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Continuum percolation of randomly orientated congruent overlapping spherocylinders (composed of cylinder
of height H with semispheres of diameter D at the ends) with aspect ratio α = H/D in [0,∞) is studied.
The percolation threshold φc, percolation transition width �, and correlation-length critical exponent ν for
spherocylinders with α in [0, 200] are determined with a high degree of accuracy via extensive finite-size scaling
analysis. A generalized excluded-volume approximation for percolation threshold with an exponent explicitly
depending on both aspect ratio and excluded volume for arbitrary α values in [0,∞) is proposed and shown
to yield accurate predictions of φc for an extremely wide range of α in [0, 2000] based on available numerical
and experimental data. We find φc is a universal monotonic decreasing function of α and is independent of the
effective particle size. Our study has implications in percolation theory for nonspherical particles and composite
material design.
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I. INTRODUCTION

Continuum percolation in particle systems, at which a
system-spanning cluster emerges, underlies a wide spectrum
of material behaviors, such as conduction and flow in porous
materials, metal-insulator transition in condensed matter
systems, structure of liquid and glasses, and aggregation
and self-assembly of colloids [1]. In the vicinity of the
percolation threshold, characterized by the critical number
density or covering fraction of the particles, dramatic changes
of mechanical and transport properties can occur, due to the
emergence of global structural connectivity in the system [2,3].
Understanding the nature of percolation transition and accu-
rately predicting the percolation threshold are fundamental
and central tasks in the study of continuum percolation of hard
or overlapping particle systems [4–6]. The preponderance of
previous investigations focused on isotropic particles (e.g.,
spheres or hyperspheres) [7–9] and recently certain families
of nonspherical particles were studied [9–14].

Continuum percolation of spherocylinders, especially the
prediction of percolation threshold, has attracted appreciable
attention, mainly due to the wide applications of sphero-
cylinder systems in modeling liquid crystals, porous media,
nanocomposites of carbon allotropes, fiber-reinforced ma-
terials, cellulose whiskers, and silicate nanorods, to name
but a few [10–14]. Specifically, theoretical approximations
of the percolation threshold based on the Ornstein-Zernike
equation for hard spherocylinders [11,13–15] and rigorous
bounds [16] have been derived. Numerical simulations of
“cherry-pit” spherocylinders consisting of a hard core with
an overlapping shell [17–19] have been carried to estimate
the percolation threshold. Balberg et al. [20] numerically
obtained the percolation threshold represented as the critical
number density Nc of overlapping sticks in a fixed unit cubic
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domain. In spite of the aforementioned developments, the
finite-size scaling (FSC) behaviors in systems of overlapping
spherocylinders with arbitrary aspect ratio have not been
systematically investigated. Such FSC analysis is crucial to
obtaining an accurate estimate of the percolation threshold
in the infinite-size limit and insights of the nature of the
percolation transition [20–23].

In this paper, we present a comprehensive finite-size scaling
analysis of the continuum percolation of randomly orientated
congruent overlapping spherocylinders in a periodic cubic
domain using extensive simulations. The percolation threshold
φc, percolation transition width �, and correlation-length
critical exponent ν for spherocylinders with α in [0, 200]
are determined. In addition, a generalized excluded-volume
approximation for percolation threshold with an aspect-ratio-
dependent exponent is proposed that can accurately predict φc

of overlapping spherocylinders with arbitrary aspect ratios α

in [0,∞). The effect of particle size on φc is also systematically
investigated. We find φc is a universal monotonic decreasing
function of α and is independent of the effective particle size.

II. METHODS

We first generate realizations of congruent overlapping
(fully penetrable) spherocylinders of a fixed size with a
volume (covering) fraction φ in a cubic domain of size L,
by randomly placing N spherocylinders in the domain with
random orientations [see Fig. 1(a)], i.e., the random sequential
addition (RSA) process. We note in this process the particle
positions and orientations are totally uncorrelated and follow
the Poisson distribution. The particle number N is determined
by N = L3 ln (1 − φ)−1/V [24], where V is the volume of
a particle. For a given volume fraction φ, a large number of
realizations are generated, and each is checked for percolation
as described below. Then the percolation probability, defined
as the fraction of percolated realizations for a given volume
fraction, is computed as a function of φ, from which the
percolation threshold can be obtained.
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FIG. 1. (a) Realization of a congruent overlapping spherocylinder
system with the aspect ratio of α = 8; (b) identification of a
percolating cluster in the system.

Following Ref. [25], the size of a spherocylinder is
characterized by an equivalent radius Req, which is defined as
the radius of an equivalent sphere having the same volume as
the spherocylinder. This is a more meaningful length scale for
the elongated particle than both the length and semispherical
cap radius in the large aspect ratio limit. Accordingly, for a
spherocylinder with volume V = 4πR3

eq/3, the diameter D of
its semispherical cap can be easily computed from the relation
Req = 0.5D(1 + 1.5α)1/3, where α is the aspect ratio of the
spherocylinder defined as α = H/D, and H is the height of
the cylinder part.

The overlap between two spherocylinders is checked by
comparing the nearest distance dij between the axes of symme-
try of the spherocylinders with the sum of their radii (Ri + Rj ).
If dij > (Ri + Rj ), the two spherocylinders do not overlap;
otherwise, they overlap [25]. Subsequently, a percolating
cluster is identified as one that continuously spans the entire
cubic domain from one boundary to an opposite boundary
and the spanning ends must overlap under periodic boundary
conditions, namely, the “wrapping criterion” is applied [(see
Fig. 1(b)], by using a “tree-burning” algorithm [26]. The
spanning (percolation) probability P (φ,L) is then obtained
at the volume fraction φ of overlapping spherocylinders by
averaging over n realizations, following the procedure used in
lattice percolation [27,28].

III. RESULTS

A. Finite-size scaling analysis

Here, we present the percolation threshold in terms of the
critical volume fraction φc of spherocylinders, instead of the
critical number density Nc or the critical reduced density ηc

used in the literature [16–19,27], which can be easily computed
from φc, i.e., ηc = Nc〈V 〉 and φc = 1 − e−ηc [2], where 〈V 〉
is the average volume of particles. The percolation threshold
φc characterizes the critical state of emergence of a system-
spanning cluster in the infinite-size limit. Thus, it is impossible
to directly measure φc from finite system simulations. The
scaling relationship between φc and the critical volume fraction
of φc(L) for the finite systems of size L has been identified
[27–29], i.e.,

φc(L) − φc ∝ L−1/ν, (1)

where ν is the correlation-length critical exponent [29–31],
which is rarely studied for the continuum percolation of
overlapping spherocylinders. The critical volume fraction
φc(L) (also referred to as the effective percolation threshold
in Ref. [29]) is generally a particle size- and shape-dependent
quantity due to finite-size effects. It is clear that once φc(L)
and ν are determined, φc can be estimated using Eq. (1).

We now derive φc(L) and ν from Monte Carlo (MC)
simulations. We first obtain the curve of P (φ,L)-φ for a
finite system of size L, which possesses a sigmoidal shape,
as shown in Fig. 2. The detailed analysis of the percolation
probability P as a function of volume fraction φ for different
aspect ratio α and system size L is shown in Fig. 3. Note that
we assign L to be at least 30 times Req (e.g., L � 30Req) so
that each realization contains a sufficiently large number of
particles for robust statistical analysis. In addition, we employ
the coefficient of variation CV associated with P (φ,L) as a
criterion for determining the number of realizations n (e.g.,
CV = 0.0004) [32]. The condition P (φ,L) = 0.5 is used to
determine the critical volume fraction of φc(L) for the finite
system [17–24,26–29]. In order to accurately determine φc(L)
numerically, we use the hyperbolic tangent function (or Gauss
error function) [22] to fit the curve of P -φ (see Fig. 1), i.e.,

P (φ,L) = 1

2

{
1 + tanh

[
φ − φc(L)

�(L)

]}
, (2)

where � characterizes the width of the percolation transition.
Figure 4(a) shows � for different α as a function of system

size L. It can be seen that � is a particle size- and shape-
dependent quantity, which decreases with increasing L and α.
For different α, the curves of �-L are approximately parallel
to one another, which is consistent with the previous study on
overlapping spheres [29]. On the other hand, according to the
scaling relation between � and ν [see Eq. (3)], the value of ν

can be obtained as follows:

�(L) ∝ L−1/ν . (3)

FIG. 2. Percolation probability P for different sizes L of cubic
domain as a function of φ for congruent overlapping spherocylinders.
The parameters of the particles are Req = 1.0 and α = 100.0. The
cubic symbols are MC simulation results and the lines are fitting
results. The percolation probability curves for various α are displayed
in Fig. 3.
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FIG. 3. Percolation probability P (φ,L) versus φ for different α and system sizes of L. The cubic symbols are MC simulation results and
the lines are fitting results. The parameters of the particles are Req = 1.0.

After deriving φc(L) and ν, the percolation threshold φc is
subsequently estimated from the scaling relation (1), as shown
in Fig. 4(b). According to the scaling law (1), the interception
of each φc(L)-L−1/ν curve with the y axis provides the corre-
sponding effective percolation threshold associated with L =
∞, namely, the percolation threshold φc for the infinite system.
From a linear fit to the data for α = 0 (i.e., spheres) in Fig. 4(b),
we obtain φc = 0.2896 ± 0.0007 for overlapping spheres. This
value is consistent with the simulated results from Rintoul
and Torquato (φc = 0.2895 ± 0.0005) [29] and Ziff and
co-workers (φc = 0.289 572 978 ± 0.000 005) [27,31], which
are generally recognized as the best estimations for φc of
overlapping spheres. This strongly indicates the accuracy of
the present MC simulations and finite-size scaling analysis for
determining φc of overlapping spherocylinders.

B. Percolation threshold

Figure 5 presents the obtained values of φc of overlapping
spherocylinders with α from 0 (i.e., spheres) to 200 (i.e.,

needlelike particles), using the finite-size scaling scheme
illustrated above. It can be seen that φc possesses a maximal
value at α = 0 (i.e., φc = 0.2896), which indicates that over-
lapping spheres are more difficult to percolate than elongated
spherocylinders. Also, φc is a monotonic decreasing function
on α. Such trend is in excellent agreement with that for
monodisperse or polydisperse systems of elongated particles
reported in the literature [11,14–19]. The numerical values of
φc are provided in Table I.

In addition, we compare the present results with the
rigorous theoretical bounds for the percolation threshold
of congruent overlapping convex hyperparticles by using a
scaling relation [16], in which the lower and upper bounds for
the critical volume fraction φc are expressed as [33]

φc =
{

1 − e(−1/Vdex) the lower bound
1 − e(−2.7344/Vdex) the upper bound

, (4)

where Vdex is the dimensionless excluded volume of the
particle defined as the ratio of the excluded volume Vex to
the volume V of the particle. Vdex for a spherocylinder is given

FIG. 4. (a) The percolation transition width � for different α as a function of system size L. (b) The effective percolation threshold φc(L)
for different α as a function of L−1/ν , with linear fits to the data.
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FIG. 5. The percolation threshold φc for different α. The cubic
symbols are the present MC simulation results, the solid lines
are theoretical bounds for the percolation threshold of congruent
overlapping spherocylinders derived by Torquato and Jiao [16], and
the dashed red line is the approximate solution for the percolation
threshold reported by Chatterjee [11].

by [34]

Vdex = Vex

V
= 2 + 6(1 + α)(1 + 0.5α)

(1 + 1.5α)
. (5)

Figure 5 clearly shows that our results lie within the
rigorous bounds, which further indicates that the present MC
simulations and finite-size scaling analysis generate accurate
estimates of φc for a wide range of α. Also, for relatively

small aspect ratios (e.g., α < 25), our results are close to the
upper bound, and gradually get close to the lower bound with
increasing α values (see the detailed values of Table I).

We also compare the present results of φc with correspond-
ing values obtained from an analytical approximation recently
proposed by Chatterjee [11,35], i.e.,

φc = 1 − e
( −1

Vdex−1 )
. (6)

Figure 5 shows that compared with the present results, the
approximation (6) underestimates φc for the entire range of α

values we studied, and the discrepancy is more pronounced
for the smaller α. In fact, the approximation (6) [11] almost
coincides with the lower bound (4) [16] and becomes an
asymptotically exact lower bound in the limit α → ∞. In
particular, Vdex for the sphere has the smallest value equivalent
to 8, and Vdex for a spherocylinder is a monotonic increase
function of α (see Fig. 5 in [34]), so that Vdex � 1 as α becomes
large.

C. Empirical approximation of percolation threshold

Here, we propose an empirical approximation for φc in
which the exponent explicitly depends both on the dimension-
less excluded volume and the aspect ratio of the particles, i.e.,

φc = 1 − e[−C(α)/Vdex], (7)

where the numerator in the exponent is determined from our
numerical results as follows:

C(α) = 1 + (0.136 169α + 0.165 568)−0.3235. (8)

TABLE I. Percolation threshold φc derived from MC simulations for congruent overlapping spherocylinders with Req = 1.0. The rigorous
bounds for φc computed by Eq. (4), where the superscripts L and U denote the lower and upper bounds, respectively.

α Req D H φc (MC simulation) φc (bounds)

0 1.0 2 0 0.2896 ± 0.0007 0.2895(U )

0.1175(L)

1.0 1.0 1.473612599 1.473612599 0.2439 ± 0.0002 0.2571(U )

0.1029(L)

2.5222 1.0 1.187034119 2.993700048 0.1763 ± 0.0002 0.2039(U )

0.0800(L)

4.0 1.0 1.045515917 4.182063669 0.1345 ± 0.0001 0.1681(U )

0.06509(L)

5.7232 1.0 0.941533212 5.388582877 0.1039 ± 0.0001 0.1391(U )

0.05331(L)

8.0 1.0 0.850580741 6.804645925 0.07862 ± 0.0002 0.1131(U )

0.04296(L)

10.0 1.0 0.793700526 7.93700526 0.06418 ± 0.0002 0.09716(U )

0.03669(L)

25.0 1.0 0.592301846 14.80754614 0.02595 ± 0.00004 0.04708(U )

0.01748(L)

50.0 1.0 0.472163196 23.60815979 0.01440 ± 0.00008 0.02530(U )

0.009329(L)

75.0 1.0 0.413077343 30.98080074 0.009317 ± 0.00008 0.01730(U )

0.006362(L)

100.0 1.0 0.375581634 37.55816336 0.007156 ± 0.00005 0.01314(U )

0.004826(L)

200.0 1.0 0.298429096 59.68581926 0.003724 ± 0.00009 0.006701(U )

0.002455(L)
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FIG. 6. The effect of aspect ratios α on the exponent C in the
proposed theoretical model.

In other words, we do not assume the exponent in Eq. (7) as
a fixed constant used in previous studies [11,16], but consider
it as a power function of α, as shown in Eq. (8). Interestingly,
we find that the values of C for all α in [0,∞) lie within
the interval [1.0, 2.7892] (see Fig. 6), which are consistent
with the rigorous bounds (4) [16], although the maximal value
of C (C = 2.7892) slightly exceeds the exponent (2.7344) of
the upper bound shown in Eq. (4). Moreover, our results also
extend the ranges of C values which have been previously
reported to lie between 1.4 and 2.7 for congruent overlapping
particles [2,13,15,20,26].

To further validate our empirical approximation (7), we
compare the φc values obtained using (7) with the numer-
ical and experimental results reported by Mutiso and co-
workers [36,37] and with the numerical results obtained by
Schilling et al. [19]. Figure 7(a) shows the experimental results
associated with the silver nanowire-polystyrene composites
where the nanowires are regarded as congruent straight rods
due to the nature of their narrow size dispersity [37]. It
can be seen in Fig. 7(a) that our empirical approximations

are in excellent agreement with the corresponding numerical
and experimental results for monodisperse rods with finite
α from 8 to 100 (over a middle range of α). However,
we note that in the experimental system, the particles are
not fully penetrable and possess a hard core. Interestingly,
in our simulations of the overlapping spherocylinder system
containing a large number of particles, the majority of the
particles in the system-spanning cluster only contain small
regions of overlap with neighboring particles, which results
in the reasonable estimates of percolation threshold for the
experimental system, for which the overlap between particles
is also small. A more accurate treatment of the experimental
system is to explicitly consider the hard-core soft-shell model
of the particles in the simulation, and to explicitly consider the
exclusion volume effect in the empirical formulation.

Figure 7(b) shows the quantitative comparison of our
empirical approximations with the numerical results for
monodisperse overlapping rods with α from 0 (sphere) to
α = 2000 (the needle limit) obtained by Schilling et al. [19].
Excellent agreement between our empirical approximations
and the simulation results for all α in [0, 2000] is observed.
These comparisons clearly indicate that our theoretical model
can accurately predict the percolation threshold of overlapping
spherocylinders with a wide range of aspect ratios, i.e., from 0
to 2000. It is also reasonable to expect that (7) can also provide
good estimates of φc in the limit α → ∞.

D. Effect of particle size

We further investigate the effect of particle size on the
percolation threshold. As mentioned above, the size of sphero-
cylinders is characterized by the equivalent sphere radius Req.
Without loss of generality, we select Req = 0.1, 1.0, 10, and
100, of monodisperse spherocylinders with the same aspect
ratio of α = 8.0, for our numerical studies. Applying similar
MC simulations and finite-size scaling analysis described
before (see Figs. 8 and 9), we obtain the percolation threshold
φc and the correlation-length critical exponent ν for different
Req under the same α, as shown in Table II. It can be clearly
seen that for different Req, φc and ν are insensitive to the

FIG. 7. Comparisons of the proposed empirical approximation with (a) the numerical and experimental results from Mutiso and
coworkers [36,37], and with (b) the numerical results from Schilling et al. [19].
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FIG. 8. Percolation probability P (φ,L) versus φ for different Req and system sizes of L. The parameters of the particles are α = 8.0.

particle size, which is consistent with the results for poly-
disperse spherocylinder systems with different particle size
distributions [17,18]. These results suggest that the percolation

FIG. 9. The effective percolation threshold φc(L) as a function of
L−1/ν for different Req, with accompanying linear fits to the data.

threshold possesses a universal behavior dependent only on the
aspect ratio but not particle size.

IV. CONCLUSIONS AND DISCUSSION

In summary, we have presented a comprehensive finite-size
scaling analysis of the continuum percolation of randomly
orientated congruent overlapping spherocylinders. The per-
colation threshold φc, percolation transition width �, and
correlation-length critical exponent ν for spherocylinders with
α in [0, 200] are determined with a high degree of accuracy
via extensive Monte Carlo simulations and finite-size scaling
analysis. Moreover, a generalized excluded-volume percola-
tion model with an exponent explicitly depending on aspect
ratios is proposed that can accurately predict φc of overlapping
spherocylinders with arbitrary aspect ratios α in [0,∞), which
improves upon previous analytical approximations and has
validated using available numerical and experimental data for
spherocylinders with an aspect ratio up to 2000. We find that
φc is a universal monotonic decreasing function of α and is
independent of the effective particle size.

These results suggest a general procedure for constructing
an approximation for φc of nonspherical particles. Specifically,
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TABLE II. Percolation threshold φc and correlation-length critical exponent ν for different Req with the same α = 8.0.

Req 0.1 1 10 100

φc 0.07867 ± 0.00001 0.07862 ± 0.00002 0.07849 ± 0.00001 0.07864 ± 0.00001
ν 0.9718 ± 0.0001 0.9868 ± 0.0001 0.9976 ± 0.0001 0.9720 ± 0.0001

the exponent in the approximation is expected to include
both a dimensionless excluded-volume term (denominator)
and a shape-dependent numerator, as a function of the key
geometrical parameter characterizing the nonspherical shape.
Our results of φc and the empirical approximation (7) provide
robust and convenient guidance for composites design and
evaluation. In future work, we will extend the generalized
excluded-volume model to study the physical properties of
composites, and discuss how the physical properties are
affected by the percolation threshold. In addition, it is also
interesting to investigate the effect of chirality on continuum
percolation by generalizing the hard helix model for self-
assembly studied in Ref. [38].
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