
PHYSICAL REVIEW E 94, 032128 (2016)

Anomalous transport in cellular flows: The role of initial conditions and aging
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We consider the diffusion-advection problem in two simple cellular flow models (often invoked as examples of
subdiffusive tracer motion) and concentrate on the intermediate time range, in which the tracer motion indeed may
show subdiffusion. We perform extensive numerical simulations of the systems under different initial conditions
and show that the pure intermediate-time subdiffusion regime is only evident when the particles start at the
border between different cells, i.e., at the separatrix, and is less pronounced or absent for other initial conditions.
The motion moreover shows quite peculiar aging properties, which are also mirrored in the behavior of the
time-averaged mean squared displacement for single trajectories. This kind of behavior is due to the complex
motion of tracers trapped inside the cell and is absent in classical models based on continuous-time random walks
with no dynamics in the trapped state.
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I. INTRODUCTION

Anomalous diffusion in cellular flows has drawn consider-
able attention as a model showing a nontrivial intermediate
asymptotic regime corresponding to subdiffusion and is
reviewed, e.g., in [1] and [2]. A simple explanation (e.g., given
in [2]) places this model in a class of close relatives of the
comb models. In a comb, diffusion on a spine (say, in the x

direction) is interrupted by the diffusion in the teeth (dangling
ends) extending in the y direction and can be described by
the continuous-time random walk (CTRW) in the x direction,
with the waiting times distributed according to a power law.
This diffusion is anomalous (subdiffusion) and, like diffusion
in other CTRW models with power-law waiting times, shows
aging and weak ergodicity breaking (see, e.g., [3]). Moreover,
the properties of such diffusion strongly depend on the initial
conditions.

The similarity between the cellular flow and the comb
structures arises from the fact that, being trapped inside a single
eddy cell, the particles cannot take part in the macroscopic
diffusion unless returning to the separatrix between the cells,
so that the coarse-grained picture of the macroscopic motion
is again the CTRW. In this respect, diffusion in a cellular
flow corresponds to the comb model with finite teeth, since
the power-law waiting time at a site (inside the cell) has an
exponential cutoff implied by the finite size of the trapping
domain. Under such conditions the final asymptotic behavior
of transport should be diffusive, with the effective diffusion co-
efficient D∗ ∝ DPe1/2, where D is the coefficient of molecular
diffusion, and Pe is the Péclet number, [4–8]. The employed
mathematical approaches are based on homogenization (see,
e.g., [9] and references therein) and on the large deviation
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theory [10]. Analytical predictions are compared to numerical
simulations of the transport in the corresponding time range.

Remarkably, the prominent subdiffusive intermediate
asymptotics remains much less investigated. The diffusion in
cellular flows in this regime is sometimes considered as an
example of a situation where aging and ergodicity breaking
take place (see, e.g., [11] and [12]), without paying much
attention to the peculiarity of this problem caused by the
complicated dynamics inside the trapped state. The transport in
cellular flows has been measured experimentally [13,14] (see
also [15] and [16]). We are not aware of extensive numerical
simulations of the stochastic differential equations for these
systems or comparison of the numerics with the theoretical
predictions in Ref. [4] and subsequent works even for the
simplest initial conditions, corresponding to starting on the
cell boundary (separatrix), or of any work considering aging
and convergence to ergodic behavior in this context. Our work
aims at filling this gap. In what follows two standard variants
of cellular flows are considered: the eddy lattice (EL) flow in
two dimensions (see, e.g., [8]), with the stream function given
by

ψEL(x,y) = ua sin
(x

a

)
sin

(y

a

)
; (1)

and a flow corresponding to a one-dimensional arrangement
of cells along the x axis, with no-slip boundary conditions at
y = 0 and y = πa. The model stream function is

ψYPP(x,y) = ua sin
(x

a

)( y

πa

)2(
1 − y

πa

)2
. (2)

Introduced in [4], this flow is referred to below as the
Young-Pumir-Pomeau (YPP) flow. In both cases u is the
characteristic velocity, and πa is the cell size. Both flows show
the intermediate-time subdiffusive behavior crossing over to
normal diffusion at longer times. The comparison of these two
flows is of considerable interest, since the transport behavior
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in them is very similar in certain respects, but very different in
others.

Below, in Sec. II we review the subdiffusion dynamics
from the point of view of characteristic time scales. The
problem is formulated and numerical procedures for direct
simulation of stochastic differential equations are introduced
in Sec. III. Results, concerning different aspects of transport,
are presented in Sec. IV. Finally, in Sec. V we summarize our
findings.

II. CHARACTERISTIC TIMES

Let us first briefly discuss the type of subdiffusive behavior
and the characteristic times at which it can be observed. This
discussion is a slight modification of the one in Ref. [4], so that
no more detail than necessary is given here. The corresponding
results are not new but will be of importance in what follows.

The trapping of the particle inside the flow cell is due to its
diffusion in the direction transverse to the streamlines since,
having entered the cell, the particle cannot leave it unless
returning to its periphery. The particle motion in the direction
normal to the streamlines (denoted below the z direction, with
z = 0 corresponding to the separatrix) is obtained by averaging
the diffusion-advection equation along the streamlines [4]. The
averaged equation has the form of the diffusion equation,

∂

∂t
p(z,t) = ∂

∂z

[
D(z)

∂

∂z
p(z,t)

]
. (3)

The z dependence of the diffusion coefficient is sensitive to the
boundary conditions at the cell edges and therefore depends
on the type of flow. For the free boundaries of the EL flow
D(z) can be taken constant and equal to the coefficient of the
molecular diffusion; for the no-slip boundary conditions on the
horizontal sides of the cell of the YPP flow one has to assume
D(z) � z−1 for z � a (see [4]).

The (intermediate) asymptotic behavior of the waiting-
time probability density function (WTD) for the jumps from
separatrix to separatrix can be obtained by first solving
Eq. (3) for the probability of being at the origin p(0,t) and
then connecting this with the first return probability via the
renewal approach, assuming the Markovian character of the
process, by solving the integral equation p(0,t) = δ(0)δ(t) +∫ t

0 φ(t ′)p(0,t − t ′)dt ′, which can be easily done in the Laplace
domain. The power-law decay of p(0,t) ∝ t−γ then translates
into the behavior

φ(t) ∝ tγ−2 (4)

for the first return-time probability density. Note that this
discussion corresponds to the case where the particle starts on
the separatrix (z = 0) and is pertinent to all transitions between
the cells. The first waiting time will differ in all cases when
the particle does not start at the separatrix, i.e., for different
initial conditions (e.g., starting at the center) or in aged
situations [17].

The behavior of p(0,t) is

p(0,t) ∝
{
t−1/2 for EL flow,
t−1/3 for YPP flow,

(5)

which translates into φ(t) ∝ t−3/2 (normal Sparre-Andersen
behavior) for EL flow and into φ(t) ∝ t−5/3 for YPP flow,

respectively. Considering the corresponding CTRW between
cells with step size a yields subdiffusion with

〈R2(t)〉 ∝ t1−γ =
{
t1/2 for EL flow,
t2/3 for YPP flow

(6)

(see [18] and references therein). The power-law behavior as
given by Eq. (4) takes place in a finite time range bounded
from below and from above by two characteristic times, t1 and
t2. The longer characteristic time, t2, corresponds to the time
of free molecular diffusion over the cell length, t2 ∼ a2/D,
and for t > t2 the WTD φ(t) shows an exponential cutoff [4].
This time marks the crossover from the anomalous regime to
normal diffusion.

The shorter characteristic time, t1, does not follow from
the preaveraged Eq. (3) and is the minimal time necessary to
traverse the cell. It is different for the cases of free and no-slip
boundary conditions. Note that this minimal time defines the
normalization constant of the WTD φ(t). Since φ(t) vanishes
rapidly both for t � t1 and for t 
 t2 one has∫ t2

t1

φ(t)dt � 1, (7)

where, due to the fact that φ(t) � tγ−2 is integrable, the upper
bound is irrelevant, provided t2 
 t1. Therefore

φ(t) � t
1−γ

1 tγ−2. (8)

The shorter cutoff time thus defines the coefficient of the
anomalous diffusion in the anomalous regime

〈R2(t)〉 � a2

t
1−γ

1

t1−γ (9)

up to a numerical constant. For the free boundary the minimal
travel time is defined by the characteristic velocity of the flow
and is of the order of t1 = a/u. For the no-slip condition this
is no more the case since the velocity in the boundary region
vanishes.

Let us consider particles in the YPP flow entering a cell
on its left side. During the time t ∼ a/u of travel along the
vertical border of the cell the particle can move diffusively in
the horizontal direction at a distance δ ∼ √

Dt � (Da/u)1/2 ∝
aPe−1/2, with Pe = ua/D being the Péclet number of the flow.
This is the thickness of the boundary layer, as discussed in
Appendix C of [4]. The streamline at this distance from the
vertical boundary is characterized by the value of its stream
function ψ � Auδ, with A being a number constant. When
moving parallel to the horizontal boundary (say, for x = 1/2,
where φ = By2) a tracer passes at the distance y ∝ √

aδ from
it. The typical velocity at this horizontal part of the streamline
is vx � u(y/a) ∼ u

√
δ/a. Therefore the typical transport time

in the horizontal direction would be

t1 � a

vx

∝ a

u
Pe1/4. (10)

The ratio of the times t2, which defines the end of the subdif-
fusion regime and the transition from anomalous diffusion to
normal diffusion, and t1,

t2

t1
∝ a2

D

u

a
Pe−1/4 = Pe3/4, (11)
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is a growing function of the Péclet number, so that there is
enough time for developing diffusion anomaly at high Péclet
numbers in a YPP flow.

Summarizing these findings, we have

t2

t1
�

{
Pe for EL flow
Pe3/4 for YPP flow.

(12)

This means that the anomalous diffusion is only pronounced
in the case of high Péclet numbers.

The existence of the upper cutoff guarantees the conver-
gence of the mean waiting time t∗ within the cell, given by

t∗ =
∫ t2

t1

tφ(t)dt � t
1−γ

1 t
γ

2 (13)

= t2

(
t2

t1

)γ−1

= a2

D

(
t2

t1

)γ−1

(14)

for t2 
 t1 and for 0 < γ < 1. The diffusion coefficient in
the final regime of normal diffusion is then D∗ � a2/t∗ =
D(t2/t1)1−γ . Inserting the expression for t2/t1 and the values
of γ we arrive at

D∗ � DPe1/2 (15)

for both flows. This form of D∗ guarantees the smooth
crossover from the anomalous behavior as given by Eq. (9)
to the diffusive behavior 〈R2(t)〉 ∼ D∗t at the crossover
time t2.

We note that for initial conditions different from starting
on the separatrix, and for aged situations, the distribution of
the first waiting time until the jump between the cells φ1(t)
differs from φ(t) and cannot, in general, be obtained within
the approach based on the streamline averaging.

III. SIMULATION

The particle motion under the influence of the flow and of
molecular diffusion is described by the Langevin equation

ṙ = rot (0,0,ψ(r)) +
√

2Dξ . (16)

Here r is the instantaneous two-dimensional particle position,
and ξ = (ξx,ξy) is a vector of two independent Gaussian noises
with zero mean, unit width, and 〈ξx(t)ξx(t ′)〉 = 〈ξy(t)ξy(t ′)〉 =
δ(t ′ − t). Taking a as the unit length and t2 = a2/D as the time
unit, we can rewrite this equation as

ṙ = Pe rot (0,0,	(r)) +
√

2ξ , (17)

with

	(x,y) =
{

sin(x) sin(y) for EL flow,

sin(x)
(

y

π

)2(
1 − y

π

)2
for YPP flow.

(18)

Equation (17) has been numerically integrated using the Heun
algorithm. This scheme, a variant of the second-order Runge-
Kutta method, is known to be one of the best algorithms for
the integration of stochastic differential equations with additive
noise [19]. The results, the particle trajectories r(t), are used
for further analysis. The time step of integration is chosen so
that in the absence of noise the displacement in the direction
normal to streamlines and the corresponding variation of 	

stay negligible during the full simulation time tmax = 100. For

FIG. 1. A typical trajectory for the EL flow for Pe = 104 starting
at the origin.

both systems taking a time step equal to 1/(1000Pe) turned out
to be sufficient. A typical trajectory for the EL flow is shown
in Fig. 1.

The main quantities of interest are the mean squared
displacement (MSD) of particles from their initial positions

〈R2(t)〉 = 〈(r(t) − r(0))2〉 (19)

for different initial conditions, the aged MSD (the MSD from
the position a particle had at time ta from the beginning of
observation),

〈R2(t,ta)〉 = 〈(r(ta + t) − r(ta))2〉, (20)

and, respectively, the root mean squared displacement, which
is the square root of the MSD, for 
 > 0, the time-averaged
MSD (TAMSD),

R2(
,T ) = 1

T − 


∫ T −


0
[r(t ′ + 
) − r(t ′)]2 dt ′, (21)

and its ensemble-averaged analog,

〈R2(
,T )〉 = 1

T − 


∫ T −


0
〈[r(t ′ + 
) − r(t ′)]2〉dt ′, (22)

(for the essentially one-dimensional transport by YPP flow
we only consider the displacements along the x axis), and
the probability density function of the displacements from
the initial position. The ensemble averaging corresponds to
averaging over independent runs. If not stated otherwise,
averaging over 104 independent tracers for Pe = 104 was
performed.
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FIG. 2. MSD for Pe = 104 for (a) the EL flow and (b) the YPP flow starting at the separatrix (upper, solid blue line), in the flooded case
(dashed red line), and starting at the center of a cell (lower, solid magenta line).

IV. RESULTS

The results for the main quantities of interest are shown in
Figs. 2 to 4 and 6. In all these figures, (a) presents the results
for the EL flow; (b), for the YPP flow.

Figure 2 shows the MSD for the corresponding flows
for different initial conditions. The upper (solid blue) curves
correspond to the situation where at the beginning the particles
were homogeneously distributed on the separatrix, i.e., have
x(0) = 0 and y(0) homogeneously distributed between 0 and
π . The lower curves (solid magenta) correspond to starting at
the center of the cell, and the dashed red curves correspond
to tracers initially homogeneously distributed within one cell.
The latter situation is referred to as the “flooded case.”

Let us first discuss the behavior of the MSD for a start at
the boundary of the cell that, for t > t1, is well described by
CTRW. The curves exhibit three distinct regimes, for t < t1,
for t1 < t < t2, and for t > t2. For the EL flow the motion
for t < t1 is dominated by the ballistic transport at the cell
periphery. For the YPP flow the transport at short times (i.e.,
in the boundary layer) is dominated by the diffusion and
not by the flow, so that the behavior for t < t1 is diffusive.
The transition from this domain to the next corresponds to
a superballistic motion, since the transport velocity increases
when the particle diffuses into the cell interior. The following
regime of anomalous diffusion corresponds to 〈R2(t)〉 ∝ t1/2

for the EL flow and to 〈R2(t)〉 ∝ t2/3 for the YPP flow, as
predicted by the CTRW model. The behavior for t > t2 is
diffusive for both flows.

The time evolution of the ensemble of tracers starting at
the separatrix is indeed well described by the CTRW with
the waiting-time densities φ(t) ∝ ταt−1−α as given by Eq. (8),
where the characteristic time τ is of the order of t1 and α = 1 −
γ . Given φ(t) and the MSD per step a2, the probability density
function of the particle displacement in the Fourier-Laplace
representation is

p(k,s) = ταsα−1

k2a2/2 + ταsα
(23)

for both k and s small, which corresponds to the long-time
and large-scale limit in the space-time domain (see, e.g.,
Chap. 4 of Ref. [17]). The corresponding probability density
function p(x,t) in the space-time domain is an even function

of its argument and scales as a function of ρ = x/R(t),
where R(t) = 〈R2(t)〉1/2 is the root mean squared displace-
ment, p(x,t) ∝ fα[|x/R(t)|], with the scaling function fα(ρ)
depending on the index α as a parameter. For the YPP flow
this can be found in quadratures [4],

f2/3(ρ) ∝ Ai(ρ), (24)

where Ai(ρ) is the Airy function (see Chap. 10 in [20]; also,
note that ρ > 0). For the case of the EL flow (α = 1/2) we are
aware of no closed form, but a useful integral representation
(see Chap. 6 in Ref. [17]) helps to find p(x,t) [and thus f1/2(ρ)]
numerically,

p(x,t) ∝
∫ ∞

0

1√
Kωt

exp

(
− x2

4Kω
− ω2

4t

)
dω, (25)

with K being proportional to the coefficient of the anomalous
diffusion defining the MSD. Knowing fα(ρ) we can build the
corresponding cumulative distribution function (CDF) of the
scaled absolute displacements ρ,

Fα(ρ) =
∫ ρ

0 fα(z)dz∫ ∞
0 fα(z)dz

, (26)

and compare it to the numerical results, as shown in Fig. 3 (for
the EL flow, only the displacement along the x direction is
considered). The corresponding theoretical curves are shown
as thick green lines. The results of the numerical evaluation of
the corresponding CDFs of rescaled distances at different times
are shown by thin lines. These do indeed roughly follow the
CTRW predictions but show additional oscillations, which are
not errors or artifacts but stem from the internal dynamics of
particles within the cells, which is not resolved on the scales
where the CTRW approach is applicable. It is exactly this
intracell dynamics which makes the anomalous diffusion in
cellular flow different from that in combs with finite teeth.
Note also that the theoretical curves of CDF(ρ) for different,
not too small Pe values should all coincide as well for both
systems. We checked this to hold for 10 times larger Pe values,
i.e., Pe = 105.

Let us return to our discussion of Fig. 2. When starting
at the center of the cell (lower, solid magenta curves), no
intermediate subdiffusion is seen, and the behavior in both
EL and YPP flows corresponds to a superballistic crossover
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FIG. 3. (a) CDF for Pe = 104 depending on the rescaled distance ρ for EL in the subdiffusive regime: 106 simulated walks with time
t ∈ [0.01,0.1] in steps of 0.01 (thin black line) compared to the predictions of the CTRW (thick green line). (b) The same for the YPP flow:
105 simulated walks of time t ∈ [0.1,0.5] in steps of 0.05. Note that no adjustable parameters were used to obtain these two plots.

from short-time diffusion with diffusion coefficient D to final
diffusion with D∗ � DPe1/2.

When the initial positions of the particles are homoge-
neously distributed within the cell (dashed red curve), the
long-time behavior is exactly like in the previous two cases.
The short-time behavior is ballistic, which for the EL flow
coincides with that obtained with a start at the separatrix.
Note also that for the flooded case no intermediate domain
with a constant diffusion exponent smaller than unity can be
detected: The crossover from the initial ballistic to the final
diffusive behavior involves only a slight oscillation. A similar
behavior of the MSD for the considered initial conditions is
seen also for smaller Péclet numbers (as low as 102) and for
larger ones (up to 106, the upper limit for our simulations; not
shown).

For the YPP flow we also take the fourth initial condition
of particles starting at a wall, i.e., at y = 0 [see dotted black
lines in Fig. 4(b)]. This initial condition is equivalent to
starting at the separatrix with a vanishing advection flow and
it corresponds to a pollution model of the atmosphere with
dust being initially on Earth’s surface. The aged MSD for this
initial condition is very similar to the one for starting at the
separatrix (solid blue curve). Only for short times, the MSD
is approximately the one for starting at the center of a cell
(magenta), because of the initially vanishing advection.

The strong dependence on the initial conditions is the reason
for aging and for intermediate-time nonergodic behavior of the
MSD (see, e.g., the discussion in [21]).

Let us first turn to the aging behavior of the MSD. Since
the homogeneous distribution of particles within the system
is invariant under diffusion and flow, the MSD for the initial
condition, when the particles are distributed homogeneously
within the cell, does not show any aging effects: 〈R2(t,ta)〉 =
〈R2(t)〉. For any other initial condition aging is present, as
shown in Fig. 4, and the 〈R2(t)〉 for the homogeneously
flooded cell acts as the limiting curve for 〈R2(t,ta)〉 for
ta → ∞. When starting at the separatrix, this limiting curve
(in the intermediate-time domain corresponding to anomalous
diffusion) is approached from above for both flows. In the
short-time domain there is a difference between the EL and
the YPP flows caused by different relative positions of the

MSD curves discussed above. Since for the EL flow the
short-time behavior for starting at the separatrix and for
starting homogeneously within the cell coincide, the MSD
at short times does not age. On the contrary, for the YPP flow
it shows a distinct speedup. In the situation where the particle
starts at the center of the cell, considerable aging effects
are always observed. For EL the short-time behavior of the
aged MSD is always ballistic and approaches the asymptotic
(ballistic) short-time behavior from below. For the YPP flow
the aged short-time MSD behavior shows the change of regime,
from diffusive to ballistic.

The intermediate-time behavior of the aged MSD for
t1 � t � t2 is the most interesting one. It is similar for
both flows. As one readily infers from Fig. 4, the values of
〈R2(t,ta)〉 = 〈(r(ta + t) − r(ta))2〉 in the time domain above
and for moderate ta � t2 are small compared to the squared
cell size. Therefore this behavior is dominated by the complex
dynamics within a single eddy and shows oscillations, whose
amplitude decays slowly with an increase in both t and ta .
This kind of aging behavior is not observed in a comb model,
which does not show any internal dynamics within the trapped
state. The oscillations exhibited by the aged MSD are due to
the fact that the tracer position after aging time ta is not at the
center but at a finite distance from it. The further motion of the
tracer approximately follows a closed streamline around the
center of the cell, and indeed the frequency of the oscillations
corresponds to the angular velocity of such rotations, which
(in our dimensionless units) follows from the solution of the
deterministic part of Eq. (17) for r close to the center of
the cell. These frequencies are ω = Pe for the EL flow and
ω = (4π )−1Pe for the YPP flow. Our simulations corroborate
the findings for the corresponding time periods of the rotations
for the examined Pe values. The decay of these oscillations is
caused by the dephasing of the motion. In the course of time
more and more particles move away from the center of the
cell. On the other hand, the circulation frequency depends on
the distance from the center and decays to 0 at its periphery.

For the EL flow an approximate formula for the oscillatory
behavior of the MSD can be derived in the following way:
Sufficiently close to the center of the cell the streamlines
are nearly circular, and the diffusion occurs basically in the
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FIG. 4. Same as Fig. 2, with aging times ta = 0, 10−2, and 10−1 (upper, solid blue and lower, solid magenta curves) compared to the flooded
case (dashed red curve). In (b) we show, in addition, the initial condition of starting at a wall, i.e., at y = 0 (dotted black curve).

radial direction, whereas angular distributions are practically
uniform. Let the particles at time t = −ta be δ-distributed at
the center of the cell. At t = 0 their probability density is then
given by

p(r) = 1

4πDta
exp

(
− r2

4Dta

)
, (27)

with D = 1 in our units. Diffusion is assumed to be much
slower than advection. Thus let us for the moment “freeze”
the diffusion completely. We fix this distribution and assume
that the tracers are uniformly advected along their respective
circular streamlines. Then evolution of the MSD is governed
by nonisochronicity of rotations. The larger the radius r , the
longer the period T (r). At time t , the instantaneous MSD for
the infinitesimally thin ring of radius r equals

2r2(1 − cos(ω(r)t)) × 2πrp(r) dr, (28)

with ω(r) = 2π/T (r). Thus the MSD equals
4π

∫ ∞
0 r3p(r)(1 − cos(ω(r)t)) dr . When shifting the

origin of the coordinates to the center of a cell, i.e.,
with x = π/2 + U/2 and y = π/2 + V/2, the equations
ṙ = Pe rot(0,0,	(r)) become Ü + Pe2 sin(U ) = 0 and
V̈ + Pe2 sin(V ) = 0. Solutions of these pendulum equations
are elliptic functions. For the oscillation of variable U with

amplitude U0, the period equals T (r) = 4

Pe
K(1 − cos(U0)),

with K(m) being the complete elliptic integral of the first kind
(see, e.g., Chap. 17 in [20]). For sufficiently low amplitudes
the period obeys

T (r) = 2π

Pe

(
1 + 1

8
U 2

0 + 19

768
U 4

0 + · · ·
)

, (29)

with U0 = 2r . Considering only terms up to quadratic order in
r , we end up with ω(r) = 2π

T (r) = Pe(1 − r2

2 ). Substituting into
the expression for the MSD and performing the integration
yields

〈R2(t,ta)〉 = 8ta + 8ta(
1 + 4Pe2t2t2

a

)2

[(
4Pe2t2t2

a − 1
)

cos(Pe t)

− 4Pe t ta sin(Pe t)
]
. (30)

Now we “unfreeze” the diffusion stopped at ta , i.e., we
replace ta with ta + t . After the oscillations die out, the

approximate expression becomes linear in time. Then the
approximation does not hold any longer, since further terms
in the expansion of the elliptic integral should be taken into
account. Furthermore, the relevant streamlines of the EL flow
are not circular anymore. However, for short times and short
aging times, this approximation describes the MSD quite well,
as we can see in Fig. 5, where the oscillating part of the
aged MSD in Fig. 4(a) is compared to our obtained formula.
A similar derivation for the YPP flow leads to much more
elaborate expressions, since the streamlines are not circular
even in the vicinity of the center.

The behavior of the time-averaged MSD, Eq. (21), strongly
depends on the total averaging time. Here we report the results
for T 
 t2 = 1. For this case the ensemble-averaged TAMSD
for particles starting at the separatrix displays the behavior
changing from ballistic at short times to diffusive at long times,
as shown in Fig. 6 (solid black lines), very similar to the
behavior observed for initially homogeneously flooded cells.
This intermediate stage disappears for low Pe, when t1 and t2
get too close. The overall type of the behavior can be explained
by the discussion of a single trajectory, as shown in Fig. 1.
Building a TAMSD with longer T corresponds to averaging
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time t
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10-2

10-1

100

M
S

D

FIG. 5. Zoom-in on Fig. 4(a) compared to the approximate
expression, Eq. (30) (dashed curve), with ta replaced by ta + t .
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FIG. 6. 〈R2(
,T )〉 for Pe = 104 according to Eq. (22) starting at the separatrix averaged over 102 walks (a) for the EL flow and (b) for the
YPP flow for T = 10 (solid black curve), T = 1 (solid blue curve), and T = 0.1 (dashed green curve).

over all possible positions which the particle assumes during
its motion taken as the initial position. The distribution of these
positions, reduced to a single cell, is relatively homogeneous.
Since for T 
 t2 the system homogenizes, the dependence on
T , as well as the dependence on initial conditions, disappears,
and the distribution of TAMSD around its ensemble average
is relatively narrow. The situation here is similar to the case of
the CTRW with the truncated power-law WTD as discussed
in [11]. For T of about order unity (see the dashed green and
solid blue curves in Fig. 6), the ensemble-averaged TAMSD
is also already very similar to the MSD for the flooded case.
For T � t2 the typical ergodicity breaking behavior should be
present, but the dependence on the initial conditions and the
complicated internal dynamics within the trapped state make
the situation much more involved than that for the pure CTRW
(see [11] and [12]).

V. CONCLUSIONS

We have considered the diffusion-advection problem in two
simple cellular flow models that differ with respect to the
boundary conditions imposed on the cell edges. The models,
often invoked as examples of subdiffusive tracer motion,

were hardy investigated in detail. We concentrate on the
intermediate time range, in which the tracer motion indeed
may show subdiffusion. Extensive numerical simulations of
the systems under different initial conditions show that the
intermediate-time subdiffusion regime is only evident when
the particles start at the border between different cells, i.e.,
at the separatrix, and is less pronounced or absent for other
initial conditions, e.g., when particles initially are injected
in the cell center or are homogeneously distributed within
the cell. The complex motion of the particles within the
single cell leads to peculiar aging properties of the system
in this intermediate-time domain and is mirrored also in the
behavior of the time-averaged mean squared displacement for
single trajectories. Such behavior is not captured by classical
models based on continuous-time random walks that possess
no dynamics in the trapped state.
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