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Langevin equation for systems with a preferred spatial direction
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In this paper, we generalize the theory of Brownian motion and the Onsager–Machlup theory of fluctuations for
spatially symmetric systems to equilibrium and nonequilibrium steady-state systems with a preferred spatial direc-
tion, due to an external force. To do this, we extend the Langevin equation to include a bias, which is introduced by
an external force and alters the Gaussian structure of the system’s fluctuations. In addition, by solving this extended
equation, we provide a physical interpretation for the statistical properties of the fluctuations in these systems.
Connections of the extended Langevin equation with the theory of active Brownian motion are discussed as well.
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I. INTRODUCTION

The dynamical theory of fluctuations in physical systems
began to assume its modern form with the seminal papers of
Onsager and Machlup [1,2]. They proposed to describe the
time evolution of the thermodynamic fluctuating quantities, as
well as of the hydrodynamic and electrodynamic variables, by
a stochastic Langevin equation [3, Chapters 1 and 2]. Orig-
inally Onsager and Machlup considered fluctuations only in
equilibrium systems. Generalizations of the Langevin equation
for fluctuations to nonequilibrium steady states followed; see,
e.g., Refs. [4–6], as discussed later in this paper.

The formalism of the Langevin equation was first developed
in the theory of Brownian motion [3, Chapters 1 and 2]. Later,
Onsager and Machlup proposed [1,2] that the fluctuations of
the thermodynamic quantities can be described by the same
stochastic equation as used for the velocity fluctuations of a
Brownian particle in an equilibrium system. That is, the time
evolution of a fluctuating quantity α(t) obeys the following
Langevin dynamics:1

dα(t) = −Aα(t)dt + BdW (t). (1)

Here, A and B are positive constants whose values and physical
interpretation depends on the system under consideration,
while t is the time and dW (t) is white noise, defined as a
differential of a Wiener process W (t) [3, Chapter 1]:

W (t) =
∫ t

0
dW (t ′). (2)
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1The differential equation (1) is first order with respect to time.

A second-order version of the Langevin equation was considered
in Ref. [2] for systems in which the fluctuations of the currents
should be taken into account. This modifies merely the deterministic
character of the resulting dynamics, while the steady-state proba-
bility of the fluctuations, studied in this paper, remain unchanged,
cf. Ref. [7, Sec. II.3].

The first term on the right-hand side of Eq. (1) is a damping
force with a friction constant A, which ensures that the
fluctuations of the quantity α(t) decay to a macroscopically
observable average value 〈α(t)〉. The second term, BdW (t),
represents physically a microscopic noise of constant intensity
B. It has a Gaussian nature, since W (t) in Eq. (2) is by
definition a normally distributed random variable of zero mean
and variance t .

By solving Eq. (1), Onsager and Machlup predicted a
Gaussian structure of the fluctuations in equilibrium systems.
However, they explicitly omitted in their treatment [1] rotating
systems and systems subject to an external field, because these
do not possess the property of microscopic reversibility.

In this paper, we treat the dynamical theory of fluctuations
for a class of systems subject to an external field. This
includes not only equilibrium systems in an external potential,
such as a gravitational potential, but in addition also systems
maintained in a nonequilibrium steady state by an external
thermodynamic, hydrodynamic, or electrodynamic gradient.

Our theory is mainly motivated by recent studies [4,8–10],
which report a non-Gaussian structure of fluctuations in the
class of systems with an external force. We pay a particular
attention to the asymmetry of such fluctuations, described by
a skewness2 of their probability distributions.

The above-mentioned theoretical and experimental studies
indicate that the probability distribution of fluctuations is
biased in the presence of a preferred spatial direction, which
is induced by an externally applied force. In contrast to such
systems, the original Langevin equation (1) has a peculiar
symmetry, since it has no preferred spatial direction. For
it assigns equal probabilities to both positive and negative
fluctuations of α(t), i.e., neither positive nor negative fluctua-
tions are favored. However, this symmetry is broken when an
external field introduces a special direction and, as conjectured
in Refs. [9,10], alters the microscopic noise in this class of

2Skewness is related to the third moment of a probability distri-
bution, so that symmetric distributions, like the Gaussian, have zero
skewness.
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systems. A consequence of this is a non-Gaussian structure of
their fluctuations.

This symmetry argument can be introduced formally by
using the principle of dissymmetry due to Curie [11,12]. In
the treatment of Onsager and Machlup [1] it was implicit, that
the systems they considered belong to Curie’s limiting point
group of the highest spherical symmetry [11]. A skewness of
the fluctuations was observed in systems, which lack some
symmetry operations with respect to this point group. In all
these cases the bias of the fluctuations is evidently due to
a reduction of symmetry or, as introduced by Curie, due to a
dissymmetry3 with respect to the systems regarded by Onsager
and Machlup. In this paper, we develop a Langevin equation
for the class of physical systems with a polar direction [11]
due to an external force.

We emphasize the important role of the spatial asymmetry,
in contrast to the temporal asymmetry of microscopically
irreversible systems, which are dealt with by the microscopic
fluctuation theory4 [13]. It was long thought that macroscopic
irreversibility would be an immanent property of all systems
in an external potential. However, it was shown in Ref. [14]
that the presence of a magnetic field does not change the
time-reversal symmetry of an equilibrium system, while, as
discussed earlier, it alters the probability structure of its
fluctuations [9]. In Sec. VI, we remark, although, that a
magnetic field may not belong to the class of systems, which
are liable to the theoretical arguments of this paper.

Recently it was suggested in Ref. [4] that the original
Langevin equation of the Onsager–Machlup theory can be
extended by adding a third stochastic term. This term acts
as an external force and causes, together with white noise, a
non-Gaussian behavior of the fluctuations in a nonequilibrium
system. To make further progress, the authors of Refs. [5,6]
assumed that this term is, in general, a compound Poisson
process, cf. Refs. [15, Chapter 2], and added it to Eq. (1),
which then reads

dα(t) = −Aα(t)dt + BdW (t) + dP (t), (3)

where dP (t) is shot noise, the properties of which are defined
by a compound Poisson process.

Apparently shot noise in Eq. (3) was motivated by its appli-
cations in the theory of electric conductance [5,16,17, Chapter
1]. The Poisson process is discrete and makes Eq. (3) singular,
cf. Ref. [6]. Although in the theory of electric conductance this
singularity is explained by the discrete nature of the electric
charge [16], it is a rather curious aspect of Eq. (3) in the context
of Langevin dynamics of classical statistical mechanics.

As a matter of fact, for a long time Eq. (3) has been widely
accepted as a model for Brownian motion of active matter [18–
21], which has a broad range of applications in the field of
biophysics. The nonequilibrium aspect of active Brownian
particles is due to their ability to propel themselves in a
preferred spatial direction on account of their internal energy

3“C’est la dissymétrie qui crée le phénomène” (it is the dissymmetry
that creates the phenomenon) [12].

4To reverse the evolution of such systems, the sign of the external
force should be changed together with that of the velocities and of
the time [13].

source. A common underlying assumption is that this energy is
released in quanta, as typical of biological systems, according
to the Poisson law. Shot noise can then be obtained as a limiting
case of a dichotomous Markov process [18,22]. An asymmetry
of fluctuations, although, was not in the focus of the studies
on active Brownian motion. A possible reason, why Eq. (3)
was only recently considered for physical fluctuations with an
external field in general, is that the self-propagation is a mecha-
nism peculiar to active matter [21]. Besides assumptions about
this mechanism, the importance of a preferred spatial direction
was clearly appreciated in the theory of active Brownian mo-
tion [20]. Curiously, as shown in Appendix C, approximate es-
timates of the cumulants for shot noise [18, Sec. 3.2.2] coincide
with the exact results for the theory presented here, which re-
quires solely the assumption of directed motion. Therefore the
results of this paper provide a model, which may bring new in-
sights for active Brownian motion and even supersede Eq. (3).

The Poisson process assigns a nonzero probability only to
non-negative numbers, so that the role it plays in Eq. (3) is
twofold. First, it acts as an external force and, second, it intro-
duces a bias, which makes Eq. (3) consistent with the symmetry
of the class of systems considered here. Also, the microscopic
noise is not represented solely by white noise, but has an addi-
tional contribution due to the stochastic nature of the third term,
dP (t). Shot noise itself can be discrete, as in Ref. [5], or con-
tinuous [6,18,22], when its intensity is a real random variable.

In this paper we propose to replace shot noise in Eq. (3) by
a different non-Gaussian stochastic term, so that the extended
Langevin equation for the fluctuations in systems with a
preferred spatial direction would read

dα(t) = −Aα(t)dt + BdW (t) + CdEτ (t). (4)

Here, C is a positive or negative constant, while dEτ (t) is a
time differential of a Gamma process Eτ (t) with a timescale
parameter τ ,5 cf. [23–25, Chapter I]. We will call dEτ (t)
exponential noise for a reason that is clarified in Sec. IV.

The first improvement achieved by Eq. (4), with respect to
Eq. (3), is its statistical foundation, which is comparable to
that of the original Langevin equation. For unlike shot noise
assumed in Eq. (3), both white noise and exponential noise in
Eq. (4) can be deduced from simplified models of the physical
systems. This approach, first proposed by Smoluchowski for
white noise (cf. Ref. [26]) is applied here in a modified form
to determine statistical properties of exponential noise. To do
so, we will follow the formalism of Chandrasekhar in Ref. [7,
Chapter I], which describes how the Wiener process can be
obtained as a continuous limit of a simple symmetric random
walk from a discrete physical model of microscopic noise.
In this paper we model the effect of an external force with
an asymmetric random walk, which in a similar continuous
limit leads to the concept of exponential noise. To complete
the analogy with Chandrasekhar’s construction, we verify in
Sec. IV that, like the Wiener process, the Gamma process also
arises in a more elaborate model of a random flight.

5The Gamma process is characterized by statistically independent
increments, each having a Gamma probability distribution [23–25,
Chapter I].
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TABLE I. Summary of the statistical properties of the stochastic processes considered in the text. The reciprocal dual of a random variable
x in the cumulant-generating functiona is denoted by x̃, while constants c and τ label various parameters having a similar physical significance;
W (t), Eτ (t), Pc(t), and Pe(t) are, respectively, a Wiener process, a Gamma process with a timescale τ , a Poisson process of a rate τ−1, and of
a constant intensity c, and a compound Poisson process of a rate τ−1 and of a random intensity, which is exponentially distributed with a scale
parameter c.

Random variable (x) cW (t) cEτ (t) Pc(t) Pe(t)
Parameters c c, τ c, τ c, τ

Support Real line Half real line Integer multiples of c Half real line
(positive or negative) (non-negative or nonpositive) (positive or negative)

Probability density ∝ exp
(− x2

2c2t

) ∝xt/τ−1 exp
[− x

c

] ∝ (t/τ )−x/c

�(x/c+1) Not elementary
Cumulant-generating
function c2t x̃/2 ln(1 − cx̃)−t/τ [exp(cx̃) − 1]t/τ tcx̃

τ (1−cx̃)

First cumulant
(mean) 0 ct/τ ct/τ ct/τ

Second cumulant
(variance) c2t c2t/τ c2t/τ 2c2t/τ

Third cumulant 0 2c3t/τ c3t/τ 6c3t/τ

aA cumulant-generating function is the natural logarithm of the Laplace transform of a probability density function.

The second advantage of Eq. (4) is that, since exponential
noise is not singular, in contrast to shot noise, it fits more
naturally into a stochastic differential equation. While the
Poisson process is discrete, it has a highly nontrivial continu-
ous counterpart [27], which is, nonetheless, not considered by
the proponents of Eq. (3). As mentioned earlier, the discrete
nature of the third term in Eq. (3) introduces a singularity. In
contrast to this, the Gamma process, like the Wiener process,
offers a continuous nonsingular and infinitely divisible [25,
Chapter I] alternative to shot noise. Therefore, the theory and
the treatment of the Langevin equation Eq. (4) is in principle
simpler than that of Eq. (3).

Appendix C reviews some technical aspects of the com-
pound Poisson process for a more detailed comparison with the
model presented in this paper. In addition, Table I summarizes
the difference between the Wiener process W (t), the Gamma
process Eτ (t), and the variations of the compound Poisson
process with (i) a constant (c) intensity Pc(t), considered in
Ref. [5], and (ii) with an exponentially (e) distributed random
intensity Pe(t), considered in Refs. [6,19–21].

In Sec. V we will show that the statistical properties of
the fluctuating quantity α(t), which evolves according to
the extended Langevin equation (4), can be computed in
terms of the same physical parameters, which characterize
the macroscopic state of the systems studied in this paper.
In particular, we confirm the non-Gaussian structure of the
fluctuations by calculating their skewness. Moreover, the sign
of the skewness depends on the external force in a manner
which was already observed by an earlier experiment [10].

Finally, we note that, while the behavior exhibited by Eq. (3)
is qualitatively very similar to that of Eq. (4), they differ
in principle because shot noise and exponential noise have
significantly different statistical properties, cf. Table I and
Appendix C. Equation (3) may well be applicable to some
systems, which are listed in Ref. [6] and which need a noise
term of a discrete nature, e.g., systems of a small size or
with a weak external force. Nonetheless, in this paper we
argue that Eq. (4) is a most natural extension of the Langevin

dynamics for a variety of physical systems studied by the
classical statistical mechanics.

II. A SIMPLIFIED PHYSICAL EXAMPLE

To provide a physical insight into the dynamics described
by a Langevin equation of the form of Eq. (3) or Eq. (4), we
consider in this section a macroscopic system as an idealization
of the systems studied by classical statistical mechanics, which
are of interest in this paper. This will allow us to develop a
decomposition of the random noise into two parts: a symmetric
and asymmetric random processes, respectively. The latter will
also incorporate the action of an external field. As discussed
afterwards, such a decomposition is not obvious at the level
of classical statistical mechanics, but it is much clearer in the
example considered below or some biological systems.

First, consider a man in a boat on a lake. When the man just
sits in the boat, the motion of the boat can be described by the
Langevin equation (1), where the damping force would be due
to the friction of the boat in the water and white noise would
be caused by spontaneous fluctuations due to the waves on the
water surface and the wind. The stochastic term is motivated by
the symmetry of this physical system, which a priori does not
favor any direction of motion, so that the excitations pushing
the boat forward or backward are equally probable. As a result,
the boat’s velocity is distributed symmetrically around zero.

Now imagine that the man begins to paddle, so that the
boat is propelled forward by impulses which are imparted
by the oar at a certain rate. This rate will depend on the
rowing rhythm, which is, in general, irregular. For instance,
the man sometimes may row slower and other times faster.
This irregularity of the rowing rhythm can be accounted for
statistically if we regard the total force imparted by the rower to
the boat as a random variable, which has some definite average
value over a sufficiently long time interval and assumes only
non-negative values. This random variable, when added to
the original Langevin equation (1) as a third term, yields a
stochastic dynamics of the form (3) or (4).
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This new stochastic term, which represents an external
force acting on the boat, has one important attribute which
distinguishes it from the white noise term discussed earlier.
Namely, the external force assumes only non-negative values,
since the rower propels the boat always forward. Clearly, the
average velocity of the boat will then be positive. However,
due to the external force, the fluctuations of the velocity
are amplified in the forward direction and suppressed in the
backward direction. This introduces a bias for the forward
fluctuations of the boat’s velocity and, thus, reduces the
symmetry of the system.

Here it is relevant to remark that, if the third term in Eq. (3)
or in Eq. (4) were either a constant or another Wiener process,
the resulting fluctuations would have a Gaussian structure.
In fact, a certain change of variables would then transform
these equations into the form of Eq. (1). Therefore, both the
stochastic nature and the absence of negative values of the
external force turn out to be crucial to reproduce the non-
Gaussian nature of the fluctuations in the class of systems
considered in this paper.

Generalizing the above argument, we assume that in all
physical systems of interest for this paper, the random noise
can be represented as a linear superposition of a symmetric
term, being white noise, and some asymmetric term, which
corresponds to the external force. The latter is asymmetric, be-
cause it never takes on negative values. Both models discussed
in the Introduction, Eqs. (3) and (4), are constructed in this way.

The described decomposition of the random noise will be
assumed, in spite of the fact that, in a real thermodynamic,
hydrodynamic, or electrodynamic system, the microscopic
noise and the external force cannot be easily separated.
For example, a Brownian particle, which collides with the
molecules of a fluid subject to a density gradient, will
drift, on average, in a certain direction. Then, since both
the microscopic noise and the external force acting on the
Brownian particle are both caused by the collisions with the
fluid molecules, it is not obvious that each of the two can be
represented in the Langevin equation by a distinct separate
term of stochastic nature. Nonetheless, some biological
systems [28] or, more generally, the active matter [18], bear
some similarity to the rower example.

III. WHITE NOISE

This section reviews a simple one-dimensional (1D) ran-
dom walk, as used by Chandrasekhar [7, Chapter I] to motivate
the white noise term for the Langevin dynamics described by
Eqs. (1), (3), and (4). In a slightly modified form, the same
approach will be adopted in the next section to deduce the
form of the third term in Eq. (4).

Consider a particle which suffers displacements along a
line in the form of discrete steps of equal length. The particle
moves one step forward with probability p(1) = 1/2, while the
probability of a backward step is p(−1) = 1 − p(1) = 1/2.
Equal probabilities of backward and forward displacements
do not favor any direction of the motion. This is consistent
with the symmetry of the system, described in Sec. II, where
a man sits in a boat without doing anything.

The problem is to find the probability WN (m) that the
particle has moved to a point m after a series of N steps,

−N � m � N . Without loss of generality, we assume that
the initial position of the particle is at zero m0 = 0, so that
the total displacement �m = m − m0 = m equals the final
position of the particle. The exact solution is given by the
binomial distribution [7, Chapter I]:

WN (m) = N ![p(1)](N+m)/2[p(−1)](N−m)/2

[(N + m)/2]![(N − m)/2]!
. (5)

As can be shown [7, Chapter I], the binomial distribution
Eq. (5) with p(1) = 1/2 approaches asymptotically a Gaus-
sian6 pG(m):

WN (m) →
N→∞

pG(m) = (2πN )−1/2 exp

(
− m2

2N

)
. (6)

To obtain the continuous limit of Eq. (6), one introduces
a density of sites accessible to the particle per unit length
ρ = �m/�x and the rate of displacements suffered per unit
time ν = �N/�t , where �x and �t are now, respectively,
the continuous increments of coordinate and time. Then, using
Eq. (6) for ρ and ν fixed in the limit �x → 0 and �t → 0,
one finds from Eq. (6) the probability density of particle’s
displacement �x within a time interval �t [7, Chapter I]:

pG(�x,�t) = 1√
2B2�t

exp

(
− �x2

2B2�t

)
, (7)

where B2 = ν/ρ2.
The coordinate �x is thus a Gaussian random variable.

Therefore the continuous limit, used to obtain Eq. (7), can be
interpreted in terms of the Wiener process, cf. [7, Chapter II,
Lemma I], which allows us then to pose that

�x = BW (�t) = B

∫ �t

0
dW (t). (8)

Instead of random displacements in the coordinate space,
one can consider “displacements” in a velocity space, as in
the problem of Brownian motion. This way one obtains white
noise in the Langevin equation (1).

The equal length of each step in this simple random walk
problem turns out to be insignificant, as shown in Ref. [7,
Chapter I]. In particular, random flight models, where the
size of each step is sampled from a variety of probability
distributions, lead again to a Gaussian distribution of the
particle’s total displacement. The key aspect, therefore, is
that the considered dynamics favors no particular direction
of motion, since it assigns equal probabilities to the forward
and backward displacements at each step.

IV. EXPONENTIAL NOISE

To motivate the third term of the Langevin dynamics (4),
we need to exclude negative values of the external force it
represents, as was suggested in Sec. II. This constraint can

6The Gaussian approximation pG(m) is accurate only around the
mean value of m, cf. Ref. [29]. Nonetheless, the original theory
of the Langevin equation is not concerned with corrections for
large deviations from the mean, since they have vanishingly small
probabilities.
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FIG. 1. Histograms of two random walk simulations: (a) N = 25, (b) N = 1000. In panel (b) the Gaussian approximation is not plotted,
because it is indistinguishable from the graph of the Gamma distribution when N is so large. The Poisson distribution provides a poor
approximation of the histogram data, since the probability of the forward step is not sufficiently small.

be implemented in the model of a simple random walk,
reviewed in the preceding section, by a minor modification.
Namely, the particle now will make only forward steps with
the same probability p(1) = 1/2 or it will remain at rest with
the probability p(0) = 1 − p(1) = 1/2. Then the particle’s
position can take on values in the integer range 0 � m � N .

As in Sec. III, the problem is again to find the probability
WN (m) that the particle moved from its initial position at zero
to the position m = �m after N steps. The exact solution is
again a binomial distribution, which can be obtained by the
same argument as Eq. (5) [7, Chapter I]:

WN (m) = N ![p(1)]m[p(0)]N−m

m!(N − m)!
. (9)

As was done in Sec. III, the binomial probability mass7

function (9) can be approximated by a Gaussian, which has
a support (−∞,∞). However, we emphasized earlier that
the zero probability of all negative values has a physical
significance because it represents an external force always
acting in the forward direction. For that reason we have to
abandon the Gaussian approximation, which holds only for
small deviations from the mean, cf. Ref. [29].

Instead of the Gaussian approximation, it would be tempt-
ing to resort to the Poisson distribution, which is traditionally
used as a limiting case of the binomial distribution (9) for
p(1) → 0 [30,31, Sec. 3-4], when a random variable of interest
has its support on the half real line [0,∞). However, in
accordance with the ideas developed in Sec. II, the Poisson
model is restricted to weak external forces because it requires
a vanishing probability of forward displacements, so that
the particle mostly stays where it is. Fortunately, this rather
restrictive assumption is irrelevant for the case p(1) = 1/2 of
interest here, which actually is much better approximated by
a different expression, as follows:

For the special case p(1) = 1/2, which is of interest here,
we will demonstrate that the binomial distribution (9) can be

7The probability mass function is the discrete analog of the
probability density function for continuous random variables.

approximated by a Gamma distribution p� [32, Chapter 15] in
the limit N → ∞:

WN (m) →
N→∞

p� = mN−1

θN�(N )
exp(−m/θ ), (10)

with an average value 〈m〉 = Nθ , a variance var{m} = Nθ2,
and the parameter θ = p(1) = p(0) = 1/2, which is the mean
rate of forward moves per step.

To the best of our knowledge, this work is the first to propose
the Gamma approximation of the binomial distribution, which
is motivated by the fact that the mean and the variance of
WN (m) in Eq. (9) [32, Chapter 3] coincide with those of
p� [32, Chapter 15]. While a formal mathematical argument
is given in Appendix A, below we illustrate the efficiency of
Eq. (10) by the numerical simulations in Fig. 1. The Gamma
approximation becomes indistinguishable from a Gaussian
for a sufficiently large N , like in Fig. 1(b). An excellent
agreement between the histograms and the Gamma probability
distribution is evident for increasing N in Fig. 1, while
the Poisson distribution gives a poor representation of the
simulation data, as expected for a nonvanishing probability
of the forward step p(1) = 1/2.

To specify the continuous counterparts of the discrete vari-
ables m and N in Eq. (10), we express the average displacement
〈�m〉 in terms of the displacement rate ν = �N/�t per unit
time and the density of positions ρ = �m/�x per unit length,
introduced in Sec. III, so that

〈�x〉 = 〈�m/ρ〉 = �Nθ/ρ = C�t/τ, (11)

where C = θ/ρ and τ = 1/ν.
If we fix ρ and ν for �x → 0 and �t → 0 as in Sec. III, the

continuous limit of Eq. (10) then follows from the property of
infinite divisibility of the Gamma distribution [25, Chapter I].
This means, in particular, that Eq. (10) can be represented as a
sum of N independent random variables distributed according
to an exponential law of intensity θ [32, Chapter 15]. This
property and Eq. (11) both motivate us to replace the sum over
N in the continuous limit by a time integral of exponential
noise dEτ (t), which is then defined as the differential of the
Gamma process Eτ (t), cf. Refs. [23,25], so that �x obeys the
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probability law of a Gamma distribution:

p(�x,�t) = �x�t/τ−1

C�t/τ�(�t/τ )
exp

(
−�x

C

)
, (12)

�x = CE(�t) = C

∫ �t

0
dEτ (t). (13)

Here, Eqs. (12) and (13) define the properties of exponential
noise in the same manner as Eqs. (7) and (8), respectively,
determine the properties of white noise.

We concluded Sec. III by pointing out that white noise
also emerges in models of a random flight, where the length
of the particle’s displacements is sampled at each step from
a symmetric probability distribution. Similarly, the random
walk considered in this section can be generalized to a
random flight with steps of a variable length. If the length
of each displacement is sampled from an exponential prob-
ability distribution, the Gamma distribution of the particle’s
total displacement arises again as the sum of independent
exponentially distributed random variables, a property already
used above to deduce Eq. (12).

The analogy between the random walk problems of this
and of the previous section is now complete. In Sec. III the
Wiener process was obtained as the continuous limit of the
symmetric random walk problem. By a similar argument,
above we deduced the Gamma process from the continuous
limit of an asymmetric random walk.

Finally, we conjecture that the generalization of the
Langevin equation Eq. (1) to systems with a preferred spatial
direction, induced by an external force, is given by Eq. (4). The
new third term of that equation, i.e., CdEτ (t), is proportional
to exponential noise, defined by Eqs. (12) and (13). If instead
of the coordinate space we considered the velocity space of a
Brownian particle, C/τ would have a physical meaning of the
mean external force, as discussed in the next section.

The skewness of Gamma process decreases with time,
while the binomial distribution remains always symmetric.
As pointed out in Appendix A in more detail, this discrepancy
between WN (m) and p�(m) is acceptable for the limit N →
∞. Note that the skewness, considered in Sec. I, is observed
for the time-invariant probability distribution of physical
fluctuations. As we discuss in Sec. V and, shortly, in Sec. VI,
the extended Langevin dynamics, thanks to the frictional
term, leads to a time-invariant probability measure, which
reproduces the skewness of fluctuating variable.

V. SOLUTION OF THE EXTENDED
LANGEVIN EQUATION

The extended Langevin equation (4) can be solved by a
straightforward generalization of the method used in Ref. [7,
Chapter II] for Eq. (1). To do this, we first denote by ε(t) the
sum of the following two stochastic terms:

ε(t) = BdW (t)/dt + CdEτ (t)/dt, (14)

so that Eq. (4) can be rewritten as

dα(t)/dt = −Aα(t) + ε(t). (15)

A formal solution of Eq. (15) was already given in Ref. [7,
Chapter II], which we repeat here in our notation:

α(t) = α0 exp(−At) + exp(−At)
∫ t

0
ds exp(As)ε(s), (16)

where α0 = α(0) is an initial value condition.
Since in this paper we do not need a solution of Eq. (15)

for a particular physical system, we focus our attention on the
steady-state (SS) solution αSS. This will suffice for our interest
in the statistical nature of the fluctuations described by Eq. (4),
as anticipated in Introduction. Taking the steady-state limit of
Eq. (16) we have

αSS = lim
t→∞ α(t) = lim

t→∞

[ ∫ t

0
ds exp[A(s − t)]ε(s)

]
. (17)

The decomposition of ε(t) in Eq. (14) splits the integral on
the right-hand side of Eq. (17) into a sum of two terms:

B

∫ t

0
exp[A(s − t)]dW (s) + C

∫ t

0
exp[A(s − t)]dEτ (s). (18)

The first integral in Eq. (18) is given by Lemma I of Ref. [7,
Chapter II]. The result of integration is a normally distributed
random variable β(t), with a zero mean and a variance

var{β(t)} = B2

2A
[1 − exp(−2At)],

which in the steady-state limit becomes

lim
t→∞ var{β(t)} = B2

2A
.

For the second integral in Eq. (18) we need another result
established by Lemma 1 in Appendix B, which is analogous
to the above cited Lemma I of Ref. [7, Chapter II], but applies
to exponential noise. There we show that the second integral
in Eq. (18) is a random variable given by a Gamma-mixture
distribution and compute its mean, variance, and skewness.
From now on we denote this random variable by γ (t).

In summary, we found that α(t) is a sum of two independent
random variables: a Gaussian β(t) and a Gamma-mixture γ (t).
Therefore, the cumulant-generating function, cf. Appendix A,
of α(t) is a sum of the Gaussian cumulant-generating func-
tion [32, Chapter 10] and the Gamma-mixture distribution,
obtained in Appendix B. This allows us to calculate the
mean, variance [var{α(t)}], and the skewness [skw{α(t)}] of
α(t). Omitting straightforward computational details, we write
immediately the final results for the steady-state solution αSS

〈αSS〉 = lim
t→∞{κ1[β(t)] + κ1[γ (t)]} = C

τA
, (19)

var{αSS} = lim
t→∞ {κ2[β(t)] + κ2[γ (t)]}

= B2 + C2/τ

2A
, (20)

skw{αSS} = lim
t→∞

κ3[β(t)] + κ3[γ (t)]

var{α(t)}3/2
(21)

= 4
√

2AC3/τ

3(B2 + C2/τ )3/2
, (22)

where κi stands for the ith cumulant.
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Since the skewness of the steady-state solution does not
vanish for C > 0, cf. Eq. (21), the structure of the fluctuations
is non-Gaussian. Moreover, the skewness and the mean have
the same sign as C, which is consistent with the experimental
observations of Ref. [10]. Higher-order statistics than those
in Eqs. (19)–(21), can also be computed from the cumulant-
generating function.

The physical meaning of the parameters A, B, and C

depends on the problem, modeled by the extended Langevin
dynamics. For instance, for a Brownian particle, A is the
friction constant, while the parameter B can be computed from
the kinetic temperature8 once A and C are known. Finally, as
explained further, C/τ is the average magnitude of the external
force. This can be seen if we take the steady-state average of
both sides in Eq. (15), which corresponds to the macroscopic
dynamics:

〈dα(t)/dt〉 = −A〈α(t)〉 + 〈ε(t)〉 = 0, (23)

where the left-hand side must vanish in the steady state by
definition. From Eqs. (14) and (23) one finds

〈α(t)〉 = A−1〈BdW (t)/dt + CdEτ (t)/d(t)〉
= A−1〈CdEτ (t)/dt〉, (24)

since the average effect of white noise, dW (t), vanishes.
Finally, 〈CdEτ (t)/dt〉 = C/τ because

d

〈
C

∫ t

0
dEτ (t)

〉/
dt = d(Ct/τ )/dt = C/τ, (25)

due to Eqs. (11)–(13).
Combining Eqs. (23)–(25), we have

〈α(t)〉 = C

τA
,

which relates the terminal value 〈α(t)〉 to the external force
C/τ and the friction coefficient A. For the complete de-
scription of the extended Langevin dynamics, the timescale
parameter τ , which is a new characteristic of a system, needs
to be found as well.

In other words, all constants A, B, and C/τ are physical
observables, which can be determined by measurements. In
fact, these quantities are used to characterize physical systems
in steady states, as was shown in the example above for
Brownian motion.

VI. CONCLUSION

The Langevin dynamics of Eq. (1) was extended by a
new term to obtain Eq. (4), which generalizes the theory of
Brownian motion, as well as the Onsager–Machlup theory
of fluctuations, from spatially symmetric equilibrium systems
to equilibrium and nonequilibrium steady-state systems with
a preferred spatial direction. We also provided statistical
arguments in Sec. IV, which allowed us to deduce the form of
the new term.

A method of solving the extended Langevin equation
was demonstrated in Sec. V. In particular, we showed how

8The kinetic temperature is proportional to the variance of the
particle’s linear momentum distribution, cf. Eq. (20).

the statistical properties of its steady-state solution can
be computed from macroscopic physical observables. The
steady-state probability distribution of the fluctuations is also
characterized by the cumulant-generating function, which can
be expressed by using the dilogarithm, a special mathematical
function, cf. Appendix B. The corresponding probability
density, which apparently cannot be expressed in terms
of elementary functions, can be in principle approximated
by the modulated Gaussian distribution [10] for practical
applications.

The theory presented in this paper should be applicable to
a variety of physical systems in classical statistical mechanics,
such as an equilibrium fluid system in a gravitational potential
or an electric current driven by a voltage difference. Applica-
tions of Eq. (4) to particular systems opens new perspectives
for the future research in equilibrium and nonequilibrium
statistical physics.

An important aspect of the presented theory is the steady-
state limit for the variable of interest α(t), as in the case of the
velocity of a Brownian particle. In contrast, the coordinate of
a Brownian particle has a probability density, the variance of
which is growing with time. Indeed, it is easy to show that, if the
velocity of a Brownian particle obeys the extended Langevin
dynamics, the dynamics of its position converges in time to
the model of the drift diffusion. Consequently, the skewness,
which fully develops in the steady-state probability distribution
for the velocity of a Brownian particle under the action of
external force, is decreasing with time for the distribution of
its coordinate.

As shortly discussed in Sec. I and Appendix C, exponential
noise also offers a new foundation for modeling of active
Brownian motion. Some earlier estimates, while being ap-
proximate for shot noise, are exact in the framework built
around exponential noise. Therefore it advances the earlier
theory without need for a major revision of these results.

Finally, we would like to make a remark about the
equilibrium systems in the magnetic field. The vector of a
magnetic field has an axial nature, which means that it does
not select a preferred direction but rather determines a sense
of rotation in its normal plane. As discussed in Sec. I, such
systems have a symmetry of the Curie’s limiting point group
∞/m, which does not admit a preferred spatial direction [11].
This is in contrast to the forces, described by polar vectors
considered here, e.g., the electric field, which belongs to the
symmetry group ∞ · m [11]. For this reason, systems subject to
a magnetic field bear more similarity with the rotating systems,
which still may need a further generalization of the Langevin
equation.
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APPENDIX A: GAMMA APPROXIMATION
OF BINOMIAL DISTRIBUTION

In this appendix we provide a formal mathematical ar-
gument for the Gamma approximation (10) of the binomial

032127-7



ROMAN BELOUSOV, E. G. D. COHEN, AND LAMBERTO RONDONI PHYSICAL REVIEW E 94, 032127 (2016)

distribution (9). For this we compare a cumulant-generating
function [33,34, Sec. 26.1] of the Gamma distribution (C�)
with that of the binomial distribution (CB).

We recall that a probability distribution of a random variable
m is uniquely determined by its probability mass (or density)
function or, equivalently, by its cumulant-generating function
C(k):

C(k) = ln〈exp (km)〉m =
∞∑
i=1

κj

kj

j !
, (A1)

where k is the dual of m, while the angle brackets denote the
average value. The Taylor coefficients κj in Eq. (A1) are the
cumulants of m.

The first and second cumulants of a probability distribution
are equal to its mean and its variance, respectively. The mean
and the variance of the binomial distribution (9) are equal to
those of the Gamma distribution (10), respectively, if p(1) =
θ = 1/2, cf. Ref. [32, Chapters 3 and 15]. It follows then that
their cumulant-generating functions agree up to the third-order
term in k, i.e.,

CB(k) − C�(k) = O(k3),

because the first two cumulants cancel each other in the series
expansion (A1) for CB(k) and C�(k), respectively.

For the binomial distribution (9), there are no asymptotic
formulas of an accuracy higher than O(k3) with the support
on the half real line.9 The error of the third order is due to the
skewness of the Gamma distribution. This property is inherent
in all distributions which have support on the half real line,
as a consequence of their obvious asymmetry. In other words,
any asymptotic formula of Eq. (9) acquires skewness in the
limit N → ∞ if its support spreads over all non-negative reals
[0,N )N→∞, as considered in Sec. IV.

APPENDIX B: GAMMA-MIXTURE
PROBABILITY DISTRIBUTION

When solving the extended Langevin equation in Sec. V,
we had to evaluate a steady-state limit for a definite stochastic
integral of the form

I =
∫ t

0
dEτ (s)φ(s), (B1)

where φ(s) = C exp[A(s − t)] and dEτ (s) is exponential noise
with the timescale parameter τ .

Below we will consider a more general function φ(s).
We obtain the cumulant-generating function of the random
variable I [33,34, Sec. 26.1], cf. Appendix A, and compute
some of its statistical moments, i.e., mean, variance, and
skewness.

Lemma 1. Let I be a random variable given by

I =
∫ t

0
dEτ (s)φ(s),

9However, there may exist approximations of Eq. (9) with the same
order of accuracy as Eq. (10).

where φ(s) is some integrable function and dEτ (s) is ex-
ponential noise with the timescale parameter τ . Then I

has a Gamma-mixture distribution, which is described by a
cumulant-generating function

C(Ĩ ) = −
∫ t

0

ds

τ
ln[1 − φ(s)Ĩ ],

where Ĩ is the dual of I in the reciprocal Laplace space.
Proof. Partitioning the domain of integration [0,t] into n

subintervals of length �t , so that n�t = t , we express I as the
limit of the following discrete sum Sn:

I →
n→∞ Sn =

n−1∑
j=0

φ(j�t)
∫ (j+1)�t

j�t

dEτ (s) =
n−1∑
j=0

rj , (B2)

where the index j runs through all subintervals.
By virtue of Eqs. (12) and (13), each term of the summation

rj in Eq. (B2) is an independent Gamma-distributed random
variable. In other words, the probability distribution of I is
a discrete mixture of Gamma-distributed random variables
or, equivalently, a discrete Gamma-mixture distribution. The
shape and scale parameters [32, Chapter 15] of each com-
ponent rj are, respectively, �t/τ and φ(j�t), while the
cumulant-generating function of their sum is

C(S̃n) = −
n−1∑
j=0

�t

τ
ln[1 − φ(j�t)S̃n], (B3)

where S̃n is the dual of Sn.
One should recognize in Eq. (B3) a Riemann sum, which in

the limit �t → 0 (n → ∞) becomes an integral. Then, from
Eqs. (B2) and (B3), we conclude that

C(Ĩ ) = lim
n→∞ C(S̃n) = −

∫ t

0

ds

τ
ln[1 − φ(s)Ĩ ], (B4)

which is the cumulant-generating function of the Gamma-
mixture distribution.

The cumulants κi(I ), and hence the statistical moments of
I , can be obtained either by differentiation of the cumulant-
generating function given by Lemma 1, cf. Eq. (A1), or by
using the calculus of cumulants. While the latter method was
adopted in Sec. V to compute the skewness of the steady-state
solution αSS, cf. Eq. (21), in this section the former approach
is more convenient.

Differentiating Eq. (B4) with respect to Ĩ we find

〈I 〉 = κ1(I ) = dC(Ĩ )

dĨ

∣∣∣∣
Ĩ=0

=
∫ t

0

ds

τ
φ(s),

var{I } = κ2(I ) = d2C(Ĩ )

dĨ 2

∣∣∣∣
Ĩ=0

=
∫ t

0

ds

τ
φ(s)2, (B5)

κ3(I ) = d3C(Ĩ )

dĨ 3

∣∣∣∣
Ĩ=0

= 2
∫ t

0

ds

τ
φ(s)3,

from which the skewness can be computed by using its
definition in terms of cumulants skw{I } = κ3(I )/κ2(I )3/2.
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Now, returning to Eq. (B1), we plug φ(s) = C exp[A(s −
t)] into Eqs. (B4) and (B5). Then the cumulant-generating
function, given by Eq. (B4), becomes:10

C(Ĩ ) = 1

τA
{Li2(CĨ ) − Li2[CĨ exp(−At)]}, (B6)

where Li2 stands for a dilogarithm function [34, Sec. 27.7].
Thus, that the steady-state limit of Eq. (B6) yields

lim
t→∞ C(Ĩ ) = Li2(CĨ )/(τA). (B7)

To evaluate Eq. (B5) for the form of φ(s), chosen above, it is
convenient to consider first a general integral of the following
form: ∫ t

0

ds

τ
φ(s)n =

∫ t

0

ds

τ
Cn exp[nA(s − t)]

= Cn

nτA
[1 − exp(−nAt)], (B8)

for any integer n.
Using then Eq. (B8), we can calculate the statistics given

in Eq. (B5), as well as their steady-state limits:

lim
t→∞〈I 〉 = lim

t→∞

{
C

τA
[1 − exp(−At)]

}
= C

τA
,

lim
t→∞ var{I } = lim

t→∞

{
C2

2τA
[1 − exp(−2At)]

}
= C2

2τA
, (B9)

lim
t→∞ κ3 = lim

t→∞

{
2C3

3τA
[1 − exp(−3At)]

}
= 2C3

3τA
.

APPENDIX C: SHOT NOISE

In the literature there exist a few variations of shot noise.
Here we review very briefly two of them, which are of concern
in Refs. [5,6]. Eventually we also show that exponential noise
can approximate both these variations of shot noise.

The simplest case is a shot noise of a constant intensity
dPc(t), which is defined through the stochastic differential of
the Poisson process Pc(t), cf. Refs. [5,17, Chapter I], so that

Pc(t) = h

n(t)∑
i=1

H (t − ti).

Here H (t) is the Heaviside step function, h is the constant
intensity of shot noise, while n(t) is a random integer number
from a Poisson distribution, so that on average one has 〈n(t)〉 =
t/τ , with τ−1 being the rate of Poisson process.

Shot noise of constant intensity dPc(t) can be motivated
by an asymmetric random walk, where the step length is a
non-negative integer sampled from a Poisson distribution with
one forward move per step on average. Then in the continuous
limit with a fixed rate of forward displacement τ−1, one obtains
a Poisson process Pc(t)/h.

On the other hand, instead of the discrete Poisson distribu-
tion Pc(t)/h, one can approximate the random walk, described
above, again by the continuous distribution p� in Eq. (10) with

10We evaluated the integral in Eq. (B4) for φ(s) = C exp[A(s − t)]
by using a software for symbolic computations [35].

the parameter θ = 1. Indeed, since the first two cumulants of
Pc(t)/h and of Eq. (10) coincide, the argument of Appendix A
ensures the error of this approximation within the third order.

Another version of shot noise is introduced by a compound
Poisson process Pe(t) [15, Sec. 2.5], with an intensity hc sam-
pled from an exponential distribution with a scale parameter
c, cf. Refs. [6,18]:

Pe(t) =
n(t)∑
i=1

hiH (t − ti), (C1)

where hi is the ith realization of hc, while n(t), as before, is a
Poisson-distributed random variable with a mean 〈n(t)〉 = t/τ .

Shot noise dPe(t) is a limiting case of a dichotomous
Markov walk [18,22]. Its derivation is a bit more involved
than random walks considered earlier and, therefore, we refer
to Ref. [22] for details. Following Ref. [15, Sec. 2.5], the
cumulant-generating function of the random variable P =
Pe(t), with P̃ being its reciprocal dual, is

C(P̃ ) = ln〈exp(P̃ P )〉P

= ln
∫ ∞

0
dP exp(P̃ P )

n(t)∑
i=1

pτ (i)pi(P ), (C2)

where pτ (i) is the probability density of the Poisson distribu-
tion with the mean t/τ , while pi(P ) is the probability density
of a sum of i realizations of hc.

Since hc is an exponentially distributed random variable,
pi(P ) is a Gamma distribution, cf. Sec. IV. By performing
integration with respect to P in Eq. (C2), we further have from
Eq. (C2)

C(P̃ ) = ln
∞∑
i=1

pτ (i)(1 − cP̃ )−i

= ln
∞∑
i=1

exp(−t/τ )

i!

[
t

τ (1 − cP̃ )

]i

= t/τ [(1 − cP̃ )−1 − 1] = tcP̃

τ (1 − cP̃ )
. (C3)

One can obtain an approximation of Pe(t) by using the
following simplification: For a sufficiently long time interval
t , the sum in Eq. (C1) will have, on average, 〈n(t)〉 = t/τ

terms. In such a case, we can evaluate Pe(t) roughly as a
sum of t/τ exponentially distributed random variables with
the scale parameter c. The result is again a Gamma process,
which estimates Pe(t) with the shape and scale parameters t/τ

and c, respectively.
As noted in Sec. I, the approximate cumulants for Pe(t),

estimated from the Gamma approximation used above and
differentiated with respect to time t , were reported earlier in
Ref. [18, Sec. 3.2.2]. It appears, although, that the authors of
Ref. [18] overlooked that their approximate result for shot
noise is exact for the new kind of stochastic noise, i.e.,
the exponential noise proposed in this paper. The precise
cumulants of Pe(t), computed from Eq. (C3), are given in
Table I for reference. Comparing them to the cumulants of a
Gamma process, we conclude that the above approximation
has an error of second order in P̃ .
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