) contribution,
respectively. The system Hamiltonian is described by a large
spin that is collectively (i.e., also via large-spin interactions)
coupled to a harmonic oscillator,

HS = ω0

2
Jz + λJz ⊗ (a + a†) + �a†a, (1)

where ω0 denotes the level splitting of the large spin, � repre-
sents the splitting of the harmonic oscillator, and λ represents
the coupling between them. The large spin operator can be
implemented by considering N identical two-level systems
described by Pauli matrices, such that Jx/y/z = ∑N

i=1 σ i
x/y/z.

Both the large spin and the harmonic oscillator are coupled to
separate reservoirs HI = Ht

I + H�
I , where

Ht
I = Jx

∑
k

(hktbkt + h∗
ktb

†
kt ),

(2)
H�

I = a
∑

k

hk�bk� + a†
∑

k

h∗
k�b

†
k�,

where the hkν denote the bare emission or absorption
amplitude for mode k in reservoir ν. As the bkt modes couple in
a direction that is transverse to the large spin Hamiltonian, we
will in the following call the associated reservoir the transverse
reservoir, and the other reservoir the longitudinal reservoir.
The reservoirs are modeled as noninteracting oscillators

Ht
B =

∑
k

ωktb
†
ktbkt , H�

B =
∑

k

ωk�b
†
k�bk�, (3)

which will be assumed to remain at thermal equilibrium states
in the subsequent analysis.

Our system is thus completely defined in terms of the
Hamiltonians in Eqs. (1)–(3). The reader mainly interested
in our results for this system may directly proceed to Sec. III.
However, in Sec. II B below, we demonstrate that our model
arises when the large spin is directly coupled to a longitudinal
reservoir by treating a collective reservoir degree of freedom
as part of the system. Furthermore, we provide some hints
about a possible physical implementation in Sec. II C and also
review the Dicke model dynamics arising in the limit λ → 0
in Sec. II D.

We would like to stress that the main findings of our paper
are recovered also when the coupling to the bosonic mode is
implemented by a locally dissipative interaction instead of a
locally purely dephasing interaction, i.e., substituting λJz →
λJx in Eq. (1), as discussed in Sec. V. Moreover, we remark
that, even when considering only the large spin as the system,
the single bosonic mode together with its coupling (2) to its
heat bath (3) represents a structured reservoir which is non-
Markovian by construction. Indeed, the single bosonic mode
is dynamically evolving in our model and will adapt to the
state of its connected heat bath.

B. Explicit Bogoliubov mapping

Thinking of the large-spin operators as implemented by
identical two-level atoms that couple collectively to photons
and phonons, respectively, it seems more in line with tradi-
tional approaches to consider them to be directly coupled to
two reservoirs. That is, the total Hamiltonian is now given by
H = H̃S + H̃I + H̃B . We note that in this section, we mark
all contributions that are different from the presentation in the
previous section with a tilde. Specifically, now the system is
only described by the large spin

H̃S = ω0

2
Jz, (4)

which is directly coupled to two reservoirs H̃I = Ht
I + H̃ �

I ,

Ht
I = Jx ⊗

∑
k

(hktbkt + h∗
ktb

†
kt ),

(5)
H̃ �

I = Jz ⊗
∑

k

(h̃k�b̃k� + h̃∗
k�b̃

†
k�).

The two reservoirs H̃B = Ht
B + H̃ �

B are described by otherwise
noninteracting oscillators

Ht
B =

∑
k

ωktb
†
ktbkt , H̃ �

B =
∑

k

ω̃k�b̃
†
k�b̃k�. (6)

Starting from such a setup, we note that, since the interaction
Hamiltonian of the longitudinal reservoir commutes with the
system Hamiltonian [H̃S,H̃

�
I ] = 0, the longitudinal reservoir

and the large spin system will not directly exchange energy.
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Naively, one might then be tempted to believe that the model
cannot support stationary heat currents from one reservoir
to the other. Nevertheless, a direct exchange of energy
between the reservoirs is possible as the individual interaction
Hamiltonians do not commute [H̃ �

I ,H t
I ] �= 0. This effect is,

however, of higher order and thus beyond the reach of a
naive master equation approach. Generally, an interaction that
appears to be locally of the pure-dephasing type as the second
of Eqs. (5) need no longer preserve the energy of the system
when further interactions are added.

We do now consider a Bogoliubov transformation of the
longitudinal reservoir modes

b̃k� = uk1a +
∑
k′>1

ukk′bk′� (7)

to new bosonic operators a and bk� with transformation
coefficients ukk′ yet to be determined. We have written these
new operators without a tilde symbol as we will demonstrate
in the following that they correspond to the operators used in
Sec. II A. We note that provided we start off with K̃ modes
in the longitudinal reservoir, we will thus separate one mode
a from the corresponding reservoir where only K = K̃ − 1
modes—often called residual oscillators—remain. Requiring
the new operators to fulfill the bosonic commutation relations
yields the equation

δkq = uk1u
∗
q1 +

∑
k′>1

ukk′u∗
qk′ . (8)

Normally, Bogoliubov transformations are applied to diag-
onalize a quadratic Hamiltonian. In contrast, here we only
intend to change the form of the coupling. Specifically, we
require that the large spin should only couple to the collective
degree of freedom described by mode a and that the part
of the Hamiltonian describing only the residual oscillators is
diagonal, i.e.,

H̃ �
I + H̃ �

B

!= Jz(λa + λ∗a†) + a
∑
k>1

h∗
k�b

†
k� + a†

∑
k>1

hk�bk�

+
∑
k>1

ωk�b
†
k�bk� + �a†a. (9)

Inserting the transformation (7) and comparing with the
desired form above, we find that it gives rise to two further
constraints,

0 =
∑

k

h̃k�ukk′ : ∀ k′ > 1,

(10)
ωk′�δk′q ′ =

∑
k

ω̃k�u
∗
kk′ukq ′ : ∀ k′,q ′ > 1.

Once we fulfill Eqs. (8) and (10), the coupling between the
longitudinal reservoir and the large spin will be mediated by
the collective coordinate a. These conditions can be written as
the problem of diagonalizing a hermitian matrix. Defining the

vectors

|W1〉 =

⎛⎜⎝u11
...

uN1

⎞⎟⎠, |Wk>1〉 =

⎛⎜⎝u1k

...
uNk

⎞⎟⎠,

|H 〉 = 1√∑
k |h̃k�|2

⎛⎜⎝ h̃∗
1�
...

h̃∗
N�

⎞⎟⎠, (11)

we see that Eq. (8) can be satisfied by orthonormality of
the vectors |Wk〉. Furthermore, the first of Eqs. (10) can be
written as orthogonality between |H 〉 and all but the first
previously defined vectors 〈H |Wk′>1〉 = 0. Finally, by defining
the hermitian matrix

B = (1 − |H 〉〈H |)

⎛⎜⎝ω̃1�

. . .
ω̃K̃�

⎞⎟⎠(1 − |H 〉〈H |),

(12)

we see that we can simultaneously satisfy Eqs. (8) and (10)
when choosing the |Wk〉 as eigenvectors of the matrix B.
By construction, |W1〉 = |H 〉 is already one eigenvector with
eigenvalue 0. The remaining eigenvectors are then for k > 1
given by B|Wk〉 = ωk|Wk〉. As the matrix B is hermitian, such
a mapping can always be found and is exact. The Hamiltonian
then assumes the form of Eq. (9) with the explicit relations

λ =
∑

k

h̃k�uk1 =
∑

k |h̃k�|2√∑
k |h̃k�|2

= λ∗,

� =
∑

k

ω̃k�u
∗
k1uk1 =

∑
k ω̃k�|h̃k�|2∑

k |h̃k�|2
> 0, (13)

hk� =
∑
k′

ω̃k′�u
∗
k′1uk′k : ∀ k > 1.

We therefore note that H̃S + H̃ �
I + H̃ �

B = HS + H�
I + H�

B ,
which exactly maps the total Hamiltonian of Eqs. (4)–(6) into
the total Hamiltonian of Eqs. (1)–(3). We also note that in the
strong-coupling limit h̃k� → ∞, the renormalized frequencies
� and ωk� as well as the renormalized couplings hk� remain
finite.

In what follows, we assume that the above mapping to a
collective mode has been performed and we will therefore con-
sider Eqs. (1)–(3) as the starting point of our considerations.
Figure 1 illustrates the effect of the applied mapping.

After transformation, we note that the coupling to both
reservoirs is dissipative already to lowest order in the tunneling
rates,

	t (ω) = 2π
∑

k

|hkt |2δ(ω − ωkt ) → 	t ,

(14)
	�(ω) = 2π

∑
k

|hk�|2δ(ω − ωk�) → 	�,

i.e., it does not commute with the system Hamiltonian (1).
By contrast, before the transformation the energy exchange
between the reservoirs was a higher-order effect. Similar
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FIG. 1. Sketch of the described mapping procedure. Top: In the
original system—compare Eqs. (4)–(6)—the large spin is directly
coupled to a transversal reservoir (via Jx , left and green) and
a longitudinal reservoir (via Jz, right and orange). Middle: The
Bogoliubov transformation applied on the longitudinal reservoir
allows one to separate a collective degree of freedom (described by
the oscillator mode a, center-right and yellow) from the longitudinal
reservoir, leading to renormalized coupling strengths and energies;
compare Eqs. (1)–(3). Bottom: After the transformation, we apply a
new decomposition into system and reservoirs (solid, colored), which
allows one to explore the limit of strong λ, while both reservoirs are
considered in the continuum limit with the respective couplings 	t

and 	� to the transversal and the residual longitudinal reservoirs—cf.
Eq. (14)—being treated perturbatively.

mappings are frequently used in the literature to treat strong-
coupling limits. When they only involve position operators,
the collective mode is then called reaction coordinate [36–38],
but also mappings to different lattice topologies exist [39].

The new reservoirs will be assumed to remain at their
local thermal equilibrium states throughout and we will
investigate the dynamics of the system subject to these two
environments. Now, a master equation treatment may cover the
effects of a strong coupling λ and may therefore also predict
stationary currents between the two reservoirs. By contrast,
for a vanishing coupling λ = 0 the model is split into two
independent components, where the large spin coupled to the
transversal reservoir represents the usual Dicke model with
its well-known superradiant behavior. We will use this Dicke
regime as a benchmark test for our model; compare Sec. II D.

C. Implementations

In the previous section, we have seen that a collective
reservoir mode may always be introduced at the price of
obtaining renormalized energies and couplings. It remains
to motivate why the coupling between the two-level systems
and the reservoirs should be identical, such that large-spin
operators arise, and the system can be treated in the simple
angular momentum basis.

One way of achieving collective couplings as in Eqs. (1)–(3)
would be their effective engineering in a quantum simula-
tor [18,40–42]. However, collective couplings also naturally

arise when the distance between the two-level systems is much
smaller than the wavelength of the reservoir modes with which
they interact. A most natural example for this situation is
a Bose-Einstein condensate of two-level systems, where all
atoms occupy the same quantum state and therefore see no
difference in their interaction with additional systems. Indeed,
it has recently been experimentally possible to implement the
collective Jx operator arising in the Dicke model by placing a
Bose-Einstein condensate in a cavity [43].

Another possible scenario could be when the two-level
systems are represented by identical ions in a trap inside a
cavity. Here, the two internal states would be represented
by electronic degrees of freedom, and the photons in the
surrounding cavity would assume the role of the transversal
reservoir. Collectivity of the transversal coupling could then be
achieved when the physical distance between the ions is much
smaller than the diameter of the cavity. The other bosonic
modes would correspond to the ions’ motional degrees of
freedom in the trap potential as is usually done in current
experiments [44]. Specifically, the collective vibrational mode
could represent the single longitudinal mode a in Eq. (1). Then,
the residual longitudinal reservoir would consist of the other
vibrational modes of the ions (relative motion).

In reality, we note that phonons can be expected to couple
not only along the longitudinal direction, i.e., in Eqs. (1)
and (5) one would rather expect couplings of the form
Jz ⊗ [. . .] → (n · J) ⊗ [. . .] with normal vector n. We expect
our model to be valid when the dephasing resulting from the
longitudinal component nz of their coupling dominates the
dynamics [9]. Moreover, in Sec. V we also consider the case
of a coupling in the x direction (n = ex). Furthermore, even
when these conditions for collectivity are not strictly fulfilled,
collective couplings may nevertheless arise in an effective
picture, when interactions between the two-level systems are
much stronger than the perturbations induced by the reservoirs.
Such an effective picture could arise similar to Sec. II B, but
now involving mappings between spin operators only, which
may not necessarily obey the same simple algebra as the large
spins.

D. Superradiance for λ = 0

The original Dicke Hamiltonian

HD = H̃S + Ht
I + Ht

B (15)

is recovered as an isolated part of the total system when λ → 0.
For HD it is known that, when all spins are prepared in the
most excited state and the temperature of the reservoir is
small, βtω0 � 1, the two-level systems will decay collectively,
resulting in a sharply localized flash of radiation with a
maximum intensity scaling as N2 and a width scaling as
1/N [15,16].

At finite temperatures, the master equation for the spin
system is given by [23,45]

ρ̇ = −i

[
ω0

2
Jz,ρ

]
+ 	tnt

[
J+ρJ− − 1

2
{J−J+,ρ}

]
+	t (1 + nt )

[
J−ρJ+ − 1

2
{J+J−,ρ}

]
, (16)
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where 	t = 2π
∑

k |hkt |2δ(ω0 − ωkt ) denotes the bare ab-
sorbtion and emission rate and nt = (eβtω0 − 1)−1 is the
Bose-Einstein distribution of the transversal boson reservoir
with inverse temperature βt , evaluated at the system transition
frequency ω0. Furthermore, we have used the collective ladder
operators J± = (Jx ± iJy)/2. We can clearly identify the terms
accounting for the closed spin evolution (commutator) and for
the emission (∝	t (1 + nt )) or absorbtion (∝ 	tnt ) of bosons
by the large spin. The ratio of these rates yields the simple
Boltzmann factor since nt/(1 + nt ) = e−βtω0 , such that this
master equation obeys the usual detailed balance relation,
which leads to thermalization at finite reservoir temperatures.
In particular, in the standard Dicke limit (nt → 0) it predicts
the collective decay from the most excited state m = +N/2
into the ground state m = −N/2.

To diagonalize the spin part of the Hamiltonian we recall
the angular momentum eigenstates (the length of the angular
momentum is fixed j = N/2 and will be omitted)

Jz|m〉 = 2m|m〉, (17)

where m ∈ {−N
2 , − N

2 + 1, . . . , + N
2 − 1, + N

2 }. On these
eigenstates, the J± operators act as

J±|m〉 =
√

N

2

(
N

2
+ 1

)
− m(m ± 1)|m ± 1〉. (18)

We can use these relations to represent the master equa-
tion (16) as a simple rate equation in the spin energy eigenbasis
|m〉 (with Pm = 〈m|ρ|m〉),

Ṗm = −[	tntM
+
m + 	t (1 + nt )M

−
m ]Pm

+	tntM
−
mPm−1 + 	t (1 + nt )M

+
mPm+1,

M±
m = N

2

(
N

2
+ 1

)
− m(m ± 1). (19)

The coherences between different energy eigenstates will
(if initially present at all) evolve independently and simply
decay (as is often the case for the standard quantum-optical
master equation). However, we note that the matrix elements
M±

m entering the transition rates scale quadratically with the
number of two-level systems N , which is the formal reason
for the superradiant decay into the vacuum state.

III. MASTER EQUATION

In this section, we will now consider the case of finite
coupling (λ �= 0) between large spin and longitudinal boson.

A. Transition rates

We treat the large spin and the longitudinal boson mode as
the system defined by the parameters ω0, λ, and � in Eq. (1).
Provided that the spectrum of the system is nondegenerate
(at least between admitted transitions), the quantum-optical
master equation [16,46] becomes a rate equation connecting
only the populations in the system energy eigenbasis HS |a〉 =
Ea|a〉. For an interaction Hamiltonian of the form HI =∑

α Aα ⊗ Bα with system operators Aα and reservoir operators
Bα , respectively, the rates from eigenstate b to eigenstate a are

formally given by [46]

γab,ab =
∑
αβ

γαβ(Eb − Ea)〈a|Aβ |b〉〈a|A†
α|b〉∗, (20)

where

γαβ(ω) =
∫

e+iωτ TrB{Bα(τ )BβρB}dτ (21)

are Fourier transforms of the reservoir correlation functions
(bold symbols denote the interaction picture throughout).
Since the reservoir state

ρB = e−β�(H�−μ�N�)

Z�

⊗ e−βt (Ht−μtNt )

Zt

(22)

is a tensor product of the thermal individual reservoir states, the
temperatures enter the reservoir correlation functions γαβ(ω),
whereas the collective coupling properties enter the matrix
elements of the system coupling operators Aα .

Specifically, we can identify in our interaction Hamil-
tonian (2) the coupling operators A1 = Jx , A2 = a, A3 =
a†, B1 = ∑

k (hktbkt + h∗
ktb

†
kt ), B2 = ∑

k hk�bk�, and B3 =∑
k h∗

k�b
†
k�. Consequently, the Fourier transforms of the non-

vanishing correlation functions become

γ11(ω) = �(+ω)	t (+ω)[1 + nt (+ω)]

+�(−ω)	t (−ω)nt (−ω),

γ23(ω) = �(+ω)	�(+ω)[1 + n�(+ω)],

γ32(ω) = �(−ω)	�(−ω)n�(−ω), (23)

where 	t/�(ω) = 2π
∑

k |hkt/�|2δ(ω − ωkt/�) denotes the spec-
tral coupling density of transversal and longitudinal reservoirs,
�(ω) is the Heaviside step function, and

nν(ω) = 1

eβν (ω−μν ) − 1
(24)

is the Bose distribution of reservoir ν ∈ {t,�} with inverse
temperature βν and chemical potential μν � 0. In this paper,
we will consider the case of vanishing chemical potentials
μν = 0, but results expressed in terms of nν(ω) will also
hold for finite chemical potentials (used to effectively model
interactions between bosons).

B. Energy eigenbasis

To obtain the eigenbasis of (1), we find it useful to employ
the polaron transformation [47]

U = eJzB, B = λ∗

�
a† − λ

�
a, (25)

which—since B† = −B is anti-Hermitian—acts unitarily on
the operators. It is straightforward to show the following
relations:

UaU † = a − λ∗

�
Jz, Ua†U † = a† − λ

�
Jz,

(26)
UJ+U † = J+e+2B, UJ−U † = J−e−2B.

Consequently, the polaron transformation can be used to
effectively decouple spin and polaron mode

H̃S = UHSU
† = ω0

2
Jz − |λ|2

�
J 2

z + �a†a. (27)
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The eigenstates ˜|n,m〉 = |̃n〉 ⊗ |̃m〉 of H̃S are tensor products
of the conventional angular momentum eigenstates (17) and
the Fock states |̃n〉, where we note that the conventional
relations for creation and annihilation operators hold in the

polaron basis, e.g., a† |̃n〉 = √
n + 1 ˜|n + 1〉. Consequently, the

eigenstates |n,m〉 of HS can also be labeled by the spin quan-
tum number m ∈ {−N/2, . . . , + N/2} and the occupation
number of the longitudinal boson mode n ∈ {0,1,2, . . .} and
have energies

Enm = �n + ω0m − 4
|λ|2
�

m2. (28)

C. Matrix elements

The matrix elements in the transition rates (20) can also
be conveniently evaluated using the polaron transformation.
For example, the collective spin flip operator—recalling that
Jx = J+ + J−—becomes

|〈n,m|A1|n′m′〉|2 = | ˜〈n,m|UJxU
†
˜|n′,m′〉|2

= |〈ñ,m|(J+e+2B + H.c.)|˜n′,m′〉|2

= δm′,m−1M
−
m |〈̃n|e+2B |̃n′〉|2

+ δm′,m+1M
+
m |〈̃n|e−2B |̃n′〉|2, (29)

and it is visible from the definition of B in Eq. (25) that for
finite λ this reservoir triggers transitions between any n and
n′ but only between neighboring m and m′ = m ± 1. Further-
more, it is straightforward to see that

∑
n |〈̃n|e±2B |̃n′〉|2 =∑

n′ |〈̃n|e±2B |̃n′〉|2 = 1. Therefore, the absolute value of this
matrix element can be interpreted as a conditional probability
distribution spreading the original rate (for λ = 0, admitting
only n′ = n) over different occupation eigenstates n′; see also
Fig. 2.

Whereas for small λ the matrix element is centered around
n′ = n, it becomes for large λ more likely that also the
bosonic occupation number changes. We furthermore note the
asymmetry of the distribution, which however is reduced when
�n � n. The fact that for stronger couplings there is a dip at
the origin can be qualitatively understood by realizing that
e±2B is a displacement operator [2].

By contrast, the other coupling operators only allow for the
creation or annihilation of one quantum of the longitudinal
boson mode, respectively

|〈n,m|A2|n′m′〉|2 =
∣∣∣∣ ˜〈n,m|

(
a − λ∗

�
Jz

)
˜|n′m′〉

∣∣∣∣2

= δmm′δn′,n+1(n + 1)

+ δmm′δnn′
4m2λ2

�2
,

|〈n,m|A3|n′m′〉|2 =
∣∣∣∣ ˜〈n,m|

(
a† − λ

�
Jz

)
˜|n′m′〉

∣∣∣∣2

= δmm′δn′,n−1n + δmm′δnn′
4m2λ2

�2
. (30)
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FIG. 2. Matrix element |〈̃n|e±2B
˜|n + �n〉|2 for different coupling

strengths (vertically shifted for clarity). For small λ (top, black and
grey), mainly transitions changing only the spin angular momentum
quantum number are allowed. As λ increases (middle: red and orange;
bottom: dark and light green), the matrix element also allows for
transitions between distant occupation states. All distributions are
normalized to 1, such that the plotted quantity can be interpreted as
a conditional probability distribution. Tick marks on the vertical axis
correspond to steps of 0.1. Other parameters: n = 10.

Here, λ only enters the diagonal contribution, which is
irrelevant as it does not change the dynamics of the rate
equation.

In total, the resulting rate equation

Ṗnm =
∑
n′m′

Wnm,n′m′Pn′m′ (31)

is of standard form, namely additive in the dissipators
Wnm,n′m′ = W

(t)
nm,n′m′ + W

(�)
nm,n′m′ , where for (n,m) �= (n′,m′)

we have for the (positive) transition rates—cf. Eq. (20)—from
(n′,m′) to (n,m) the expressions

W
(t)
nm,n′m′ = γ11(En′m′ − Enm)|〈nm|A1|n′m′〉|2,

W
(�)
nm,n′m′ = γ23(En′m′ − Enm)|〈nm|A3|n′m′〉|2

+ γ32(En′m′ − Enm)|〈nm|A2|n′m′〉|2. (32)

The diagonal entries Wnm,nm = −∑
(n′m′)�=(nm) Wn′m′,nm

follow from trace conservation. We see that
|〈n,m|A1|n′,m′〉|2 = |〈n′,m′|A1|n,m〉|2 and also that
|〈n,m|A2|n′m′〉|2 = |〈n′m′|A3|n,m〉|2, such that Eqs. (23)
imply the usual local-detailed balance relations

W
(t)
nm,n′m′

W
(t)
n′m′,nm

= eβt (En′m′ −Enm),
W

(�)
nm,n′m′

W
(�)
n′m′,nm

= eβ�(En′m′−Enm). (33)

We note that this property enables one to formulate a
consistent thermodynamic picture of these rate equations,
including positivity of the entropy production rate in a far-
from-equilibrium regime (βt �= β�) and the existence of a heat
exchange fluctuation theorem [48]. The general structure of
the rate equation is depicted in Fig. 3.

Any numerical simulation of the resulting rate equation [49]
will have to cut the a priori infinitely large bosonic Hilbert
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FIG. 3. Graph representation of allowed transitions between the
n,m-parametrized eigenstates (green circles) of HS for N = 2. Black
arrows in horizontal direction represent transitions triggered by
the longitudinal reservoir; compare Eq. (30). The other (red) lines
represent transitions triggered by the transversal reservoir; compare
Eq. (29). For finite λ, these also admit diagonal transitions changing
both m and n (dashed red, background), whereas for λ → 0, only
the vertical transitions (solid red) remain. The basic idea of coarse
graining is to obtain effective rates (bold arrows) between mesostates
(shaded regions) formed by lumping together the different Fock
states for a given spin quantum number, physically motivated by
fast horizontal equilibration 	� � 	t . Whereas the transition rates
in the original system obey local detailed balance relations (33),
the coarse-grained rates will not; cf. Eq. (40) and the discussion in
Sec. III F.

space of the system. With such a cutoff, the total dimension
required by the rate equation scales as NNcut, but in particular
for too small cutoff values, the dynamics can be altered as,
e.g., the bosonic commutation relations cannot be fulfilled at
the cutoff. One can in principle check for the influence of such a
cutoff numerically by demonstrating convergence of results in
dependence of the cutoff size Ncut. For steady state calculations
the influence of the cutoff will be negligible when the highest
considered occupation eigenstates are hardly populated. In
particular when one of the reservoir temperatures is large,
one may however require a large boson cutoff Ncut, making
full-scale simulations in this regime difficult. It is therefore
important to stress that the coarse-graining procedure, that
we introduce in Sec. III E below, leads to an approximate
description that does not require any cutoff, as all bosonic
eigenstates are taken into account. We will then be able, within
the range of validity of the coarse-grained picture, to obtain
reliable numerical results also for large reservoir temperatures.

D. Energy currents

When the rate matrix is additively decomposable into
the reservoirs ν, i.e., when the transition rates from energy
eigenstate j to energy eigenstate i are decomposable as Wij =∑

ν W
(ν)
ij , we can directly infer the (time-dependent) energy

currents from the system into reservoir ν by multiplying the

occupation Pj with the reservoir-specific transition rate W
(ν)
ij

and the corresponding energy difference (Ej − Ei). Summing
over all initial states and all allowed transitions then yields the
energy current into reservoir ν,

I
(ν)
E (t) =

∑
i,j

(Ej − Ei)W
(ν)
ij Pj (t)

t→∞→
∑
i,j

(Ej − Ei)W
(ν)
ij P̄j .

(34)

Here, we have deliberately chosen the convention that the
current counts positive when the system injects net energy
into the reservoir, and negative otherwise.

E. Coarse graining

We can define the reduced probability of being in spin
eigenstate m by summing over the different occupation
configurations,

Pm =
∑

n

Pnm. (35)

Then, we can formally write its time derivative as

Ṗm =
∑
m′

[∑
nn′

Wnm,n′m′
Pn′m′

Pm′

]
Pm′ , (36)

where we see that the set of Pm does not obey a closed
Markovian evolution equation, since to obtain the time-
dependent prefactors in square brackets one first has to solve
the full rate equation for the Pnm probabilities. However,
in certain limits an approximate Markovian description is
possible. To motivate this approximation we identify in the
time-dependent prefactors in brackets the—in general time-
dependent—conditional probability Pn′m′|m′ of the system
being in state n′m′ provided that the spin is in state m′. When
parameters are now adjusted such that the longitudinal mode
equilibrates much faster than the large spin, we can replace
the time-dependent conditional probability by its stationary
equilibrated value [50],

Pn′m′

Pm′
→ P̄n′m′|m′ , (37)

which in general depends on both states n′ and m′. In general,
the resulting coarse-grained rates

Wmm′ =
∑
nn′

Wnm,n′m′ P̄n′m′|m′ (38)

between mesostates m′ and m will implicitly depend on the
coupling constants and temperatures of all reservoirs through
the conditional steady-state probability P̄n′m′|m′ . This also
holds for an additive decomposition of the total rate matrix
Wnm,n′m′ = ∑

ν W
(ν)
nm,n′m′ . Therefore, in a coarse-grained de-

scription, the reservoirs will not simply enter as independent
additive contributions, and furthermore, the coarse-grained
rates need not obey detailed balance by construction Wmm′

Wm′m
�=

eβ(Em′ −Em).
Specifically, we note that in our case the conditional proba-

bilities P̄n′m′|m′ = e−n′β��[1 − e−β��] are just the thermalized
probabilities of the longitudinal oscillator mode in contact with
its own reservoir. They are well approached when 	� � 	t .
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The approximate coarse-grained rates only describe transitions
between the large spin eigenstates,

Wmm′ =
∑
nn′

Wnm,n′m′e−n′β��[1 − e−β��]. (39)

We note that the rates due to A2 and A3 will not contribute to
the coarse-grained ones W

(�)
mm′ = 0, since they do not induce

transitions between different mesostates m and m′; see Eq. (30)
and Fig. 3. For the other rates however, a contribution remains,
such that we can write

Wmm′ = δm′,m−1M
−
m

∑
nn′

γ11(En′m′ − Enm)

× |〈̃n|e+2B |̃n′〉|2e−n′β��[1 − e−β��]

+ δm′,m+1M
+
m

∑
nn′

γ11(En′m′ − Enm)

× |〈̃n|e−2B |̃n′〉|2e−n′β��[1 − e−β��], (40)

where we have used Eq. (29). We stress again that, unless the
temperatures of both reservoirs are equal, the coarse-grained
rates will not obey a conventional detailed balance relation.
Instead, we find a more general relation; see Sec. III F.
With introducing the net number of bosons exchanged with
the longitudinal boson reservoir n̄ = n − n′ (we will in the
following use the overbar to indicate that n̄ can assume negative
values) and defining the coarse-grained spin energy as

Em = ω0m − 4
|λ|2
�

m2, (41)

we can rewrite the approximate coarse-grained rates as

Wmm′ = δm′,m−1M
−
m

+∞∑
n̄=−∞

γ11(Em−1 − Em − �n̄)αn̄

+ δm′,m+1M
+
m

+∞∑
n̄=−∞

γ11(Em+1 − Em − �n̄)αn̄. (42)

Above, we have introduced a normalized distribution with∑+∞
n̄=−∞ αn̄ = 1 by using

αn̄ =
∞∑

nn′=0

δn̄,n−n′ |〈̃n|e±2B |̃n′〉|2e−n′β��[1 − e−β��]

= e−(4|λ|2/�2)(1+2n�)

(
1 + n�

n�

)n̄/2

×Jn̄

(
8|λ|2
�2

√
n�(1 + n�)

)
, (43)

where Jn̄(x) denotes the modified Bessel function of the first
kind. In the second line, we have explicitly evaluated the matrix
element and performed the summation.

The coarse-grained rates depend on both β� (through αn̄)
and βt (through γ11(ω)). Despite these sophisticated rates, the
structure of the approximate coarse-grained rate equation now
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FIG. 4. Level spectrum (41) for N = 8. For finite coupling
strength, the level spectrum (symbols) is no longer equidistant. Since
a transition from the m = +N/2 state (right-most) to the ground
state m = −N/2 (left-most) is only allowed along the connected
states (dotted lines), the level renormalization may seriously affect the
Dicke superradiance and even block the process. Other parameters:
ω0 = �.

has a simple tridiagonal form

Ṗm = −[γ (Em − Em−1)M−
m + γ (Em − Em+1)M+

m ]Pm

+ γ (Em+1 − Em)M+
mPm+1

+ γ (Em−1 − Em)M−
mPm−1,

γ (ω) =
+∞∑

n̄=−∞
γn̄(ω) =

+∞∑
n̄=−∞

γ11(ω − �n̄)αn̄ (44)

with dimension N + 1. We see that in contrast to the original
superradiance master equation (19), the level spectrum (41) is
no longer equidistant, but the scaling of the matrix elements
with the spin length N will persist. This also implies that
the most excited spin state is not necessarily the one with
m = +N/2, see Fig. 4.

Although it is only valid in the limit where the longitudinal
mode equilibrates much faster than the large spin (	� � 	t ),
the advantages of the coarse-graining procedure are obvious.
The numerical effort is significantly reduced as the rate matrix
describing both the large spin and the longitudinal phonon
mode has dimension O{NNcut} and is fully occupied, whereas
the coarse-grained rate matrix is only N -dimensional and
tridiagonal. Furthermore, a bosonic cutoff is not necessary
in the coarse-grained description and a thermodynamic inter-
pretation is still possible, provided that the generalized KMS
relations (45) are correctly taken into account.

F. Nonequilibrium dynamics

The temperatures of transversal and longitudinal reservoirs
may be different, giving rise to nonequilibrium stationary
energy currents between the reservoirs. To evaluate the total
energy exchanged with both reservoirs one could of course
numerically evaluate the high-dimensional rate equation with
a suitable cutoff of the longitudinal boson mode. Especially
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at large longitudinal temperatures, however, this may be
computationally difficult.

To obtain the thermodynamics of the coarse-grained rate
equation, it is helpful to note that the standard Kubo-Martin-
Schwinger (KMS) relations of transversal and longitudinal
correlation functions imply a nonstandard [51,52] KMS-type
relation between the different terms in the sum

γ+n̄(−ω)

γ−n̄(+ω)
= α+n̄

α−n̄

γ11(−ω − �n̄)

γ11(+ω + �n̄)
= e+β�n̄�e−βt (ω+n̄�). (45)

Naturally, at equilibrium β� = βt we recover the usual KMS
relation, the coarse-grained rates obey detailed balance, and
the stationary state of the coarse-grained rate equation (44) is
just the canonical equilibrium one.

For different temperatures, relation (45) is consistent with
the interpretation that processes described by the term γn̄(ω)—
representing a net change of −ω in the system’s energy via
the exchange of n̄ bosons with the longitudinal mode—must
be accompanied with an energy transfer of n̄� into the longi-
tudinal reservoir and a transfer of ω − n̄� into the transversal
reservoir. We can quantify for each process the fractions of the
system’s energy change that are transferred into longitudinal
and transversal reservoirs, respectively. Formally, we can then
compute for a rate equation of the form Ṗi = ∑

j

∑
n̄ W

(n̄)
ij Pj

the stationary energy currents into both reservoirs via

I
(�/t)
E =

∑
i,j

∑
n̄

�E
(n̄,�/t)
ij W

(n̄)
ij P̄j . (46)

Specifically, we do this for each transition term in the rate
equation (44),

Ṗm = −[γ (Em − Em−1)M−
m + γ (Em − Em+1)M+

m ]Pm

+
∑

n̄

γn̄(Em+1 − Em)M+
mPm+1

+
∑

n̄

γn̄(Em−1 − Em)M−
mPm−1, (47)

to calculate the currents into reservoirs � and t via

I �
E(t) =

∑
m

∑
n̄

n̄�γn̄(Em+1 − Em)M+
mPm+1(t)

+
∑
m

∑
n̄

n̄�γn̄(Em−1 − Em)M−
mPm−1(t),

I t
E(t) =

∑
m

∑
n̄

(Em+1 − Em − n̄�)

× γn̄(Em+1 − Em)M+
mPm+1(t)

+
∑
m

∑
n̄

(Em−1 − Em − n̄�)

× γn̄(Em−1 − Em)M−
mPm−1(t). (48)

Before proceeding, we mention a few properties of the
steady-state currents I

�/t

E = limt→∞ I
�/t

E (t), obtained by let-
ting Pm(t) → P̄m. First, in equilibrium (β� = βt = β), both
currents must vanish individually. Formally, this is enforced
by the KMS relation (45). Second, the steady-state currents
must compensate as the total energy is conserved I �

E = −I t
E .

Third, the second law of thermodynamics actually implies that

(β� − βt )I �
E � 0 in all parameter regimes (heat always flows

from hot to cold). Finally, we also stress that a necessary (but
not sufficient) condition for a finite current is that all stationary
probabilities must be strictly smaller than 1 (if only one state is
occupied Pm̄ = 1, there are no transitions between two states
and thus no stationary current).

In our results section, we explicitly confirm that the currents
obtained from the coarse-grained rate equation (47) and
from the high-dimensional rate equation (31) coincide in the
appropriate limit 	� � 	t .

Finally, to perform calculations, we will parametrize the
spectral coupling density in Eq. (23) with an ohmic form and
exponential cutoff ωc [8],

	t (ω) = 	tωe−ω/ωc . (49)

Here, 	t regulates the coupling strength to the transversal
reservoir and the cutoff expresses the fact that for any realistic
model the spectral coupling density should decay in the
ultraviolet regime.

G. Weak-coupling limit

The observation that the two reservoirs no longer enter
additively in the coarse-grained description does not come
unexpected, as an additive decomposition typically requires
the weak-coupling limit between system and reservoir. By
contrast, in our setup the large spin may be strongly coupled to
the longitudinal boson mode. To check for consistency, we will
therefore briefly discuss the limit of small λ. We can use the
fact that near the origin we have Jn̄(x) = x|n̄|

2|n̄||n̄|! + O{x|n̄|+2}
to expand the correlation function in the dissipator as

γ (ω) = γ11(ω) + 4|λ|2
�2

[γ11(ω + �)n�

+ γ11(ω − �)(1 + n�) − γ11(ω)(1 + 2n�)]

+O{|λ|4}. (50)

Clearly, the original Dicke superradiance model is consistently
recovered at λ → 0. As expected, we obtain an additional
dissipator of order |λ|2. What at first sight comes a bit
unexpected is that the additional dissipator does not solely
depend on the thermal properties of reservoir � but also on
reservoir t (through γ11). It is also proportional to the product
of 	t (ω) and |λ|2. This however is fully consistent with our
initial model, since the interaction mediated by the λ coupling
is of pure-dephasing type for the large spin. Therefore, if
applied alone (	t (ω) → 0), it should not affect the dynamics
of the angular momentum eigenstates at all but can only induce
dephasing of coherences between different angular momentum
eigenstates.

IV. RESULTS

A. Equilibrium: Superradiant decay

For vanishing coupling λ = 0, it is well known that at
zero temperature, the quadratic scaling of the matrix elements
leads to superradiant decay toward the ground state with a
maximum intensity scaling as N2 and consequently a width
of the peak scaling as 1/N . We can reproduce these findings
in the appropriate limits (not shown). In this section, we want

032135-9



SCHALLER, GIUSTERI, AND CELARDO PHYSICAL REVIEW E 94, 032135 (2016)

to investigate how the decay dynamics is influenced by the
presence of the longitudinal mode and therefore consider
the case that both reservoirs are at zero temperature, or at
least temperatures sufficiently low that excitations entering
the system from the reservoir can be safely neglected, n� =
nt = 0.

The scaling of Dicke superradiance also reflects in the
passage time towards the ground state. At zero temperature,
the probability distribution for the passage time to the ground
state is defined by

P (t) = d

dt
P−N/2(t). (51)

Provided the ground state is the stationary state associated
with a given initial state, it is straightforward to check that it is
normalized,

∫ ∞
0 P (t)dt = 1, and positive, P (t) � 0. We will

be interested in the mean passage time and its width, which
requires us to evaluate

〈τn〉 =
∫ ∞

0
τnP (τ )dτ (52)

for n = 1 and n = 2. For a rate matrix of the form

L =

⎛⎜⎜⎜⎜⎝
0 L12

0 −L12 L23

−L23
. . .
. . .

⎞⎟⎟⎟⎟⎠, (53)

the first and second cumulants of the passage time distribution
assume the simple form

〈τ 〉 = 1

L12
+ 1

L23
+ . . . ,

(54)

〈τ 2〉 − 〈τ 〉2 = 1

L2
12

+ 1

L2
23

+ . . . .

Without longitudinal boson coupling λ = 0, we have
L12 = 	t (ω0)M+

−N/2, L23 = 	t (ω0)M+
−N/2+1, and so on—cf.

Eq. (19)—such that we can obtain the mean passage time and
its width for the original Dicke limit analytically,

〈τ 〉 = 2[γ + �0(N + 1)]

	t (ω0)(N + 1)
,

〈τ 2〉 − 〈τ 〉2 = [12γ + π2(N + 1) + 12�0(N + 1)

− 6(N + 1)�1(N + 1)]/
[
3	2

t (ω0)(N + 1)3
]
,

(55)

where γ ≈ 0.577 216 denotes the Euler constant and �n(x) the
polygamma function. We see that for large N the mean passage
time roughly scales as 〈τ 〉 ≈ (2γ + ln N )/[	t (ω0)N ] and the
width as

√
〈τ 2〉 − 〈τ 〉2 ≈ π/[

√
3N	t (ω0)]. That means that

to obtain a sharply determined passage time one requires
very large N , e.g., to obtain a width ten times smaller
than the mean one requires N = O{107} two-level systems.
For infinite N , the passage time is very well determined
and—despite the stochastic nature of the rate equation—the
system relaxes nearly deterministically towards the ground
state with a negligible temporal error.

These findings would be qualitatively similar if we start
from the middle of the spectrum (e.g., at m ≈ 0) instead. In
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FIG. 5. Plot of the dimensionless mean passage time 〈	tτ 〉 vs
system size N for different coupling strengths when both reservoirs
are at the same low temperature, β = β� = βt . The dynamics of the
original superradiance scenario (dotted brown) is hardly changed
when instead of starting at m = +N/2 we do initially prepare the
system at m = −1/2 (solid black)—apart from an obvious speedup
by a factor 2. When the coupling strength λ is increased, the
presence of additional decay channels (compare the dashed lines
in Fig. 3) first increases the relaxation speed (dashed red and
dash-dash-dotted green). However, beyond a critical system size N

an exponential slowdown of relaxation (increase of the passage time)
occurs (dash-dotted blue and dash-dot-dotted orange). This is due to
the renormalization-induced increase of the excitation energies above
the ground state (compare, e.g., the orange curve in Fig. 4), which due
to the finite bandwidth ωc finds no support in the correlation function.
Other parameters: ω0 = �, β� = 10, ωc = 10�.

fact, to investigate how the additional boson mode influences
the relaxation behavior to the ground state at low temperatures
we have to take the level distortion in Fig. 4 into account.
When preparing the system in the state m = +N/2 we may
not see any relaxation toward the ground state as a trivial effect
of the level renormalization. To ensure that we only observe
unidirectional relaxation we therefore constrain ourselves to
odd N and prepare the system initially in the state m = −1/2.
The results are displayed in Fig. 5. One can see that at first finite
couplings λ aid the relaxation process, since the passage time
becomes shorter. However, above a critical coupling strength
the passage time increases again for larger system sizes N .
This is due to the finite bandwidth ωc of the spectral coupling
density (49): The excitation energy above the ground state
�E = ω0 + 4 |λ|2

�
(N − 1) becomes so large, |�E| � ωc, that

the bosonic correlation function has no support and the last
steps above the ground state occur extremely slowly, with the
visible effect on the passage time.

B. Nonequilibrium: Steady state heat current and rectification

When we consider different temperatures in both reservoirs,
this will induce a steady state heat current from hot to
cold across the system. This simply means that trajectories
where the system absorbs energy from the hot reservoir
and afterwards emits energy into the cold reservoir become
more likely than trajectories where the net flow of energy
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is opposed. The total energy is conserved, which at steady
state implies that we need to consider only the energy current
into the longitudinal boson reservoir IE = I �

E = −I t
E (we

have of course confirmed this equality). As heat currents are
driven by transitions between energy eigenstates, this means
that to obtain a nonvanishing current, the system should not
reside in a pure state. Equations (34) and (48) imply that to
calculate a current, we first have to evaluate the stationary
probabilities, which can for large matrices be numerically
unstable. Therefore, we provide an analytical formula for
tridiagonal rate matrices in Appendix A.

1. Weak-coupling current

We parametrize the inverse temperatures as

β� = 1

2
[β̄ + �β +

√
β̄2 + �β2],

(56)

βt = 1

2
[β̄ − �β +

√
β̄2 + �β2]

and plot the energy current through the system versus �β for
a fixed inverse average temperature β̄. Trivially, as a conse-
quence of the second law we expect for �β > 0 (implying
for the temperatures T� < Tt ) that the current entering the
longitudinal reservoir is positive IE > 0 and for �β < 0 we
consequently expect IE < 0.

To drive the system into a regime where the stationary
current is mainly carried by large matrix elements M±

m and
thus scales quadratically with the size N , we essentially have
to populate the states with m ≈ 0 as these contribute most to the
current; compare Eq. (48). For our model, such a configuration
is best approached when all populations are approximately
equally occupied: For weak-coupling strengths λ we can
approximate Em+1 − Em ≈ ω0 such that the summation in
the current from the equipartition assumption simply yields a
quadratic factor

∑
m M±

mP̄m±1 = N (N + 2)/6. From Eq. (48)
we then obtain that the current will scale quadratically with N

in this regime,

IE →
∑

n̄

(n̄�)[γn̄(+ω0) + γn̄(−ω0)]
N (N + 2)

6
. (57)

Such an equipartition regime can be expected at large average
temperatures, and to see a significant current we do at the same
time require a large temperature difference. Transferred to our
variables in Eq. (56) this means we have to consider small
β̄ and large �β. Figure 6 indeed shows a quadratic scaling
of the current with N in the regime where the populations
are approximately equal (positive �β). The thin dotted line
for N = 64 also demonstrates the quality of the analytic
approximation (57). Most interesting however, we observe that
for large temperature differences, under temperature inversion
(�β → −�β) the populations are no longer equally occupied
and simultaneously the absolute value of the current drops
drastically. This is related to a configurational blockade,
where the coarse-grained system relaxes to a pure state (see
caption of Fig. 6). Thus, at large temperature differences the
system effectively implements a heat diode [32,33,53] with
a rectification efficiency that is controllable by N . Since for
�β � 0 the current scales quadratically and for �β � 0 it
does not, this effect can be controlled by increasing the number

FIG. 6. Plot of the dimensionless steady state energy current
vs dimensionless inverse temperature difference for weak coupling
λ = 0.1� and large average temperatures β̄� = 0.01. The top
horizontal axis converts into dimensionless temperature differences
β̄�T = β̄(Tt − T�). The top left inset shows the stationary occupation
of the energy levels for N = 64, where the top curve denotes the
ground state and the bottom curve the most excited state (at �β/β̄ = 0
we have the Gibbs distribution at β̄). Finally, the two density plots
(white corresponds to zero, red to respective maximum) display the
stationary state occupation P̄nm of the full rate equation (31) for
N = 16, Ncut = 40, and 	� = 106	t at �β/β̄ = −100 (left) and
�β/β̄ = +100 (right). For the density plots, m ranges from −N/2
(top) to +N/2 (bottom), n ranges from 0 (left) to Ncut (right). When

the levels are approximately equally occupied (�β/β̄
>≈ 0, and right

density plot), the quadratic scaling of the matrix elements around
m = 0 carries over to the stationary current as predicted in Eq. (57)
(thin dotted line for N = 64). In contrast, for �β/β̄ � 0, the system
dominantly resides in the lowest mesostate (inset and left density
plot), and the current is consequently strongly suppressed. In total,
the system may therefore be used as a heat diode. In contrast, the
current for N = 1 (dashed grey, scaled by 103 for visibility) is
also asymmetric but does not display significant rectification. The
symbols (for N = 32 only) indicate currents derived using the full
rate equation (31) with a maximum occupation of the longitudinal
boson mode Ncut ∈ {5,10,20,40,80,160,320} (orange arrows) and
	� = 106	t . With increasing cutoff Ncut, the full master equation
current (symbols) approaches the coarse-grained one (orange curve),
where convergence is much faster when the longitudinal temperature
is low: For large longitudinal temperatures T� (left), 320 bosonic
modes barely suffice to ensure convergence, whereas for small
temperatures T� (right), roughly ten modes suffice. Other parameters:
β̄	t = 0.01, ω0 = �, λ = 0.1�, ωc = 10�.

of two-level systems N . For a small negative thermal bias the
occupations of higher levels drop only mildly (implying a finite
current) whereas for �β � 0 essentially just the ground state
is occupied (inset). This also results in a negative differential
thermoconductance [34,54–56].

Finally, we would like to stress that we can compare
the current from the coarse-grained rate equation (48) with
the one computed from the exact master equation when
	� � 	t . This requires us to take a sufficient number
of maximum bosonic occupations into account, requiring
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FIG. 7. Similar to Fig. 6, but for a lower average temperature
β̄� = 0.1. An equipartition of levels is not reached, and the current
does not scale quadratically with N . Nevertheless, rectification is still
present. Color codes and other parameters have been chosen as in
Fig. 6.

potentially large computational resources. The symbols for
Ncut ∈ {5,10,20,40,80,160,320} in Fig. 6 demonstrate that
convergence for the current is reached in either regime (also
demonstrating validity of the coarse-graining approximation),
but it is significantly slower when the temperature of the
longitudinal boson reservoir is large (negative �β). This
is somewhat expected, since for large temperatures many
longitudinal boson mode excitations have to be taken into
account. Consistently, we see in the bottom left density plot of
Fig. 6 that the occupation for the state | − N/2, + Ncut〉 is not
negligible for the chosen cutoff value Ncut = 40.

The maximum bosonic cutoff can be reduced when one
lowers the average temperature. Indeed, we see in Fig. 7 that for
N = 16 (left density plot) fewer bosonic modes are occupied.
However, the reduction of the average temperature (increase of
β̄) also has the effect that the levels in the conducting direction
are no longer equipartitioned, such that the current is reduced
and no longer scales quadratically in N .

When we further decrease the average temperature, com-
pare Fig. 8, the currents are further reduced. Furthermore, in
the conducting direction it does not even rise monotonically
with N .

2. Strong-coupling current

An ideal heat diode should have a large current in the
conducting direction and should faithfully block the current
when the direction is reversed. It is therefore reasonable to
probe the strong-coupling regime, as increasing λ should
naively also increase the current. However, we note that for
our model this is only partially true, as the increased level
renormalization will also reduce the energy current. In fact,
previous investigations have found a suppression of transient
superradiance in the strong-coupling limit [57]. We also find
an analogous behavior in the stationary regime.

For stronger couplings, the heat-diode capability is in prin-
ciple even enhanced and also present for smaller temperature

FIG. 8. Similar to Figs. 6 and 7, but for an even lower average
temperature β̄� = 1.0. No quadratic scaling is observed, the current
is significantly suppressed. Furthermore, the current for �β/β̄ � 0
does not even rise monotonically with N , but rectification is still
present. Color codes and other parameters have been chosen as in
Fig. 6.

differences, since the stationary state becomes rapidly pure
for �β� < 0 and thus effectively inhibits transport; see the
inset of Fig. 9. However, we also observe that for �β� > 0 the
quadratic scaling of the current does not hold over the complete
range of N . In fact, the current is for large N (in the figure for

FIG. 9. Plot of the dimensionless energy current between the
reservoirs vs dimensionless temperature difference for strong cou-
pling λ = 0.8 � and large average temperature β̄� = 0.01. The level
renormalization prohibits for large N the equipartition of levels (inset
for N = 64) for all nonequilibrium regimes and thus destroys the
quadratic scaling of the current. For small N and �β� � 0 it grows
approximately linearly with N but for larger N it is even reduced
and above N = 64 suppressed completely. Nevertheless, for finite
N the quality of heat rectification is improved in comparison to the
weak-coupling limit as for negative �β all but the ground state are
exponentially suppressed, which directly affects the current. Color
coding and other parameters chosen as in Fig. 6.
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N = 32 and N = 64) even further suppressed, which limits the
throughput capability of the heat diode. This is a consequence
of the level renormalization, which destroys the previously
observed equipartition of all energy levels (see inset). We note
that in the strong-coupling limit, the current in conductance
direction is carried by two noncommunicating regions in phase
space (compare right density plot). The mesostates with m ≈ 0
are hardly occupied and do not contribute to the current.
Instead, the system is rather concentrated close to the ground
state. Nevertheless, due to the strong coupling a significant
current is produced for finite N .

When we lower the average temperature (increase β̄) as
in the weak-coupling regime, the total current is strongly
suppressed without substantial changes in heat rectification
properties (not shown). These regimes are therefore less useful
for heat diode application purposes.

We note that the diode effect requires 	� � 	t (as one may
have expected from the violation of the detailed balance rela-
tion due to coarse graining) and that one of the temperatures is
small in comparison to the system energy scales (to concentrate
the populations at the boundaries of the phase space).

V. GENERALITY OF THE HEAT-DIODE EFFECT

The pure-dephasing character of the interaction between
the large spin and the collective mode facilitates the analytic
diagonalization of our system but also leaves open the question
of what are the fundamental prerequisites to produce the heat
diode behavior. In the previous sections, we have identified
a configuration blockade mechanism as being responsible
for the blockade of the heat current in one direction. This
picture is well confirmed in the density plots in Figs. 6–9.
However, a configuration space similar to Fig. 3 should
arise in any bipartite system with couplings that connect
to the individual constituents locally (on the level of the
Hamiltonian). Whenever the coupling to one reservoir is much
stronger than that to the other reservoir and also than the
coupling between the constituents, we will obtain a similar
scenario: The heat current will be suppressed when the strongly
coupled reservoir is hot and the weakly coupled reservoir is
cold. The supertransmittant amplification of the current in the
throughput direction affects the quantitative performance of
the heat diode.

To confirm this hypothesis, we have replaced the internal
coupling in Eq. (1) by a dissipative one, λJz → λJx . Then, the
system Hamiltonian implements the closed Dicke model [15],
which is a well-known toy model for a quantum-critical sys-
tem [58–60]. The model can be mapped to coupled harmonic
oscillators by employing a Holstein-Primakoff transformation,
amenable to further simplifications in the large-N limit.
However, to compare with our previous calculations we are
interested in the finite-N limit, where a numerical approach
is advisable (the spectral corrections due to first-order pertur-
bation theory in λ have no effect on the rate equation). The
new Hamiltonian defines a new energy eigenbasis (computed
numerically for a finite bosonic cutoff Ncut), within which we
derive a rate equation similar to Eqs. (31) and (32). Here, the
only difference is that the eigenstates and eigenvalues have to
be obtained numerically and are therefore characterized by a
single index and not as before by angular momentum m and

FIG. 10. Plot of the dimensionless energy current between the
reservoirs vs dimensionless temperature difference for a modified
model, where in Eq. (1) λJz → λJx , without any coarse-graining
approximation. Solid curves correspond to a bosonic cutoff Ncut = 10
and dashed curves of similar color to a bosonic cutoff Ncut = 20,
showing that for small N the cutoff has little effect in this regime.
Color coding and other parameters chosen as in Fig. 6.

boson occupation n. This also implies that a coarse-graining
procedure is not straightforward, such that the full model has to
be solved numerically (as was done for the symbols in Fig. 6).
The results depicted in Fig. 10 show that the rectification effect
is still present and very pronounced, confirming our conjecture.

VI. CONCLUSIONS AND PERSPECTIVES

We have studied nonequilibrium physics in an ensemble of
N identical two-level systems asymmetrically coupled with
two different reservoirs. One is a standard heat bath, while
the other reservoir is structured, with a single bosonic mode
coupled collectively to the ensemble of N two-level systems
and also to its own heat bath. By taking the evolution of the
single bosonic mode dynamically into account, we can model
the strong-coupling limit with that reservoir. We mainly con-
sidered the case where the coupling with the standard reservoir
is dissipative (transversal coupling) while the coupling with
the structured reservoir is assumed to be purely dephasing
(longitudinal coupling). We showed that our results also apply
to the case in which both couplings are locally dissipative, but
one reservoir is still structured. For large coherence lengths in
the reservoirs, the coupling is collective and the ensemble of
two-level systems behaves as a single large spin.

From the technical point of view, we mention that in the
limit where the coupling between the longitudinal boson mode
and its reservoir is much larger than the coupling of the large
spin to the transversal reservoir, we can approximately coarse
grain the dynamics by considering a reduced master equation
for the large-spin eigenstates only. This comes with the
advantage of a tremendously reduced numerical complexity
while maintaining the possibility of a thermodynamic interpre-
tation. In Appendix B we demonstrate that the coarse-grained
description generally applies when the longitudinal mode is
forced to remain in a thermal state.
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Our main results can be thus summarized as follows:
Superradiance. In usual investigations of superradiance

only the coupling with the transverse reservoir is considered.
There, the system starts from the largest angular momentum
state (corresponding to all two-level systems inverted). While
the system relaxes to the ground state, it passes through
superradiant states which emit radiation with an intensity
proportional to the number of atoms squared N2. We have
investigated the fate of superradiance in an equilibrium envi-
ronment, where both the longitudinal and transverse reservoirs
were held at zero temperature. For strong longitudinal coupling
strength and/or large system sizes N , superradiance can be
strongly affected by the presence of the longitudinal bath.
While the presence of an additional decay channel may in
some parameter regimes enhance the relaxation speed, the
longitudinal reservoir also induces obstacles to superradiance,
essentially due to modifications in the system energy levels:
First, the conventional largest angular momentum state is for
large system sizes and/or strong couplings no longer the ener-
getically most excited state. This implies that to relax toward
the true ground state, the system would have to tunnel through
a huge energy barrier, leading to an exponential suppression of
relaxation and thereby a complete superradiance blockade in
this regime. We have circumvented this problem by choosing
an initial state that in principle enables a fast relaxation toward
the true ground state. Second, one observes that the energy
distance between the low-energy states can become very large
for large couplings and/or large system sizes. Depending on
the details of the reservoirs (technically expressed by their
spectral coupling densities), they may not be able to absorb
such large energies, which may also strongly suppress the final
stages of superradiance.

Rectification and supertransmittance. We also investigated
the nonequilibrium dynamics by keeping the reservoirs at
different temperatures. This gives rise to a stationary heat
current through the system. Now, depending on the stationary
state the system assumes, the current can display very different
scalings with the system size N . While the current from a
hot transverse reservoir to a cold longitudinal reservoir is
supertransmittant (i.e., scales as N2 in the weak-coupling
regime), for the opposite thermal bias the current is strongly
reduced and becomes almost independent of N . This effec-
tively implements a heat diode, with a rectification factor that
can be tuned by changing the system size N . The essential
features needed to obtain the heat diode effect in a generic
system are discussed in Sec. V.

Our setup constitutes a proof of principle of how extremely
large rectification factors can be achieved by exploiting col-
lective couplings with thermal reservoirs. We have argued that
our model could be used to describe trapped ions collectively
coupled to a thermal photon field and a phonon field. Since
rectification allows energy transfer from the hot photon field
(transverse) to the cold phonon field (longitudinal), these
findings could inspire the design of a device able to efficiently
absorb energy from sunlight (that corresponds to a black-body
radiator with high temperature of ≈ 6000 K) and convert
it efficiently (due to supertransmittance) into heat stored in
a phonon reservoir. In the absence of sunlight, the inverse
process would be strongly suppressed, such that the total
device would be a very suitable energy harvester. We expect

our findings to apply to transport through bipartite systems
with highly asymmetric couplings, and the design of such
devices is an appealing avenue of further research.
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APPENDIX A: STATIONARY STATE

To calculate the heat current, we first need to calculate the
steady state of the rate equation. Numerically, we have found
that the determination of the null space is not always stable.
Therefore, we determined the null space of a rate matrix by
computing the adjugate matrix via the transpose of the cofactor
matrix. In the case of a tridiagonal rate matrix

(M)ij = δj,i+1mi,i+1 + δj,i−1mi,i−1 − δij (mi−1,i + mi+1,i)

(A1)

with dimension (N + 1) × (N + 1) this calculation simplifies
considerably. One can then check that the steady state is given
by (we use M = N + 1 for generality)

P̄k =
[∏k

i=2 mi,i−1
][∏M−1

j=k mj,j+1
]∑

k

[ ∏k
i=2 mi,i−1

][ ∏M−1
j=k mj,j+1

] , (A2)

where k ∈ {1, . . . ,M}.

APPENDIX B: ALTERNATIVE DERIVATION OF THE
COARSE-GRAINED RATE EQUATION

Here, we will show that we can also obtain the coarse-
grained rate equation (44) from a model where the longitudinal
boson is not coupled to an independent reservoir, i.e., where
the total Hamiltonian simply reads

H = ω0

2
Jz + Jz(λa + λ∗a†) + �a†a

+ Jx

∑
k

(hkbk + h∗
kb

†
k) +

∑
k

ωkb
†
kbk. (B1)

To treat the model within a master equation approach, we
consider only the large spin as the system, and to treat the
strong-coupling limit, too, we use the polaron transforma-
tion (25). With Eq. (26), we conclude that under a polaron
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FIG. 11. Putting the longitudinal boson mode in a thermal state
in the polaron frame (right, Appendix B) leads to the same evolution
equation as coupling it to a separate continuous bosonic reservoir (left,
main paper) and then assuming that the longitudinal boson degrees
of freedom relax to their equilibrium state much faster than the large
spin, such that a reduced coarse-grained Markovian description only
in terms of the large spin eigenstates applies.

transformation, the Hamiltonian transforms according to

UHU † = ω0

2
Jz − |λ|2

�
J 2

z + �a†a +
∑

k

ωkb
†
kbk

+ (J+e+2B + J−e−2B )
∑

k

(hkbk + h∗
kb

†
k). (B2)

Thus, the coupling between spin and longitudinal mode goes
away at the expense of a dressed spin-boson coupling.

We note that we can derive a master equation with standard
methods that is perturbative in hk but nonperturbative in λ.
In doing so, we will put both the longitudinal boson mode
and the bosons in thermal equilibrium states with inverse
temperatures β� and βt , respectively [51,52]. Since the polaron
transformation is nonlocal between large spin and longitudinal
mode, simply placing the boson mode in a thermal state
does not correspond to a simple thermal state in the original
frame. Instead, its state becomes conditioned on the large spin
state [46]. Here, we will show that the resulting rate equation
is identical to the one obtained in the main paper via coarse
graining (44); see also Fig. 11.

Evidently, the eigenenergies of the system Hamiltonian
in Eq. (B2) are given by (41), and with identifying the
coupling operators as A1 = J+, B1 = e+2B

∑
k(hkbk + h∗

kb
†
k),

A2 = J−, and B2 = e−2B
∑

k(hkbk + h∗
kb

†
k), we can set up a

rate equation for the evolution of populations in the spin energy
eigenstates. To do so, we have to evaluate the matrix elements
of the system coupling operators—using Eqs. (18)—which
imply that only two reservoir correlation functions have to be
found to evaluate the rate from energy eigenstate b to energy
eigenstate a,

γab,ab = γ12(Eb − Ea)|〈a|J−|b〉|2
+ γ21(Eb − Ea)|〈a|J+|b〉|2. (B3)

Consequently, we calculate the reservoir correlation func-
tion for the reservoir coupling operators

B± = e±2B
∑

k

(hkbk + h∗
kb

†
k), (B4)

which enter the correlation functions in the form (bold symbols
indicate the interaction picture)

〈B±(τ )B∓〉 = C±
� (τ )Ct (τ ),C±

� (τ ) = 〈e±2B(τ )e∓2B〉,

Ct (τ ) = 1

2π

∫ 0

−∞
	t (−ω)nt (−ω)e−iωτ dω

+ 1

2π

∫ +∞

0
	t (+ω)[1 + nt (+ω)]e−iωτ dω.

(B5)

At this state it is already evident that the resulting rates will
not be additive in the two reservoirs.

The longitudinal contributions can be written as

C+
� (τ ) = e−(4|λ|2/�2)[[1−cos(�τ )] coth( β��

2 )+i sin(�τ )],

C−
� (τ ) = C+

� (τ ) ≡ C�(τ ), (B6)

and it is visible that these do not decay to zero at infinity. One
might be tempted to consider this as problematic with regard
to the Markovian approximation. However, the longitudinal
correlation function always enters in product form with the
transversal correlation functions, such that the total correlation
function always decays. To interpret their action in a more
physical way we rewrite the correlation functions as

C�(τ ) = e−(4|λ|2/�2)[(1+2n�)−n�e
+i�τ −(1+n�)e−i�τ ], (B7)

where n� = [eβ�� − 1]−1. We can easily check their KMS
relations C�(τ ) = C�(−τ − iβ�). We can compute the Fourier
transform of the longitudinal mode correlation function by
formally expanding in powers of e±i�τ ,

γ�(ω) =
∫

C�(τ )e+iωτ dτ

= 2πe−(4|λ|2/�2)(1+2n�)
∞∑

m,m′=0

[
4|λ|2
�2

]m+m′

× nm
� [1 + n�]m

′

m!m′!
δ[ω − (m′ − m)�]

= 2πe−(4|λ|2/�2)(1+2n�)
+∞∑

n̄=−∞
δ(ω − n̄�)

×
(

1 + n�

n�

)n̄/2

Jn̄

(
8|λ|2
�2

√
n�(1 + n�)

)
, (B8)

where Jn(x) denotes the modified Bessel function of the first
kind.

The bosonic contribution has standard form and also obeys
a KMS condition of the form Ct (τ ) = Ct (−τ − iβt ).

The full Fourier transform of the correlation function is
given by

γ (+ω) =
∫

C�(τ )Ct (τ )e+iωτ dτ, (B9)

and we note that we can represent these also by convolution
integrals of the separate Fourier transforms

γ (ω) = 1

2π

∫
γ�(ω − ω̄)γt (ω̄)dω̄. (B10)
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Inserting Eq. (B8) eventually yields

γ (ω) =
+∞∑

n̄=−∞
γn̄(ω), γn̄(ω) = αn̄γ11(ω − n̄�), (B11)

where γ11(ω) is defined in Eq. (23) in the main paper.

Inserting these results in Eq. (B3), we find that the resulting
rate equation is identical with Eq. (44) in the main paper.

Independent calculations have shown that coarse-graining
approaches also exist for previously treated electron-phonon
models [36,51,52] (not shown).

[1] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Dynamics of the dissipative two-state
system, Rev. Mod. Phys. 59, 1 (1987).

[2] M. O. Scully and M. Suhail Zubairy, Quantum Optics (Cam-
bridge University Press, Cambridge, UK, 1997).

[3] F. K. Wilhelm, S. Kleff, and J. von Delft, The spin-boson model
with a structured environment: A comparison of approaches,
Chem. Phys. 296, 345 (2004).

[4] F. Nesi, E. Paladino, M. Thorwart, and M. Grifoni, Spin-boson
dynamics beyond conventional perturbation theories, Phys. Rev.
B 76, 155323 (2007).

[5] C. Wang, J. Ren, and J. Cao, Nonequilibrium energy transfer at
nanoscale: A unified theory from weak to strong coupling, Sci.
Rep. 5, 11787 (2015).

[6] Y.-C. Cheng and G. R. Fleming, Dynamics of light harvesting
in photosynthesis, Annu. Rev. Phys. Chem. 60, 241 (2009).

[7] G. C. Hegerfeldt, J. T. Neumann, and L. S. Schulman, Passage-
time distributions from a spin-boson detector model, Phys. Rev.
A 75, 012108 (2007).

[8] T. Brandes, Coherent and collective quantum optical effects in
mesoscopic systems, Phys. Rep. 408, 315 (2005).

[9] G. M. Palma, K.-A. Suominen, and A. K. Ekert, Quantum
computers and dissipation, Proc. R. Soc. London A 452, 567
(1996).

[10] W. G. Unruh, Maintaining coherence in quantum computers,
Phys. Rev. A 51, 992 (1995).

[11] G. L. Celardo, F. Borgonovi, M. Merkli, V. I. Tsifrinovich, and
G. P. Berman, Superradiance transition in photosynthetic light-
harvesting complexes, J. Chem. Phys. C 116, 22105 (2012).

[12] D. Ferrari, G. L. Celardo, G. P. Berman, R. T. Sayre, and F.
Borgonovi, Quantum biological switch based on superradiance
transitions, J. Phys. Chem. C 118, 20 (2014).

[13] G. L. Celardo, P. Poli, L. Lussardi, and F. Borgonovi, Coopera-
tive robustness to dephasing: Single-exciton superradiance in a
nanoscale ring to model natural light-harvesting systems, Phys.
Rev. B 90, 085142 (2014).

[14] G. L. Celardo, G. G. Giusteri, and F. Borgonovi, Cooperative
robustness to static disorder: Superradiance and localization in
a nanoscale ring to model light-harvesting systems found in
nature, Phys. Rev. B 90, 075113 (2014).

[15] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[16] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[17] C. Cormick, A. Bermudez, S. F. Huelga, and M. B. Plenio,
Dissipative ground-state preparation of a spin chain by a
structured environment, New J. Phys. 15, 073027 (2013).

[18] J. Mumford, D. H. J. O’Dell, and J. Larson, Dicke-type phase
transition in a multimode optomechanical system, Ann. Phys.
527, 115 (2015).

[19] A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskii, Collective
spontaneous emission (Dicke superradiance), Sov. Phys. Usp.
23, 493 (1980).

[20] M. Gross and S. Haroche, Superradiance: An essay on the theory
of collective spontaneous emission, Phys. Rep. 93, 301 (1982).

[21] A. Flusberg, T. Mossberg, and S. R. Hartmann, Observation of
Dicke superradiance at 1.30 μm in atomic tl vapor, Phys. Lett.
A 58, 373 (1976).

[22] J. A. Mlynek, A. A. Abdumalikov, C. Eichler, and A. Wallraff,
Observation of Dicke superradiance for two artificial atoms in a
cavity with high decay rate, Nat. Commun. 5, 5186 (2014).

[23] M. Vogl, G. Schaller, and T. Brandes, Counting statistics of
collective photon transmissions, Ann. Phys. (NY) 326, 2827
(2011).

[24] D. Meiser and M. J. Holland, Steady-state superradiance with
alkaline-earth-metal atoms, Phys. Rev. A 81, 033847 (2010).

[25] D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, Prospects
for a Millihertz-Linewidth Laser, Phys. Rev. Lett. 102, 163601
(2009).

[26] G. L. Celardo and L. Kaplan, Superradiance transition in
one-dimensional nanostructures: An effective non-hermitian
hamiltonian formalism, Phys. Rev. B 79, 155108 (2009).

[27] S. Sorathia, F. M. Izrailev, V. G. Zelevinsky, and G. L.
Celardo, From closed to open one-dimensional Anderson model:
Transport versus spectral statistics, Phys. Rev. E 86, 011142
(2012).

[28] A. Ziletti, F. Borgonovi, G. L. Celardo, F. M. Izrailev, L.
Kaplan, and V. G. Zelevinsky, Coherent transport in multibranch
quantum circuits, Phys. Rev. B 85, 052201 (2012).

[29] G. L. Celardo, A. M. Smith, S. Sorathia, V. G. Zelevinsky, R.
A. Senkov, and L. Kaplan, Transport through nanostructures
with asymmetric coupling to the leads, Phys. Rev. B 82, 165437
(2010).

[30] C. Wang and K.-W. Sun, Nonequilibrium steady state transport
of collective-qubit system in strong coupling regime, Ann. Phys.
(NY) 362, 703 (2015).

[31] G. Schaller, G. Kießlich, and T. Brandes, Transport statistics
of interacting double dot systems: Coherent and non-markovian
effects, Phys. Rev. B 80, 245107 (2009).

[32] D. Segal, Single Mode Heat Rectifier: Controlling Energy Flow
Between Electronic Conductors, Phys. Rev. Lett. 100, 105901
(2008).

[33] T. Ruokola and T. Ojanen, Single-electron heat diode: Asymmet-
ric heat transport between electronic reservoirs through coulomb
islands, Phys. Rev. B 83, 241404 (2011).

[34] J. Ren and J.-X. Zhu, Heat diode effect and negative differ-
ential thermal conductance across nanoscale metal-dielectric
interfaces, Phys. Rev. B 87, 241412 (2013).

[35] Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J.
Huang, Temperature-Dependent Transformation Thermotics:

032135-16

http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1016/j.chemphys.2003.10.010
http://dx.doi.org/10.1016/j.chemphys.2003.10.010
http://dx.doi.org/10.1016/j.chemphys.2003.10.010
http://dx.doi.org/10.1016/j.chemphys.2003.10.010
http://dx.doi.org/10.1103/PhysRevB.76.155323
http://dx.doi.org/10.1103/PhysRevB.76.155323
http://dx.doi.org/10.1103/PhysRevB.76.155323
http://dx.doi.org/10.1103/PhysRevB.76.155323
http://dx.doi.org/10.1038/srep11787
http://dx.doi.org/10.1038/srep11787
http://dx.doi.org/10.1038/srep11787
http://dx.doi.org/10.1038/srep11787
http://dx.doi.org/10.1146/annurev.physchem.040808.090259
http://dx.doi.org/10.1146/annurev.physchem.040808.090259
http://dx.doi.org/10.1146/annurev.physchem.040808.090259
http://dx.doi.org/10.1146/annurev.physchem.040808.090259
http://dx.doi.org/10.1103/PhysRevA.75.012108
http://dx.doi.org/10.1103/PhysRevA.75.012108
http://dx.doi.org/10.1103/PhysRevA.75.012108
http://dx.doi.org/10.1103/PhysRevA.75.012108
http://dx.doi.org/10.1016/j.physrep.2004.12.002
http://dx.doi.org/10.1016/j.physrep.2004.12.002
http://dx.doi.org/10.1016/j.physrep.2004.12.002
http://dx.doi.org/10.1016/j.physrep.2004.12.002
http://dx.doi.org/10.1098/rspa.1996.0029
http://dx.doi.org/10.1098/rspa.1996.0029
http://dx.doi.org/10.1098/rspa.1996.0029
http://dx.doi.org/10.1098/rspa.1996.0029
http://dx.doi.org/10.1103/PhysRevA.51.992
http://dx.doi.org/10.1103/PhysRevA.51.992
http://dx.doi.org/10.1103/PhysRevA.51.992
http://dx.doi.org/10.1103/PhysRevA.51.992
http://dx.doi.org/10.1021/jp302627w
http://dx.doi.org/10.1021/jp302627w
http://dx.doi.org/10.1021/jp302627w
http://dx.doi.org/10.1021/jp302627w
http://dx.doi.org/10.1021/jp4092909
http://dx.doi.org/10.1021/jp4092909
http://dx.doi.org/10.1021/jp4092909
http://dx.doi.org/10.1021/jp4092909
http://dx.doi.org/10.1103/PhysRevB.90.085142
http://dx.doi.org/10.1103/PhysRevB.90.085142
http://dx.doi.org/10.1103/PhysRevB.90.085142
http://dx.doi.org/10.1103/PhysRevB.90.085142
http://dx.doi.org/10.1103/PhysRevB.90.075113
http://dx.doi.org/10.1103/PhysRevB.90.075113
http://dx.doi.org/10.1103/PhysRevB.90.075113
http://dx.doi.org/10.1103/PhysRevB.90.075113
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1088/1367-2630/15/7/073027
http://dx.doi.org/10.1088/1367-2630/15/7/073027
http://dx.doi.org/10.1088/1367-2630/15/7/073027
http://dx.doi.org/10.1088/1367-2630/15/7/073027
http://dx.doi.org/10.1002/andp.201400105
http://dx.doi.org/10.1002/andp.201400105
http://dx.doi.org/10.1002/andp.201400105
http://dx.doi.org/10.1002/andp.201400105
http://dx.doi.org/10.1070/PU1980v023n08ABEH005024
http://dx.doi.org/10.1070/PU1980v023n08ABEH005024
http://dx.doi.org/10.1070/PU1980v023n08ABEH005024
http://dx.doi.org/10.1070/PU1980v023n08ABEH005024
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0375-9601(76)90667-8
http://dx.doi.org/10.1016/0375-9601(76)90667-8
http://dx.doi.org/10.1016/0375-9601(76)90667-8
http://dx.doi.org/10.1016/0375-9601(76)90667-8
http://dx.doi.org/10.1038/ncomms6186
http://dx.doi.org/10.1038/ncomms6186
http://dx.doi.org/10.1038/ncomms6186
http://dx.doi.org/10.1038/ncomms6186
http://dx.doi.org/10.1016/j.aop.2011.07.008
http://dx.doi.org/10.1016/j.aop.2011.07.008
http://dx.doi.org/10.1016/j.aop.2011.07.008
http://dx.doi.org/10.1016/j.aop.2011.07.008
http://dx.doi.org/10.1103/PhysRevA.81.033847
http://dx.doi.org/10.1103/PhysRevA.81.033847
http://dx.doi.org/10.1103/PhysRevA.81.033847
http://dx.doi.org/10.1103/PhysRevA.81.033847
http://dx.doi.org/10.1103/PhysRevLett.102.163601
http://dx.doi.org/10.1103/PhysRevLett.102.163601
http://dx.doi.org/10.1103/PhysRevLett.102.163601
http://dx.doi.org/10.1103/PhysRevLett.102.163601
http://dx.doi.org/10.1103/PhysRevB.79.155108
http://dx.doi.org/10.1103/PhysRevB.79.155108
http://dx.doi.org/10.1103/PhysRevB.79.155108
http://dx.doi.org/10.1103/PhysRevB.79.155108
http://dx.doi.org/10.1103/PhysRevE.86.011142
http://dx.doi.org/10.1103/PhysRevE.86.011142
http://dx.doi.org/10.1103/PhysRevE.86.011142
http://dx.doi.org/10.1103/PhysRevE.86.011142
http://dx.doi.org/10.1103/PhysRevB.85.052201
http://dx.doi.org/10.1103/PhysRevB.85.052201
http://dx.doi.org/10.1103/PhysRevB.85.052201
http://dx.doi.org/10.1103/PhysRevB.85.052201
http://dx.doi.org/10.1103/PhysRevB.82.165437
http://dx.doi.org/10.1103/PhysRevB.82.165437
http://dx.doi.org/10.1103/PhysRevB.82.165437
http://dx.doi.org/10.1103/PhysRevB.82.165437
http://dx.doi.org/10.1016/j.aop.2015.09.005
http://dx.doi.org/10.1016/j.aop.2015.09.005
http://dx.doi.org/10.1016/j.aop.2015.09.005
http://dx.doi.org/10.1016/j.aop.2015.09.005
http://dx.doi.org/10.1103/PhysRevB.80.245107
http://dx.doi.org/10.1103/PhysRevB.80.245107
http://dx.doi.org/10.1103/PhysRevB.80.245107
http://dx.doi.org/10.1103/PhysRevB.80.245107
http://dx.doi.org/10.1103/PhysRevLett.100.105901
http://dx.doi.org/10.1103/PhysRevLett.100.105901
http://dx.doi.org/10.1103/PhysRevLett.100.105901
http://dx.doi.org/10.1103/PhysRevLett.100.105901
http://dx.doi.org/10.1103/PhysRevB.83.241404
http://dx.doi.org/10.1103/PhysRevB.83.241404
http://dx.doi.org/10.1103/PhysRevB.83.241404
http://dx.doi.org/10.1103/PhysRevB.83.241404
http://dx.doi.org/10.1103/PhysRevB.87.241412
http://dx.doi.org/10.1103/PhysRevB.87.241412
http://dx.doi.org/10.1103/PhysRevB.87.241412
http://dx.doi.org/10.1103/PhysRevB.87.241412


COLLECTIVE COUPLINGS: RECTIFICATION AND . . . PHYSICAL REVIEW E 94, 032135 (2016)

From Switchable Thermal Cloaks to Macroscopic Thermal
Diodes, Phys. Rev. Lett. 115, 195503 (2015).

[36] P. Strasberg, G. Schaller, N. Lambert, and T. Brandes, Nonequi-
librium thermodynamics in the strong coupling and non-
markovian regime based on a reaction coordinate mapping, New
J. Phys. 18, 073007 (2016).

[37] J. Iles-Smith, N. Lambert, and A. Nazir, Environmental dynam-
ics, correlations, and the emergence of noncanonical equilibrium
states in open quantum systems, Phys. Rev. A 90, 032114 (2014).

[38] R. Martinazzo, B. Vacchini, K. H. Hughes, and I. Burghardt,
Universal markovian reduction of brownian particle dynamics,
J. Chem. Phys. 134, 011101 (2011).

[39] J. Huh, S. Mostame, T. Fujita, M.-H. Yung, and A. Aspuru-
Guzik, Linear-algebraic bath transformation for simulating
complex open quantum systems, New J. Phys. 16, 123008
(2014).

[40] F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, Pro-
posed realization of the Dicke-model quantum phase transition
in an optical cavity qed system, Phys. Rev. A 75, 013804 (2007).

[41] D. Nagy, G. Kónya, G. Szirmai, and P. Domokos, Dicke-Model
Phase Transition in the Quantum Motion of a Bose-Einstein
Condensate in an Optical Cavity, Phys. Rev. Lett. 104, 130401
(2010).

[42] P. Rotondo, M. C. Lagomarsino, and G. Viola, Dicke Simulators
With Emergent Collective Quantum Computational Abilities,
Phys. Rev. Lett. 114, 143601 (2015).

[43] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke
quantum phase transition with a superfluid gas in an optical
cavity, Nature (London) 464, 1301 (2010).

[44] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R.
Blatt, and C. F. Roos, Quasiparticle engineering and entan-
glement propagation in a quantum many-body system, Nature
(London) 511, 202 (2014).

[45] G. S. Agarwal, Open quantum markovian systems and the
microreversibility, Z. Phys. A 258, 409 (1973).

[46] G. Schaller, Open Quantum Systems Far from Equilibrium,
Lecture Notes in Physics Vol. 881 (Springer, Heidelberg,
2014).

[47] G. D. Mahan, Many-Particle Physics (Springer, New York,
2000).

[48] M. Esposito, U. Harbola, and S. Mukamel, Entropy fluctuation
theorems in driven open systems: Application to electron
counting statistics, Phys. Rev. E 76, 031132 (2007).

[49] J. Koch and F. von Oppen, Franck-Condon Blockade and Giant
Fano Factors in Transport Through Single Molecules, Phys. Rev.
Lett. 94, 206804 (2005).

[50] M. Esposito, Stochastic thermodynamics under coarse graining,
Phys. Rev. E 85, 041125 (2012).

[51] G. Schaller, T. Krause, T. Brandes, and M. Esposito, Single-
electron transistor strongly coupled to vibrations: Counting
statistics and fluctuation theorem, New J. Phys. 15, 033032
(2013).

[52] T. Krause, T. Brandes, M. Esposito, and G. Schaller, Thermo-
dynamics of the polaron master equation at finite bias, J. Chem.
Phys. 142, 134106 (2015).

[53] T. Ojanen, Selection-rule blockade and rectification in quantum
heat transport, Phys. Rev. B 80, 180301 (2009).

[54] Z.-G. Shao and L. Yang, Relationship between negative differ-
ential thermal resistance and ballistic transport, Europhys. Lett.
94, 34004 (2011).

[55] J. Hu, Y. Wang, A. Vallabhaneni, X. Ruan, and Y. P. Chen,
Nonlinear thermal transport and negative differential thermal
conductance in graphene nanoribbons, Appl. Phys. Lett. 99,
113101 (2011).

[56] M. A. Sierra and D. Sánchez, Strongly nonlinear thermovoltage
and heat dissipation in interacting quantum dots, Phys. Rev. B
90, 115313 (2014).

[57] T. Vorrath and T. Brandes, Dynamics of a Large Spin with Strong
Dissipation, Phys. Rev. Lett. 95, 070402 (2005).

[58] M. Tavis and F. Cummings, Exact solution for and n-molecule-
radiation-field hamiltonian, Phys. Rev. 170, 379 (1968).

[59] K. Hepp and E. H. Lieb, On the superradiant phase transition
for molecules in a quantized radiation field: The Dicke maser
model, Ann. Phys. (NY) 76, 360 (1973).

[60] Y. K. Wang and F. T. Hioe, Phase transition in the Dicke model
of superradiance, Phys. Rev. A 7, 831 (1973).

032135-17

http://dx.doi.org/10.1103/PhysRevLett.115.195503
http://dx.doi.org/10.1103/PhysRevLett.115.195503
http://dx.doi.org/10.1103/PhysRevLett.115.195503
http://dx.doi.org/10.1103/PhysRevLett.115.195503
http://dx.doi.org/10.1088/1367-2630/18/7/073007
http://dx.doi.org/10.1088/1367-2630/18/7/073007
http://dx.doi.org/10.1088/1367-2630/18/7/073007
http://dx.doi.org/10.1088/1367-2630/18/7/073007
http://dx.doi.org/10.1103/PhysRevA.90.032114
http://dx.doi.org/10.1103/PhysRevA.90.032114
http://dx.doi.org/10.1103/PhysRevA.90.032114
http://dx.doi.org/10.1103/PhysRevA.90.032114
http://dx.doi.org/10.1063/1.3532408
http://dx.doi.org/10.1063/1.3532408
http://dx.doi.org/10.1063/1.3532408
http://dx.doi.org/10.1063/1.3532408
http://dx.doi.org/10.1088/1367-2630/16/12/123008
http://dx.doi.org/10.1088/1367-2630/16/12/123008
http://dx.doi.org/10.1088/1367-2630/16/12/123008
http://dx.doi.org/10.1088/1367-2630/16/12/123008
http://dx.doi.org/10.1103/PhysRevA.75.013804
http://dx.doi.org/10.1103/PhysRevA.75.013804
http://dx.doi.org/10.1103/PhysRevA.75.013804
http://dx.doi.org/10.1103/PhysRevA.75.013804
http://dx.doi.org/10.1103/PhysRevLett.104.130401
http://dx.doi.org/10.1103/PhysRevLett.104.130401
http://dx.doi.org/10.1103/PhysRevLett.104.130401
http://dx.doi.org/10.1103/PhysRevLett.104.130401
http://dx.doi.org/10.1103/PhysRevLett.114.143601
http://dx.doi.org/10.1103/PhysRevLett.114.143601
http://dx.doi.org/10.1103/PhysRevLett.114.143601
http://dx.doi.org/10.1103/PhysRevLett.114.143601
http://dx.doi.org/10.1038/nature09009
http://dx.doi.org/10.1038/nature09009
http://dx.doi.org/10.1038/nature09009
http://dx.doi.org/10.1038/nature09009
http://dx.doi.org/10.1038/nature13461
http://dx.doi.org/10.1038/nature13461
http://dx.doi.org/10.1038/nature13461
http://dx.doi.org/10.1038/nature13461
http://dx.doi.org/10.1007/BF01391504
http://dx.doi.org/10.1007/BF01391504
http://dx.doi.org/10.1007/BF01391504
http://dx.doi.org/10.1007/BF01391504
http://dx.doi.org/10.1103/PhysRevE.76.031132
http://dx.doi.org/10.1103/PhysRevE.76.031132
http://dx.doi.org/10.1103/PhysRevE.76.031132
http://dx.doi.org/10.1103/PhysRevE.76.031132
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://dx.doi.org/10.1088/1367-2630/15/3/033032
http://dx.doi.org/10.1088/1367-2630/15/3/033032
http://dx.doi.org/10.1088/1367-2630/15/3/033032
http://dx.doi.org/10.1088/1367-2630/15/3/033032
http://dx.doi.org/10.1063/1.4916359
http://dx.doi.org/10.1063/1.4916359
http://dx.doi.org/10.1063/1.4916359
http://dx.doi.org/10.1063/1.4916359
http://dx.doi.org/10.1103/PhysRevB.80.180301
http://dx.doi.org/10.1103/PhysRevB.80.180301
http://dx.doi.org/10.1103/PhysRevB.80.180301
http://dx.doi.org/10.1103/PhysRevB.80.180301
http://dx.doi.org/10.1209/0295-5075/94/34004
http://dx.doi.org/10.1209/0295-5075/94/34004
http://dx.doi.org/10.1209/0295-5075/94/34004
http://dx.doi.org/10.1209/0295-5075/94/34004
http://dx.doi.org/10.1063/1.3630026
http://dx.doi.org/10.1063/1.3630026
http://dx.doi.org/10.1063/1.3630026
http://dx.doi.org/10.1063/1.3630026
http://dx.doi.org/10.1103/PhysRevB.90.115313
http://dx.doi.org/10.1103/PhysRevB.90.115313
http://dx.doi.org/10.1103/PhysRevB.90.115313
http://dx.doi.org/10.1103/PhysRevB.90.115313
http://dx.doi.org/10.1103/PhysRevLett.95.070402
http://dx.doi.org/10.1103/PhysRevLett.95.070402
http://dx.doi.org/10.1103/PhysRevLett.95.070402
http://dx.doi.org/10.1103/PhysRevLett.95.070402
http://dx.doi.org/10.1103/PhysRev.170.379
http://dx.doi.org/10.1103/PhysRev.170.379
http://dx.doi.org/10.1103/PhysRev.170.379
http://dx.doi.org/10.1103/PhysRev.170.379
http://dx.doi.org/10.1016/0003-4916(73)90039-0
http://dx.doi.org/10.1016/0003-4916(73)90039-0
http://dx.doi.org/10.1016/0003-4916(73)90039-0
http://dx.doi.org/10.1016/0003-4916(73)90039-0
http://dx.doi.org/10.1103/PhysRevA.7.831
http://dx.doi.org/10.1103/PhysRevA.7.831
http://dx.doi.org/10.1103/PhysRevA.7.831
http://dx.doi.org/10.1103/PhysRevA.7.831



