
PHYSICAL REVIEW E 94, 032133 (2016)

Dynamical phase transition in large-deviation statistics of the Kardar-Parisi-Zhang equation
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We study the short-time behavior of the probability distribution P(H,t) of the surface height h(x = 0,t) = H

in the Kardar-Parisi-Zhang (KPZ) equation in 1 + 1 dimension. The process starts from a stationary interface:
h(x,t = 0) is given by a realization of two-sided Brownian motion constrained by h(0,0) = 0. We find a
singularity of the large deviation function of H at a critical value H = Hc. The singularity has the character of
a second-order phase transition. It reflects spontaneous breaking of the reflection symmetry x ↔ −x of optimal
paths h(x,t) predicted by the weak-noise theory of the KPZ equation. At |H | � |Hc| the corresponding tail of
P(H ) scales as − lnP ∼ |H |3/2/t1/2 and agrees, at any t > 0, with the proper tail of the Baik-Rains distribution,
previously observed only at long times. The other tail of P scales as − lnP ∼ |H |5/2/t1/2 and coincides with the
corresponding tail for the sharp-wedge initial condition.
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I. INTRODUCTION

Large deviation functions of nonequilibrium stochastic
systems can exhibit singularities, i.e., nonanalytic dependen-
cies on the system parameters. In dynamical systems with a
few degrees of freedom the singularities can be associated
with the Lagrangian singularities of the underlying optimal
fluctuational paths leading to a specified large deviation
[1–3]. In extended macroscopic systems the nature of such
singularities, identified as nonequilibrium phase transitions
[4–6], is not yet fully understood. So far several examples
of such singularities [7–9] have been found in stochastic
lattice gases: simple microscopic models of stochastic particle
transport [10–12].

Here we uncover a nonanalytic behavior in a large-
deviation function of the iconic Kardar-Parisi-Zhang (KPZ)
equation [13]. This equation represents an important univer-
sality class of nonconserved surface growth [14–20], which is
directly accessible in experiment [21,22]. In a 1 + 1 dimension
the KPZ equation,

∂th = ν∂2
xh + (λ/2)(∂xh)2 +

√
D ξ (x,t), (1)

describes the evolution of the interface height h(x,t) driven
by a Gaussian white noise ξ (x,t) with zero mean and
covariance 〈ξ (x1,t1)ξ (x2,t2)〉 = δ(x1 − x2)δ(t1 − t2). Without
loss of generality we will assume that λ < 0 [23].

An extensive body of work on the KPZ equation addressed
the self-affine properties of the growing interface and the
scaling behavior of the interface height at long times [14–16].
In a 1 + 1 dimension, the height fluctuations grow as t1/3,
whereas the correlation length scales as t2/3. These exponents
are hallmarks of the KPZ universality class.

Recently the focus of interest in the KPZ equation in a 1 + 1
dimension shifted toward the complete probability distribution
P(H,T ) of the interface height h(0,T ) − h(0,0) = H (in a
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proper moving frame [24]) at a specified point x = 0 and
at any specified time t = T > 0. This distribution depends
on the initial condition [17–20]. One natural choice of the
initial condition is a stationary interface: an interface that
has evolved for a long time prior to t = 0. Mathematically,
it is described by a two-sided Brownian interface pinned at
x = 0. In this case, in addition to averaging over realizations
of the dynamic stochastic process, one has to average over all
possible initial pinned Brownian interfaces with diffusivity
ν. Imamura and Sasamoto [25] and Borodin et al. [26]
derived exact explicit representations for P(H,T ) in terms
of the Fredholm determinants. They also showed that, in the
long-time limit and for typical fluctuations, P converges to
the Baik-Rains distribution [27] that is also encountered in the
studies of the stationary totally asymmetric simple exclusion
process, polynuclear growth, and last passage percolation [17].

Here we will be mostly interested in short times. As
we show, at short times the interface height exhibits very
interesting large-deviation properties. Instead of extracting
the short-time asymptotics from the (quite complicated) exact
representations [25,26], we will employ the weak noise theory
(WNT) of the KPZ equation [28–33], which directly probes
the early-time regime [34,35]. In the framework of the WNT,
− lnP is proportional to the “classical” action over the optimal
path: the most probable history h(x,t) (a nonrandom function
of x and t) conditioned on the specified large deviation. A
crucial signature of the stationary interface is the a priori
unknown optimal initial height profile, which is selected by
the system out of a class of functions h(x,0) carrying certain
probabilistic weights and constrained by h(0,0) = 0.

The central result of this paper is that at short times the
optimal path and the optimal initial profile exhibit breaking
of a reflection symmetry x ↔ −x at a certain critical value
H = Hc. This leads to a nonanalytic behavior of the large
deviation function of H defined below. This nonanalyticity
exhibits all the characteristics of a mean-field-like second-
order phase transition, where the role of the equilibrium
free energy is played by the large deviation function of H .
The nonanalyticity occurs in the negative (for our choice
of λ < 0) tail of P . At |H | � |Hc| this tail scales as
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− lnP ∼ |H |3/2/T 1/2 and agrees, at any T > 0, with the
corresponding tail of the Baik-Rains distribution [27]. The
latter was previously derived [25,26] only at long times. Here
we show that it is applicable at any time T > 0 for H < 0
and |H | � |Hc|. We also find that the opposite, positive tail
scales, at large H , as − lnP ∼ H 5/2/T 1/2. It coincides, in the
leading order, with the corresponding tail for the sharp-wedge
initial condition [35,36], and we provide the reason for this
coincidence.

The rest of the paper is organized as follows. In Sec. II
we present the WNT formulation of the problem. Section III
deals with the limit of small H, which describes a Gaussian
distribution of typical height fluctuations at short times. Sec-
tion IV describes a numerical algorithm for solving the WNT
equations and presents numerical evidence for the symmetry-
breaking transition. In Secs. V and VI we present analytical
results for large negative and positive H , respectively. We
summarize and discuss our results in Sec. VII. Some of the
technical details are relegated to three appendices.

II. WEAK NOISE THEORY

Let us rescale t/T → t,x/
√

νT → x, and |λ|h/ν → h.
Equation (1) becomes

∂th = ∂2
xh − (1/2)(∂xh)2 + √

ε ξ (x,t), (2)

where ε = Dλ2
√

T /ν5/2 is a dimensionless noise magnitude.
We are interested in the probability density of observing
h(x = 0,t = 1) = H , where H is rescaled by ν/|λ|, under
the condition that h(x,0) is a two-sided Brownian interface
with ν = 1 and h(x = 0,t = 0) = 0. In the physical variables
P(H,T ) depends on two parameters |λ|H/ν and ε.

The weak-noise theory assumes that ε is a small parameter.
The stochastic problem for Eq. (2) can be formulated as
a functional integral which, in the limit of ε 	 1, admits
a “semiclassical” saddle-point evaluation. This leads (see
Appendix A) to a minimization problem for the action
functional s = sin + sdyn, where

sdyn = 1

2

∫ 1

0
dt

∫ ∞

−∞
dx

[
∂th − ∂2

xh + 1

2
(∂xh)2

]2

(3)

is the dynamic contribution, and

sin =
∫ ∞

−∞
dx (∂xh)2|t=0 (4)

is the “cost” of the (a priori unknown) initial height pro-
file [37]. The ensuing Euler-Lagrange equation can be cast
into two Hamilton equations for the optimal path h(x,t) and
the canonically conjugate “momentum” density ρ(x,t):

∂th = δH/δρ = ∂2
xh − (1/2)(∂xh)2 + ρ, (5)

∂tρ = −δH/δh = −∂2
xρ − ∂x(ρ∂xh), (6)

where

H =
∫

dxρ
[
∂2
xh − (1/2)(∂xh)2 + ρ/2

]
is the Hamiltonian. Equations (5) and (6) were first obtained
by Fogedby [28].

Specifics of the one-point height statistics are reflected in
the boundary conditions. The condition h(x = 0,t = 1) = H

leads to [31,34]

ρ(x,t = 1) = 	δ(x), (7)

where 	 should be ultimately expressed in terms of H . The
initial condition for the stationary interface follows from the
variation of the action functional s over h(x,t = 0) [38] (see
Appendix A) and takes the form [39]

ρ(x,t = 0) + 2∂2
xh(x,t = 0) = 	δ(x). (8)

To guarantee the boundedness of the action, ρ(x,t) and
∂xh(x,0) must go to zero sufficiently rapidly at |x| → ∞.
Finally,

h(x = 0,t = 0) = 0. (9)

Once the optimal path is found, we can evaluate s = sin + sdyn,
where sdyn can be recast as

sdyn = 1

2

∫ 1

0
dt

∫ ∞

−∞
dx ρ2(x,t). (10)

This yields P up to preexponential factors: − lnP � s/ε. In
the physical variables

− lnP(H,T ) � ν5/2

Dλ2
√

T
s

( |λ|H
ν

)
. (11)

As one can see, the action s plays the role of the large deviation
function for the short-time one-point height distribution.
Below we determine the optimal path and s analytically in
different limits and also evaluate these quantities numerically.

III. SMALL-H EXPANSION

For sufficiently small H the WNT problem can be solved
via a regular perturbation expansion in the powers of H or
	 [34,35,40]. One writes h(x,t) = 	h1(x,t) + 	2h2(x,t) +
. . . and similarly for ρ(x,t), and obtains an iterative set of
coupled linear partial differential equations for hi and ρi .
These equations can be solved order by order with the standard
Green function technique [34]. The leading order corresponds
to the WNT of the Edwards-Wilkinson equation [41]:

∂th1 = ∂2
xh1 + ρ1, (12)

∂tρ1 = −∂2
xρ1, (13)

with the boundary conditions ρ1(x,0) + 2∂2
xh1(x,0) =

ρ(x,1) = δ(x) and h1(0,0) = 0. This is a simple problem, and
one obtains in this order 	 � √

πH , and

h(x,t)� H

4

[
2 + xf

(
x

2
√

t

)
− xf

(
x

2
√

1 − t

)]
, (14)

ρ(x,t)� H

2
√

1 − t
e
− x2

4(1−t) , (15)

where f (z) = √
π erf(z) + z−1e−z2

; see Fig. 1. Noticeable
in Eq. (14) is a time-independent plateau h(±∞,t) = H/2.
Importantly for the following, h(x,t) and ρ(x,t) are, at
all times, symmetric functions of x. Although the KPZ
nonlinearity appears already in the second order of the
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FIG. 1. The optimal path in the linear approximation, as described
by Eqs. (14) and (15) for H < 0, at t = 0,0.25,0.5,0.75 and 1 (top
panel, from top to bottom) and t = 0,0.5 and 0.95 (bottom panel).

perturbation theory, the reflection symmetry x ↔ −x of the
optimal path persists in all orders. Therefore, within its
(a priori unknown) convergence radius, the perturbation series
for s(H ) comes from a unique optimal path which respects
the reflection symmetry. Note for comparison that the time-
reversal symmetry t ↔ 1 − t of h(x,t), present in the first
order in H , is violated already in the second order, reflecting
the lack of detailed balance in the KPZ equation.

Using Eqs. (3) and (4), one obtains, in the first order,
s(H ) � √

πH 2/2. Therefore, as is well known, the body of the
short-time distributionP(H,T ) is a Gaussian with the variance
(D2T/πν)1/4 that obeys the Edwards-Wilkinson scaling [41].
This variance is larger by a factor

√
2 than the variance for

a flat initial interface, as observed long ago [42]. Indeed, a
flat interface is not the optimal initial configuration for the
stationary process; see Fig. 1.

IV. PHASE TRANSITION AT H < 0:
NUMERICAL EVIDENCE

To deal with finite H we used a numerical iteration
algorithm [43,44] which cyclically solves Eq. (6) backward in
time, and Eq. (5) forward in time, with the initial conditions (7)
and (8), respectively. At the very first iteration of Eq. (6) one
chooses a reasonable “seed” function for h(x,t) and keeps
iterating until the algorithm converges. For small |H | we used

FIG. 2. The optimal path for 	 = −6.3 computed numerically.
Shown are h (top) and ρ (bottom) vs x at t = 0 (solid line), 0.5 (short
dash), and 1 (long dash).

the linear theory, described above, to choose such a seed. We
then used h(x,t), obtained upon convergence of the algorithm
for a given H , as a seed for a slightly larger value H , etc.

For sufficiently small |H | the algorithm converges to a
reflection-symmetric optimal path resembling (or, for still
smaller |H |, almost coinciding with) the one shown in Fig. 1.
The reflection symmetry is also intact for any positive H ,
although the optimal solution strongly deviates from the
small-H solution of Sec. III once H > 1.

At sufficiently large negative H the symmetric solution
loses stability, and the algorithm converges to one of two
solutions with a broken reflection symmetry. Each of these
two solutions has unequal plateaus at |x| → ±∞ (see Figs. 2
and 3) and is a mirror reflection of the other around x = 0.

To characterize the symmetry breaking we introduced an
order parameter

� = h(∞,t) − h(−∞,t) =
∫ ∞

−∞
dx ∂xh(x,t), (16)

which is a conserved quantity, as one can check from Eq. (5).
Our numerical results for |�| versus |H | at H < 0 are shown
in the top panel of Fig. 4. They indicate a phase transition at
a critical value H = Hc. At |H | � |Hc|� = 0, in agreement
with the results of the previous section. For |H | � |Hc| a good
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FIG. 3. Same as in Fig. 2 but for 	 = −10.

fit to the data is provided by

�2(H ) = a(|H | − |Hc|) + b(|H | − |Hc|)2, (17)

with Hc � −3.7,a � 10.6, and b � 0.8. This suggests a mean-
field-like second-order transition, where the large deviation
function s exhibits a discontinuity in its second derivative
∂2
H s at H = Hc. One can recognize this discontinuity in the

bottom panel of Fig. 4, which shows s versus H for the
asymmetric (solid symbols) and symmetric (empty symbols)
solutions [45]. The corresponding values of s coincide at
|H | < |Hc| but start deviating from each other at |H | > |Hc|,
the symmetric solution becoming nonoptimal. The bottom
panel also shows the small-H analytic result s(H ) = √

πH 2/2
and the large-|H | analytic result (21) obtained below.

V. NEGATIVE-H TAIL

At very large negative H , or 	, the asymmetric and sym-
metric solutions can be approximately found analytically. They
involve narrow pulses of ρ, which we will call solitons, and
“ramps” of h. The asymmetric solutions can be parameterized
by the soliton and ramp speed c � 1. The left-moving solution
can be written as

ρ(x,t) = −c2 sech2
[ c

2
(ct + x − c)

]
, (18)

h(x,t) � 2 ln[1 + ec(ct+x−c)] − 2c(ct + x) (19)

FIG. 4. Top: � vs |H | at H < 0. Symbols: numerical results,
solid line: Eq. (17), dashed line: the |H | � 1 asymptotic |�| = |H |.
Bottom: s vs |H | at H < 0: The asymmetric and symmetric branches
are shown by the solid and empty symbols, respectively. Also shown
are the small- and large-|H | asymptotics of s.

for x > −ct , and

ρ(x,t) � h(x,t) � 0 (20)

at x < −ct ; see Fig. 5. The expressions for each of the
two regions are exact solutions of Eqs. (5) and (6). The
approximate combined solution obeys, up to exponentially
small corrections, the boundary conditions (8) and (9). It is
continuous (again, up to an exponentially small correction)
but includes a shock in the interface slope V (x,t) = ∂xh(x,t)
at x = −ct [46]. In our numerical solutions for large negative
	, the ρ-soliton rapidly changes into the delta function (7) at
t → 1 (as Fig. 3 indicates already for moderate negative 	).
This transient does not contribute to the action in the leading
order in |H | � 1.

The conservation law
∫

dx ρ(x,t) = 	 yields c = −	/4,
and we obtain s = sdyn + sin = 4c3/3 + 4c3 = (16/3)c3. Ex-
pressing c via H from the relation |H | = 2c2 (see Fig. 5), we
arrive at

s = 4
√

2 |H |3/2

3
. (21)
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FIG. 5. The optimal path, h(x,t) and ρ(x,t), for H < 0 and
|H | � 1; see Eqs. (18)–(20), for t = 0,1/2, and 1.

In the physical units

− lnP(H,T ) � 4
√

2 ν|H |3/2

3D|λ|1/2T 1/2
, (22)

in perfect agreement with the proper tail of the Baik-Rains
distribution [27,47]. The latter has been known to describe
the late-time one-point statistics of the KPZ interface for the
stationary initial condition [25,26]. As we see now, this tail
holds at any T > 0.

The simplest among the symmetric solutions is a single
stationary ρ-soliton and two outgoing h-ramps. These exact
solutions were found earlier [31,34,35]. A family of more
complicated exact two-soliton solutions involves two coun-
terpropagating ρ-solitons that collide and merge into a single
stationary soliton. Correspondingly, two counterpropagating
h-ramps disappear upon collision and reemerge with the
opposite signs; see Appendix B. Remarkably, the singe-soliton
and two-soliton solutions are particular members of a whole
family of exact multisoliton and multiramp solutions of
Eqs. (5) and (6). We found them by performing the Cole-
Hopf canonical transformation Q = e− h

2 , P = −2ρ e
h
2 and

applying the Hirota method [48] to the transformed equations;
see Appendix B for more details.

For all symmetric solutions with c � 1 the action s is twice
as large as what Eq. (21) predicts, so they are not optimal.
Notably, the corresponding nonoptimal action s coincides with

that describing the tail of the Tracy-Widom distribution [49].
This tail appears, at all times, for a class of deterministic
initial conditions [34–36]. Therefore, fluctuations in the initial
condition, intrinsic for the stationary interface, greatly enhance
(by the factor of 2 in a large exponent) the negative tail of
P(H ).

VI. POSITIVE-H TAIL

The opposite tail is of a very different nature. In particular,
the optimal solution maintains reflection symmetry at any
positive H . In the spirit of Refs. [33–35] the leading-order
solution at H � 1 can be obtained in terms of “inviscid hydro-
dynamics,” which neglects the diffusion terms in Eqs. (5), (6),
and (8). The resulting equations describe expansion of a “gas
cloud” of density ρ(x,t) and mass 	 from the origin, followed
by collapse back to the origin at t = 1. The same flow appears
for the (deterministic) sharp-wedge initial condition [35]. Its
exact solution is given in terms of a uniform-strain flow with
compact support |x| � �(t); see Appendix C. Both h(x,t)
and ρ(x,t) are symmetric with respect to the origin. This
leads to s � sdyn = 4

√
2H 5/2/(15π ) [35], in agreement with

Ref. [36], where the same short-time asymptotic was derived
from the exact representation for P(H,T ) for the sharp wedge
[17,50–53]. In the physical units

− lnP(H,T ) � 4
√

2|λ|
15πD

H 5/2

T 1/2
. (23)

This tail is governed by the KPZ nonlinearity and does not
depend on ν. At |x| > �(t) ρ = 0, and V (x,t) obeys the
deterministic Hopf equation ∂tV + V ∂xV = 0 and must be
continuous at |x| = �(t), as for the sharp wedge [35]. Still, this
Hopf flow is different from its counterpart for the sharp wedge.
Indeed, in the latter case V (|x| → ∞,t) � x/t . For the sta-
tionary interface V (|x| → ∞,t) must vanish. This condition
can be obeyed only if the Hopf flow involves two symmetric
shocks where |V | drops from a finite value to zero: one
shock at x = xs(t) > �(t), another at x = −xs(t) < −�(t). The
shock dynamics are described in Appendix C. A (symmetric)
time-independent plateau, h(|x| → ∞,t) � H/2, appears in
this limit too. The characteristic length scale of the solution is
∼ 	1/3 ∼ H 1/2. As a result, sin from Eq. (4) scales as H 3/2.
This is much less than sdyn ∼ H 5/2, justifying our neglect of
the diffusion term in Eq. (8).

VII. SUMMARY AND DISCUSSION

We have determined the tails of the short-time interface-
height distribution in the KPZ equation when starting from
a stationary interface. As we have shown, the |H |3/2/T 1/2

tail of the Baik-Rains distribution, earlier predicted for long
times, holds at all times. We argue (see also Refs. [34,35]) that
the other tail, |H |5/2/T 1/2, also holds at long times once the
condition |H | � T is met. It would be interesting to derive
this tail from the exact representation [25,26].

A central result of this paper is the discovery of a dynamical
phase transition in the large deviation function of H at T → 0.
The transition occurs at H = Hc � 3.7 ν/λ and is caused by
a spontaneous breaking of the reflection symmetry x ↔ −x

of the optimal path responsible for a given H . We provided
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numerical evidence that the transition is of the second order.
Strictly speaking, the WNT predicts a true phase transition
only at a single point (Hc,0) of the phase diagram (H,T ). At
finite but short times the transition is smooth but sharp around
Hc, and this sharp feature should be observable in stochastic
simulations of the KPZ equation. One can characterize the
transition by measuring the probability distribution of � (a
random quantity) [54] at fixed H . This distribution is expected
to change, in the vicinity of the critical value Hc < 0, from
unimodal, centered at zero, to bimodal. At very large |H | the
positions of bimodality peaks should approach � � ±H .

Can symmetry breaking of this nature be observed for
discrete models which belong to the KPZ universality
class (defined by typical fluctuations at long times)? One
natural lattice-model candidate is the Weakly Asymmetric
Exclusion Process (WASEP) with random initial conditions
drawn from the stationary measure. Not only does the
WASEP belong to the KPZ universality class, but it also
exhibits the Edwards-Wilkinson dynamics at intermediate
times: when the microscopic details of the model are al-
ready forgotten but the process is still in the weak-coupling
regime [17]. Although short-time large deviations of the
WASEP can be different from those of the KPZ equation,
one can expect the symmetry-breaking phenomenon to be
robust.

Finally, the dynamical phase transition reported here is
a direct consequence of fluctuations in the initial condition.
Similar transitions, at the level of large deviation functions,
may exist in other nonequilibrium systems, both discrete
and continuous, which involve averaging over random initial
conditions.
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APPENDIX A: DERIVATION OF THE WEAK-NOISE
EQUATIONS AND BOUNDARY CONDITIONS

Using Eq. (1), one can express the noise term as

√
Dξ (x,t) = ∂th − ν∂2

xh − λ

2
(∂xh)2. (A1)

The probability to encounter such a realization of the Gaussian
white noise is given by ∝ e−Sdyn/D , where

Sdyn = D

2

∫ T

0
dt

∫
dx ξ 2(x,t)

= 1

2

∫ T

0
dt

∫
dx

[
∂th − ν∂2

xh − λ

2
(∂xh)2

]2

. (A2)

The cost of creating an (a priori unknown) initial interface
profile is determined by the stationary height distribution of
the KPZ equation:

Sin = ν

∫
dx (∂xh)2|t=0.

For a weak noise and large deviations, the dominant contribu-
tion to the total action S = Sdyn + Sin comes from the optimal
path h(x,t) that is found by minimizing S with respect to all
possible paths h(x,t) obeying the boundary conditions. The
variation of the total action is

δS =
∫ T

0
dt

∫
dx

[
∂th − ν∂2

xh − λ

2
(∂xh)2

](
∂tδh − ν∂2

x δh

− λ∂xh ∂xδh
) + 2ν

∫
dx ∂xh ∂xδh|t=0. (A3)

Let us introduce the momentum density field ρ(x,t) = δL/δv,
where v ≡ ∂th, and

L{h} = 1

2

∫
dx

[
∂th − ν∂2

xh − λ

2
(∂xh)2

]2

is the Lagrangian. We obtain

ρ(x,t) = ∂th − ν∂2
xh − λ

2
(∂xh)2 (A4)

and arrive at

∂th = ν∂2
xh + λ

2
(∂xh)2 + ρ, (A5)

the first of the two Hamilton equations of the weak-noise theory
(WNT). Now we can rewrite the variation (A3) as follows:

δS =
∫ T

0
dt

∫
dx ρ

(
∂tδh − ν∂2

x δh − λ∂xh ∂xδh
)

+ 2ν

∫
dx ∂xh ∂xδh|t=0.

Demanding δS = 0 and performing integrations by parts, one
obtains the Euler-Lagrange equation, which yields the second
Hamilton equation of the WNT:

∂tρ = −ν∂2
xρ + λ∂x(ρ∂xh). (A6)

The boundary terms in space, resulting from the integrations
by parts, all vanish. The boundary terms in time must vanish
independently at t = 0 and t = T . Both h(x,t = 0), and
h(x,t = T ) are arbitrary everywhere except at x = 0 where
they are fixed by the conditions

h(x = 0,t = 0) = 0 and h(x = 0,t = T ) = H. (A7)

This leads to the following boundary conditions:

ρ(x,t = 0) + 2ν∂2
xh(x,t = 0) = 	δ(x), (A8)

ρ(x,t = T ) = 	δ(x), (A9)

where 	 is an auxiliary parameter that should be finally set
by the second relation in Eq. (A9). An evident additional
condition, ∂xh(|x| → ∞,t) = 0, is necessary for the bound-
edness of Sin. Once the WNT equations are solved, the desired
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probability density is given by

− lnP(H,T ) � S

D

= 1

2D

∫ T

0
dt

∫
dx ρ2(x,t) + ν

D

∫
dx (∂xh)2|t=0.

(A10)

The rescaling transformation

t/T → t, x/
√

νT → x, |λ|h/ν → h, |λ|Tp/ν → p

(A11)
brings Eqs. (A5) and (A6) to the rescaled form (5) and (6) of
the main text. The boundary condition (A8) becomes Eq. (8),
with a rescaled 	. The rest of boundary conditions remain the
same.

APPENDIX B: COLE-HOPF TRANSFORMATION, KINKS,
SOLITONS, AND RAMPS

As explained in the main text, the optimal path at very
large negative H can be approximately described in terms of
a ρ-soliton and h-ramp. As we show here, this solution is a
particular member of a whole family of exact multisoliton and
multiramp solutions of the WNT equations. Let us perform a
canonical Cole-Hopf transformation from h and ρ to Q and P

according to

Q = e− h
2 , P = −2ρ e

h
2 . (B1)

The inverse transformation is h = −2 ln Q and ρ =
−(1/2) QP . In the new variables the Hamilton equations,

∂tQ = ∂2
xQ + 1

4Q2P, (B2)

∂tP = −∂2
xP − 1

4QP 2, (B3)

have a symmetric structure and appear in the Encyclopedia
of Integrable Systems [55]. In this work we do not pursue
the complete integrability aspects and limit ourselves to
exact multikink solutions which we found using the Hirota
method [48]. The multikink solutions in terms of Q and P

become multisoliton and multiramp solutions in terms of ρ

and h, respectively. The Hirota ansatz

Q = v

u
, P = w

u
,

transforms Eqs. (B2) and (B3) into the following form:(
Dt − D2

x

)
(v · u) = 0,(

Dt + D2
x

)
(w · u) = 0, (B4)

D2
x(u · u) = 1

4 vw,

where Dt (A · B) = AtB − ABt and D2
x(A · B) = AxxB −

2AxBx + ABxx are the Hirota derivatives. Equations (B4)
admit two families of N -kink solutions:

u =
N∑

i=1

η
(+)
i ,

v = 1

C

N∑
i,j=1

(ci − cj )2η
(+)
i η

(+)
j , (B5)

w = 4C,

and

u =
N∑

i=1

η
(−)
i ,

v = 4C, (B6)

w = 1

C

N∑
i,j=1

(ci − cj )2η
(−)
i η

(−)
j ,

where η
(±)
i (x,t) = e±c2

i t−ci (x−Xi ), the kinks are parametrized by
N velocities ci and N initial coordinates Xi,i = 1, . . . ,N , and
C is an arbitrary constant, reflecting invariance of the original
WNT equations (5) and (6) with respect to an arbitrary shift
of h. For the family of solutions (B5) we obtain

h(x,t) = 2 ln

[
C

∑N
i=1 eci (ci t−x+Xi )∑N

i,j=1(ci − cj )2eci (ci t−x+Xi )+cj (cj t−x+Xj )

]
,

(B7)

ρ(x,t) = −2
∑N

i,j=1(ci − cj )2eci (ci t−x+Xi )+cj (cj t−x+Xj )[∑N
i=1 eci (ci t−x+Xi )

]2 .

(B8)

FIG. 6. Example of exact two-ramp and two-soliton solutions
(B7) and (B8) for h(x,t) and ρ(x,t), respectively. Shown (for c = 8)
are h and ρ vs x for N = 3,c1 = X1 = 0,c3 = −c2 = c, and X3 =
−X2 = −(3/8)c. Top panel: t = 0 (solid), 1/4 (dashed), 3/4 (dash-
dotted), and 1 (solid). Bottom panel: t = 0 (solid), 1/4 (dashed), and
1 (dash-dotted). Inset: ρ vs x at t = 1/2,4/5 and 1. At c � 1 and t >

τ,ρ approaches the exact stationary one-soliton solution [28,31,34].
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FIG. 7. Same as in Fig. 6 but for X3 = −X2 = −c (that is, τ =
1) and t = 0 (solid), 1/2 (dashed), and 1 (dash-dotted). The inset
shows a blowup of the collision and merger of the two solitons at
t = 0.95,0.965, and 1.

The particular case of N = 3, c1 = X1 = 0, c3 = −c2 = c,
and X3 = −X2 = −cτ , where 0 < τ < 1, yields the family of
symmetric solutions described in the context of large negative
H in Sec. V. Here two identical counterpropagating ρ-solitons
collide and merge, at x = 0, into a single soliton. The two
ramps of h also merge, but then change their signs and expand;
see Figs. 6 and 7. At c � 1 these solutions approximately
satisfy all the boundary conditions. The arbitrary constant
C can be chosen so as to impose the condition h(x = 0,

t = 0) = 0. However, for all these symmetric solutions (at
fixed c and different τ ) the total action S, in the leading
order, is the same and twice as large as S for the asymmetric
solution, described in the main text. Therefore, neither of
these solutions is optimal. Finally, the single stationary
ρ-soliton, and the expanding ramps, observed at t > τ is
by itself an exact solution of the WNT equations, as was
previously known [28,31,34]. This solution corresponds to
τ = 0 and represents the true optimal path for a whole class
of deterministic initial conditions [35].

APPENDIX C: HYDRODYNAMICS AND SHOCKS
FOR H � 1

Here, in the spirit of Refs. [33,34], the leading-order
solution can be obtained in terms of “inviscid hydrodynamics,”

FIG. 8. Top: The shock position xs vs time, alongside with its
asymptotics (C7) and (C8) for x > 0. Bottom: V = ∂xh vs x at H � 1
at times (from top to bottom) 0.1,0.3,0.5 (when V = 0), 0.7, and 0.9.
Both the uniform-strain solution (C3) and the Hopf solution with the
shock are shown for x > 0. In this limit H = (3π	)2/3/2 [35].

which neglects the diffusion terms in Eqs. (5), (6), and (8)
of the main text. The resulting equations for ρ(x,t) and
V (x,t) = ∂xh(x,t),

∂tρ + ∂x(ρV ) = 0, (C1)

∂tV + V ∂xV = ∂xρ, (C2)

describe expansion of a “gas cloud” of density ρ(x,t) and
mass 	 from the origin, followed by collapse back to the
origin at t = 1. The same flow appears for the (deterministic)
sharp-wedge initial condition [35]. Its exact solution is given
in terms of a uniform-strain flow with compact support:

V (x,t) = −a(t) x, |x| � �(t) (C3)

and

(C4)
ρ(x,t) =

{
r(t)[1 − x2/�2(t)], |x| � �(t),

0, |x| > �(t). (C5)

As one can see, there is no symmetry breaking here. The
functions a(t),�(t), and r(t) were calculated in Ref. [35],
leading to Eq. (23).
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At |x| > �(t) one has ρ = 0. Here V (x,t) obeys the
deterministic Hopf equation ∂tV + V ∂xV = 0 and must be
continuous at |x| = �(t) [34,35]. In addition, we must demand
V (|x| → ∞,t) = 0. The latter condition can be obeyed only
if the Hopf flow involves two symmetric shocks where |V |
drops from a finite value to zero: one shock at x = xs(t) > �(t)
(see the left panel of Fig. 8), another at x = −xs(t) < −�(t).
The shocks are symmetric with respect to x = 0, and their
dynamics are quite interesting. Let us consider the x > 0
shock. Its speed ẋs must be equal to (1/2)V [xs(t) − 0,t] [56].
The expression for V (x,t) can be found in Ref. [35]. Upon
rescaling x and V by 	1/3, one obtains the following
differential equation for the shock position xs(t) at x > 0:

ẋs

(
1 − 2t − 2

π
arctan

2
√

�0ẋs√
3

)
= �0 − xs, (C6)

where �0 = �(t = 1/2) = 31/3/π2/3 is the (rescaled) maxi-
mum size of the pressure-driven flow region. Equation (C6)
is of the first order but highly nonlinear. It should be solved
on the time interval 0 < t � 1/2 with the initial condition
Xs(t = 0) = 0. Close to t = 1/2, when xs → 0 and ẋs → 0,

we obtain a simple asymptotic:

�0 − xs(t) �
(

3π

8

)5/3(1

2
− t

)2

. (C7)

At t → 0xs goes to zero and Ẋs goes to infinity. Expanding the
arctangent at large argument up to and including the second
term, we arrive at the linear equation 2t ẋs = xs and obtain the
short-time asymptotic

xs(t) � Kt1/2 (C8)

with an unknown constant K which can be found numerically.
The shock magnitude (the jump of V ) and speed decrease with
time and vanish at t = 1/2: the shocks disappear when they
reach the stagnation points of the flow, V = 0 which, according
to Ref. [35], are located, at t � 1/2, at x = ±�(t = 0). Notice
that, at small t,�(t) ∼ t2/3, and the shock position is indeed
outside the pressure-driven region as we assumed. The left
panel of Fig. 8 shows the shock position xs(t) found by solving
Eq. (C6) numerically. Also shown are the asymptotic (C7) and
the asymptotic (C8) with K = 1.48. The right panel of Fig. 8
shows V (x,t) versus x > 0 at different times.

Integrating V (x,t) over x, one can obtain h(x,t), but we do
not show these cumbersome formulas here.
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