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We present a classical, mesoscopic derivation of the Fokker-Planck equation for diffusion in an expanding
medium. To this end, we take a conveniently generalized Chapman-Kolmogorov equation as the starting point.
We obtain an analytical expression for the Green’s function (propagator) and investigate both analytically and
numerically how this function and the associated moments behave. We also study first-passage properties in
expanding hyperspherical geometries. We show that in all cases the behavior is determined to a great extent
by the so-called Brownian conformal time τ (t), which we define via the relation τ̇ = 1/a2, where a(t) is the
expansion scale factor. If the medium expansion is driven by a power law [a(t) ∝ tγ with γ > 0], then we find
interesting crossover effects in the mixing effectiveness of the diffusion process when the characteristic exponent
γ is varied. Crossover effects are also found at the level of the survival probability and of the moments of the
first passage-time distribution with two different regimes separated by the critical value γ = 1/2. The case of an
exponential scale factor is analyzed separately both for expanding and contracting media. In the latter situation,
a stationary probability distribution arises in the long-time limit.
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I. INTRODUCTION

The overwhelming majority of studies devoted to diffusion
processes assume them to take place in static media. However,
expanding (or contracting) media are by no means a rarity
in nature. In fact, we live in an expanding universe [1,2],
and elementary biological processes such as morphogenesis
(i.e., the process whereby a living being evolves from a
single cell to a fully developed adult) involve tissue expansion
processes. Moreover, in a number of cases, physical processes,
and diffusion processes in particular, are significantly affected
by the expansion or contraction of the media in which they
take place. For instance, in developmental biology, it is
well known that the formation of biological structures via
diffusion-mediated processes can be significantly altered by
the concomitant growth of tissues and organs [3–6]. Another
example, taken from cosmology, is the diffusion of cosmic
rays in the expanding universe [7–9]; moreover, the general
problem of a fluid diffusing in the expanding universe was
addressed in Ref. [10], and this in fact could be considered a
simplified model for the evolution of the universe itself. All
these facts highlight the necessity of developing a stochastic
theory able to address the dynamics of ensembles of random
walkers embedded in an expanding space by conveniently
bridging the gap between the mesoscopic and the macroscopic
level of description. The present paper is a step in this direction.

To the best of our knowledge, the derivation of the classical
diffusion equation for transport in growing media has been
carried out via two possible pathways. The first one uses mass
conservation arguments together with the assumption that
the particle flux is proportional to the concentration gradient
(Fick’s first law) to obtain a generalized diffusion equation
(Fick’s second law) [5,7]. The second approach relies on a
coarse-grained stochastic model, implying that the medium

is first partitioned into boxes, and then a master equation
formalism describing fluxes between neighboring boxes is
employed to obtain the generalized diffusion equation [11,12].
In the present paper, we shall follow “Einstein’s footsteps” and
develop an alternative description based on a random walk
model. In our case, the d-dimensional Fokker-Planck equation
describing transport in a growing medium is obtained from
the corresponding Chapman-Kolmogorov equation. This is
done in Sec. II. Following this, in Sec. III A we compute
the Green’s function (propagator) P (y,t) for the case of a
uniform expansion. The propagator is expressed in terms of
the Brownian conformal time τ = τ (t), defined by means of
the differential equation τ̇ = 1/a2(t), where a(t) > 0 stands
for the expansion scale factor. The specific time dependence
of the latter turns out to have a strong influence on the manner
in which particles spread, which can be better characterized
with the help of some definitions introduced in Sec. III B. The
underlying phenomenology is discussed in Sec. III C on the
basis of a specific, yet important, example, namely the case of a
power-law scale factor a(t) ∝ tγ . In this context, a rich behav-
ior is seen to emerge as the characteristic exponent γ is varied;
see Ref. [13–18] for a variety of physical systems displaying
a similar behavior. Comparison with stochastic simulations
is provided, and the corresponding moments 〈yn〉 are also
evaluated [for the one-dimensional (1D) case as well as for the
higher-dimensional case]. In this context, we find that diffusion
in an expanding space is nonstationary and nonergodic in a way
similar to scaled Brownian motion, a Gaussian approximation
for continuous-time random walks, which is widely used for
fitting experimental particle trajectories displaying anomalous
diffusion. In Sec. III D, we analyze the case of an exponential
scale factor, both for expanding and for contracting media. In
the latter case we find that the system converges to a stationary
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probability distribution, a phenomenon that does not take place
in contracting media driven by power-law scale factors.

Finally, in Sec. IV, we consider diffusion problems in
expanding media with absorbing boundaries. Such problems
are often taken as the starting point to compute a number
of characteristic first-passage properties, e.g., survival prob-
abilities and moments of the first-passage time distribution.
In turn, these quantities play a central role in the classical
theory of diffusion-controlled reactions and, more specifically,
in so-called target and trapping problems. We again find
interesting crossover effects when the medium expansion is
driven by a power law and its characteristic exponent is varied.
Before moving on to the derivation of our main results, we
take the opportunity to highlight the fundamental difference
between the first-passage problem addressed here and a widely
studied class of problems concerning systems with moving
boundaries [19] (e.g., absorption of a diffusing particle at the
boundaries of an expanding cage, a receding wall, etc.). In
the latter case, physical distances are stationary, and only the
position of the system boundaries changes in time. Our main
conclusions are stated in Sec. V, where we also outline a series
of open questions.

II. MESOSCOPIC DERIVATION OF THE DIFFUSION
EQUATION

A. Implementing volume expansion

Let y(t) denote the position at time t of a point particle with
no motion of its own. If the embedding medium shrinks or
expands (in what follows, and without loss of generality, we
say “expands” for brevity), then the particle will experience
a drift, as a result of which its position at a later time t ′ will
differ, y′ = y(t ′) = F(y,t,t ′ − t). A suitable way to describe
the medium expansion consists in expressing the Lagrangian
coordinate (or physical distance) y in terms of the Eulerian
coordinate (or comoving distance [7]) x:

y(t) = f(x,t). (1)

At any time t , f is a continuous bijective function of x with the
property x = f(x,t0), where t0 is the initial time. The latter is
taken to be the instant when the observation of the particle’s
motion begins. In particular,

y(t + �t) = F(y,t) = f(x,t + �t), (2)

= y(t) + u(x,t)�t + O(�t)2, (3)

where u(x,t) ≡ ḟ(x,t) ≡ ∂f/∂t is the expansion velocity field,
and the short-hand notation F(y,t) ≡ F(y,t,�t) has been used.
Later, we shall denote the function u[x(y,t),t] = u[f−1(y,t),t]
by u(y,t), and so the function under consideration will be
distinguished solely by the symbol x or y used in the argument.

Due to the medium expansion a d-dimensional volume �V

centered at y at time t evolves into a volume �′V centered
at y′ = F(y,t) at time t + �t . The ratio between these two
volumes is simply the determinant of the Jacobian J associated

with the expanding transformation

�′V
�V

= |J (y,t,�t)|

=
∣∣∣∣∂(y ′

1,y
′
2, . . . ,y

′
d )

∂(y1,y2, . . . ,yd )

∣∣∣∣ ≡
∣∣∣∣∂(F1,F2, . . . ,Fd )

∂(y1,y2, . . . ,yd )

∣∣∣∣. (4)

From Eq. (3) one sees that

J (y,t,�t) = I + ∂(u1,u2, . . . ,ud )

∂(y1,y2, . . . ,yd )
�t + O(�t)2, (5)

and therefore

�′V
�V

= |J (y,t,�t)| = 1 + ∇ · u �t + O(�t)2. (6)

This expression shows that

∇ · u = lim
�t→0

�′V/�V − 1

�t

= lim
�t→0

�V (t + �t)/�V (t) − 1

�t
(7)

is simply the relative volume expansion rate. For the particular
case of an expansion which is anisotropic but homogeneous in
each Cartesian direction, one has

yi = fi(x,t) = ai(t)xi, (8)

with ui(x,t) = ḟi(x,t) = ȧi(t)xi and f −1
i (y,t) = xi =

yi/ai(t). Then,

ui(y,t) = ḟi[f−1(y,t),t] = ȧi

ai

yi (9)

and ∇ · u = ∑d
i=1 ȧi/ai . For the case of uniform expansion

ai(t) = a(t), we can write ∇ · u = H d, where H (t) = ȧ/a is
the Hubble parameter and a(t) is the scale factor [7,20].

B. Generalized Chapman-Kolmogorov equation

Our next step consists in superimposing an intrinsic
stochastic particle motion to the extrinsic (deterministic)
motion caused by the medium expansion (the words “walker”
and “particle” will be used as synonyms in what follows). To
this end, we hereafter adopt a mesoscopic description of the
diffusion process in terms of a random walk approach. In this
framework, we consider a collection of particles taking steps
of variable size z at discrete times tm separated by constant
intervals �t = tm+1 − tm, whereby we keep in mind the idea
of eventually letting �t shrink to zero (note, however, that
the steps are considered to be instantaneous, i.e., they occur
on a much shorter time scale than the waiting time between
consecutive steps).

Let P (y,t+n |y0,t0) [P (y,t−n |y0,t0)] be the probability density
to find a walker in an infinitesimal volume about y at time t+n
[t−n ], (i.e., immediately after [before] taking the nth step at time
tn = t0 + n�t), given the walker’s initial position y0 ≡ y(t0).
One can now take advantage of the Markovian character of
the walker’s motion to obtain the following version of the
Chapman-Kolmogorov equation:

P (y,t+n+1|y0,t0)

=
∫

P (y − z,t−n+1|y0,t0)P (y,t+n+1|y − z,t−n+1) dz. (10)
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Using a simplified notation, this equation can be written as
follows:

P +
n+1(y) =

∫
P −

n+1(y − z) p(z|y − z,tn+1) dz, (11)

where P +
n (y) ≡ P (y,t+n |y0,t0), P −

n (y) ≡ P (y,t−n |y0,t0), and
p(z|y,tn) ≡ P (y + z,t+n |y,t−n ) denotes the probability that the
nth step of the walker situated at position y at time t−n
results in a displacement z. A walker located at y immediately
after its n + 1-th step (taken at time tn+1) may have reached
its location from any other position y − z (occupied by the
walker immediately before taking the n + 1-th step) by means
of an appropriate single-step displacement z. Equations (10)
and (11) simply state that the probability of the walker being
at y at time t+n+1 is equal to the sum of the infinitesimal contri-
butions stemming from all its possible previous positions.

In the case where the walker does not move during the
time interval tn < t < tn+1, one has P +

n (y) = P −
n+1(y); this

then means that one has a static (nongrowing) medium, and
the Chapman-Kolmogorov equation (12) immediately reduces
to the standard one:

P +
n+1(y) =

∫
P +

n (y − z) p(z|y − z,tn+1) dz. (12)

However, for expanding media, the probability density to find
a walker lacking intrinsic motion inside a volume �V about
position y at time t differs from the probability density to
find the walker inside a volume �′V about its new position
y′ = F(y,t) at time t + �t because of the change in volume
brought about by the medium expansion (the latter introduces
a dilution effect at the level of the particle concentration).
However, for such a walker the probability of sojourn in a
given volume is conserved in the course of the expansion, i.e.,

P (y′,t + �t)�′V = P (y,t)�V. (13)

In particular, if we take y′ = y − z and t = tn, then the above
conservation relationship leads to the following equation:

P −
n+1(y − z) = P +

n (y − ε)
�V

�′V
= P +

n (y − ε)

|J (y − ε,tn,�t)| , (14)

where Eq. (6) has been used. The parameter ε is defined via
the relation

y − z = F(y − ε,tn) (15)

(see Fig. 1). Inserting Eq. (14) into Eq. (11), one obtains the
final form of the Chapman-Kolmogorov equation for growing
media:

P +
n+1(y) =

∫
P +

n (y − ε)

|J (y − ε,tn,�t)| p(z|y − z,tn+1)dz. (16)

Note that this equation differs from the standard one for
nongrowing media, Eq. (12), by (i) the Jacobian term, which is
due to the medium expansion [cf. Eq. (4)], and (ii) the change
of τ by ε in the argument of P +

n , representing the change in
the physical coordinate y of a point that arises merely from
the drift induced by the medium expansion (see discussion in
Sec. II C).

FIG. 1. Schematic picture of the random walker’s motion due
to the combined action of random steps (solid arrows) and the
deterministic drift arising from the medium expansion (dotted
arrows). Recall that y′ = y − z = F(y − ε,tn).

C. Fokker-Planck equation describing random motion
in an expanding medium

In order to obtain the relevant Fokker-Planck (FP) equation,
we now expand the integrand of Eq. (16) in a Taylor series
about the point (y,tn). In doing so, we take into account that
both z and ε are small, the difference z − ε being of the order of
�t . The latter statement can be easily proven by using Eq. (3)
in the definition of ε [cf. Eq. (15)]. One is then left with the
following equation:

ε = z + u(x,tn)�t + o(�t), (17)

where the rest o(�t) is a sum of terms which all go to zero
faster than �t .

Let us denote by Tay[G,ξ ; y,t] the Taylor expansion of the
function G in powers of ξ about the point (y,t). Then we have

Tay

[
P +

n (y − ε)

|J (y − ε,tn,�t)| ,ε; y,t

]

= Tay

[
P +

n (y − z)

|J (y − z,tn,�t)| ,z; y,t

]

− �t

d∑
i=1

ui(x,tn)
∂

∂yi

P +
n (y)

|J (y,tn,�t)| + o(�t). (18)

Note that the Taylor expansion on the left-hand side differs
from that on the right-hand side because ε and z are not the
same. Physically, this is due to the fact that the displacement
of the particle from y − ε to y − z is solely induced by the drift
associated with the medium expansion (cf. Fig. 1). In terms
of the velocity field, this displacement is simply expressed as
u(x,tn)�t + o(�t). On the other hand, one has

Tay[p(z|y − z,tn+1),z; y,tn]

= Tay[p(z|y − z,tn),z; y,tn] + �t
∂

∂t
p(z|y,tn) + o(�t).

(19)
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Hence, denoting by I the integrand on the right-hand side of
Eq. (16), one obtains

I = Tay

[
P +

n (y − z) p(z|y − z,tn)

|J (y − z,tn,�t)| ,z; y,t

]

− �t

d∑
i=1

ui(x,tn)
∂

∂yi

P +
n (y)

|J (y,tn,�t)|

+ �t
∂

∂t
p(z|y,tn) + o(�t). (20)

Inserting this expression into Eq. (16) and taking into account
that

∫
∂p(z|y,tn)/∂t dz = 0, one finds

P +
n+1(y) =

∞∑
n=0

Tn − �t

d∑
i=1

ui(x,tn)
∫

p(z|y,tn)

× ∂

∂yi

P +
n (y)

|J (y,tn,�t)| dz + o(�t), (21)

where Tn stands for the integral over z of the product of
p(z|y,tn) and the nth order term of the Taylor expansion in
Eq. (20). In particular, one has

T0 =
∫

P +
n (y)

|J (y,tn,�t)|p(z|y,tn)dz

= P +
n (y) +

[
1

|J (y,tn,�t)| − 1

]
P +

n (y), (22)

T1 = −
d∑

i=1

∂

∂yi

{
P +

n (y)

|J (y,tn,�t)|
∫

zi p(z|y,tn)dz
}
, (23)

T2 =
d∑

i,j=1

∂2

∂yi∂yj

{
P +

n (y)

|J (y,tn,�t)|
∫

zizjp(z|y,tn)dz
}
. (24)

Note that the second term on the right-hand side of Eq. (22)
appears only because |J (y,tn,�t)| 
= 1. This term represents
the decrease of the particle density (dilution) due to the
medium expansion [see Eqs. (13) and (14), as well as the
discussion preceding those two equations]. Using Eq. (6) in
Eq. (22), one finds

T0 = P +
n (y) − P +

n (y) ∇ · u �t + o(�t). (25)

In order to take the limit �t → 0, we shall use the more
convenient notation P (y,tn) ≡ P +

n (y), leading to the corre-
sponding time derivative lim�t→0[P +

n+1(y) − P +
n (y)]/�t =

∂P (y,t)/∂t . Inserting Eqs. (23)–(25) into Eq. (21) and taking
the limit �t → 0 in the resulting expression, one obtains

∂

∂t
P (y,t) = − P (y,t)

d∑
i=1

∂ui

∂yi

−
d∑

i=1

ui

∂

∂yi

P (y,t)

−
∑

i

∂

∂yi

Ai(y,t)P (y,t)

+
∑
ij

∂2

∂yi∂yj

Dij (y,t)P (y,t) + lim
�t→0

∞∑
n=3

Tn

�t
,

(26)

where

Ai(y,t) ≡ vi(y,t) = lim
�t→0

∫
zi p(z|y,t)dz

�t
, (27)

Dij (y,t) = lim
�t→0

∫
zizjp(z|y,tn)dz

2�t
. (28)

Note that the first two terms on the right-hand side of Eq. (26)
can be written as ∇ · (uP ). Finally, the limits of Eqs. (27)
and (28) exist and lim�t→0 Tn/�t = 0 for n � 3 if we assume
that p(z|y,t) has the characteristic properties of a continuous
Markov process (see, for example, Ref. [21] or Secs. 3.4 in
Ref. [22] and 7.4 in Ref. [23]). Under the above assumption,
Eq. (26) (a kind of forward Kramers-Moyal expansion) yields
the following FP equation:

∂

∂t
P (y,t) = −

∑
i

∂

∂yi

[ui(y,t) + Ai(y,t)]P (y,t)

+
∑
ij

∂2

∂yi∂yj

Dij (y,t)P (y,t). (29)

Equation (29) is the cornerstone of our analysis in subsequent
sections. The interpretation and properties of Ai ≡ vi (drift
vector) and Dij (diffusion coefficient matrix) are similar to
those of the analogous quantities appearing in the standard FP
equation describing transport in a static medium [22]. In the
above equation two different drift velocities appear, namely
an “intrinsic” drift velocity v arising from the asymmetry of
the jump length PDF p(z|y,t) of the random walker and an
“extrinsic” drift velocity u exclusively due to the expansion of
the embedding medium. Of course, if there is no expansion,
then ai(t) = 1, u = 0, and one recovers the FP equation for a
static medium.

Note that Eq. (29) is simply the standard FP equation
augmented with a term −∇ · (uP ) describing the effect of the
medium expansion. This additional term can be split into the
drift term −(u · ∇)P and the dilution term −P (∇ · u) [see the
discussions following Eqs. (18) and (24)]. For the special case
of the expansion given by Eq. (8), yi = fi(x,t) = ai(t)xi , this
extra term simply becomes [see the discussion after Eq. (7)]

∇ · (uP ) =
d∑

i=1

ȧi

ai

∂

∂yi

[yiP (y,t)]. (30)

D. Langevin equation for transport in an expanding medium

Using standard procedures [22,23], one can show that
Eq. (29) is equivalent to the following set of Langevin
equations:

dyi = [ui(y) + Ai(y,t)]dt +
√

2
d∑

j=1

bij (y,t)dWj (t), (31)

where {Wj (t)}dj=1 is a family of independent Wiener processes,
dWi(t) stands for the increment of the ith Wiener process at
time t , and Dij ≡ ∑d

k=1 bikbkj . From Eq. (29) it is obvious that
the Itô interpretation of stochastic calculus is being used. For
the one-dimensional case there is a single coefficient b, which
is univocally determined by the diffusion coefficient D(y,t).
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In this particular case, the above Langevin equation takes the
form

y(t + dt) = y(t) + [u + A(y,t)]dt +
√

2D(y,t) dW (t).

(32)

The interpretation of this equation is straightforward: The
walker moves ballistically with a drift velocity u + A(y,t),
on which Gaussian fluctuations are superimposed. A version
of this equation in terms of finite differences will be used
in Sec. III C to simulate free diffusion in a medium whose
expansion is described by Eq. (8).

We have restricted ourselves to the overdamped case, but a
natural extension of our work would consist in incorporating
a mass term into the equation of motion. A full solution of this
problem is beyond the scope of the present work, but a short
qualitative discussion is still possible. For the underdamped
case, in the absence of the medium expansion, it is well
known that a crossover takes place from a ballistic regime
valid for short times to a diffusive regime at longer times.
Both regimes are separated by a typical crossover time t×.
For static media, t× is related to the so-called characteristic
diffusion length �d by the equation �2

d = D(t× − t0) [21]. For
a growing medium, this distance, �e

d , expands by a factor
a(t), so �e

d = a(t)�d , leading to t e× − t0 = a2(t)(t× − t0) with
t0 � t � t e×. For standard microscopic systems �d and t× − t0
are very small, and hence �e

d and t e× − t0 is also small if one
assumes that a(t) does not change very significantly in this
time interval. In other words, for standard expanding media,
one expects a negligible effect on the typical crossover time
separating the ballistic regime from the diffusive regime. Of
course, this simple argument needs confirmation by more
rigorous analysis.

III. PROPAGATOR AND MOMENTS FOR THE CASE OF
UNIFORM EXPANSION

A. Generic results

The solution of the FP equation for a Dirac δ representing
the initial position of a diffusing particle in an unbounded
medium (the so-called propagator, Green’s function or free
solution) is a key quantity for the study of diffusion processes.
Of course, for an arbitrary set of functions [u, A, D]
no exact solution is available. However, for the important
case of the expansion yi = ai(t)xi , the FP equation (29)
can be simplified to a large extent when Ai and Dij =
Diδij are constant. In this case, an exact analytical form
for the propagator can be found. This type of expansion
has been extensively considered in the literature describing
tissue growth [3,5,6,11,24]. In the context of cosmology,
it corresponds to a Friedmann-Lemaı̂tre-Robertson-Walker
universe where ai(t) = a(t) stands for the (Robertson-Walker)
scale factor and H = ȧ/a is the so-called Hubble parameter.
For example, for a matter-dominated flat universe one has
a(t) ∝ t2/3, whereas for a dark-energy-dominated flat universe
a(t) grows exponentially.

We begin by considering the one-dimensional FP equation
for the case of nonzero intrinsic drift, A(y,t) ≡ v(y,t) 
= 0 and

uniform expansion:

∂

∂t
P (y,t) = − ∂

∂y

(
ȧ

a
y + v

)
P (y,t) + D

∂2

∂y2
P (y,t). (33)

Let us now define the function Px(x,t) = P (y = a(t)x,t).
Then,

∂Px

∂t
= ∂P

∂t
+ ȧ

a
y

∂P

∂y
. (34)

Inserting this result into Eq. (33) and performing the transfor-
mation y = a(t)x, one finds

∂

∂t
Px(x,t) = − ȧ

a
Px(x,t) − 1

a

∂

∂x
vPx(x,t) + D

a2

∂2

∂x2
Px(x,t).

(35)

Next, we perform the change of variables Px(x,t) =
Q(x,t)/a(t) in the previous equation and obtain

∂

∂t
Q(x,t) = −1

a

∂

∂x
v Q(x,t) + D

a2

∂2

∂x2
Q(x,t). (36)

Let us now focus on the case where the intrinsic drift is absent
(v = 0). We perform the following time-scale transformation:

τ (t) =
∫ t

t0

ds

a2(s)
. (37)

In what follows, we shall often refer to τ as “the Brownian
conformal time” by analogy with the (standard or ballistic)
conformal time defined by the equation τ̇c = 1/a in the context
of cosmology. In terms of the Brownian conformal time τ and
the comoving coordinate x, Eq. (36) becomes identical with
the standard diffusion equation

∂

∂τ
Q(x,τ ) = D

∂2

∂x2
Q(x,τ ). (38)

The solutions of Eq. (38) are well known. The propagator
in physical space can be obtained by means of the inverse
transformation P (y,t) = Q[y/a(t),τ (t)]/a(t).

We are now in the position to easily obtain the propagator
for the case of a uniform expansion with no intrinsic drift, i.e.,
the solution of Eq. (33) with A = 0 and the initial condition
P (y,t0) = δ(y). Recall that a(t0) = 1 and τ (t0) = 0, implying
that the initial condition for the Q function is Q(x,0) = δ(x).
For this initial condition, the solution of Eq. (38) corresponding
to an unbounded system is the well-known Gaussian function:

Q(x,τ ) = 1√
4πDτ

e−x2/4Dτ ≡ QG(x,t ; D) ≡ QG(x,t).

(39)

For v = 0, the propagator G(y,t) for diffusion in a uniformly
expanding medium is then given by

G(y,t) = 1

a(t)
QG

[
y

a(t)
,τ (t)

]
= 1√

4πDa2(t)τ
e−y2/4Da2(t)τ .

(40)

For nonzero drift v 
= 0, the moments 〈ym〉 =∫ ∞
−∞ G(y,t)ymdy of the walker’s position can be obtained

directly by multiplying Eq. (33) with ym and by integrating
the resulting equation over y. Subsequent application of

032118-5



S. B. YUSTE, E. ABAD, AND C. ESCUDERO PHYSICAL REVIEW E 94, 032118 (2016)

partial integration finally yields the following equation for
the first-order moment:

d〈y〉
dt

= ȧ

a
〈y〉 + 〈v〉, (41)

whose solution is

〈y〉 = a(t)
∫ t

t0

〈v〉
a(s)

ds. (42)

This is precisely the proper distance traveled by a particle with
velocity 〈v〉 during the time interval [t0,t] [25]. The equation
for the second moment of y is

d

dt
〈y2〉 = 2

ȧ

a
〈y2〉 + 2〈v y〉 + 2D. (43)

When v and y are uncorrelated, that is, when 〈v y〉 = 〈v〉〈y〉,
one can insert Eq. (42) into Eq. (43) to obtain a first-order
equation with a single unknown, namely 〈y2〉. For v = 0,
the solution is quite simple: 〈y2〉 = 2D a2(t) τ (t) or, in terms
of the comoving distance, 〈x2〉 = 2D τ (t). We can use these
expressions to rewrite Eq. (40) in an especially simple way:

G(y,t) = 1√
2π〈y2〉

e−y2/2〈y2〉. (44)

Finally, it should be noted that the above procedure can be
easily extended to derive the full hierarchy of moments, i.e.,

d

dt
〈ym〉 = m

ȧ

a
〈ym〉 + m〈v ym−1〉 + m(m − 1)D〈ym−2〉.

(45)
For the case with intrinsic drift, v 
= 0, the propagator is

G(y,t) = 1

a(t)
QG

[
y − 〈y〉

a(t)
,τ (t)

]
, (46)

with 〈y〉 given by Eq. (42), as can be checked by inserting the
above expression into Eq. (33).

The generalization of the above results to d-dimensional
systems with u = {ai(t)xi}, v = {vi(yi)}, and Di,j = Diδi,j is
immediate. For example, the components of the first moment
are

〈yi〉 = ai(t)
∫ t

t0

〈vi〉
ai(s)

ds, (47)

whereas the second moment is 〈y2〉 = ∑d
i=1〈y2

i 〉. In this case,
the propagator reads as

G(y,t) =
d∏

i=1

1

ai(t)
QGi

[
yi − 〈yi〉

ai(t)
,τi(t); Di

]
. (48)

Since in the higher-dimensional case the computation of
the moments from the d = 1 moments is straightforward
(especially in the isotropic case), we shall in general only
give one-dimensional results in what follows.

Finally, let us note that for a general initial condition P (y,t0)
the solution is given by the convolution with the Green’s
function G(y,t):

P (y,t) =
∫

P (y − z,t0)G(z,t)dz ≡ [P (·,t0) ∗ G(·,t)](y).

(49)

In particular, for P (y,t0) = 1
2 [δ(y − y0) + δ(y + y0)] one has

P (y,t) = 1
2 [G(y − y0,t0) + G(y + y0,t0)]. We shall make use

of this expression in Sec. III C.

B. Diffusive pulses in expanding media

It is instructive to bring out the similarities of some of the
previous results with others found in cosmology.

For a uniform medium (ai = a) and random walkers with
Di = D and zero drift, the propagator given by Eq. (48)
becomes

G(y,t) = 1

[4πDa2(t)τ ]d/2
e−r2/4Dτ , (50)

where the comoving radial distance r = |x| = |y|/a(t) has
been introduced. Equation (50) describes the spread of a
diffusive (or Brownian) pulse starting as a point source at
position y = 0 at time t0. The standard deviation associated
with such a diffusive pulse, namely ȳ ≡ 〈y2〉1/2 = a(t)r̄ with
r̄2 = 〈x2〉 and r̄ = [2dDτ (t)]1/2, is a measure of how far it has
typically traveled after a given time t − t0. Then, by analogy
with the definition of the light cone in cosmology, we can
define a diffusive paraboloid of revolution made up by the
points situated at a comoving distance �r̄(t) from the initial
location of the δ peak. The paraboloid is obtained by revolving
a parabola defined by the value of the distance r̄(τ ) around the
τ axis [the conformal time τ goes from 0 to τ (∞)]. Note that
in two spatial dimensions the transversal section of such a
paraboloid is a circle (embedded in a plane defined by a fixed
value of τ ), whereas in three dimensions it is a sphere, and in
higher dimensions it is a hypersphere.

On the other hand, the probability p̄ that a walker has
traveled a distance �r̄ during the time interval t − t0 is simply

p̄ ≡
∫ ȳ

0
G(y,t)dy = 1

�(d/2)

∫ r̄2/4Dτ

0
ud/2−1e−udu

= 1 − �(d/2,d/2)

�(d/2)
, (51)

where �(·,·) and �(·) are the incomplete and complete gamma
function, respectively. To obtain the right-hand side, we have
taken into account that the surface of a hypersphere of radius
R is sd (R) ≡ 2πd/2Rd−1/�(d/2), as well as the equality
r̄2/4Dτ = d/2. In view of the above, one can alternatively
define the diffusive paraboloid as the locus of the points inside
a d-dimensional hypersphere centered at y = 0 whose radius
is such that it contains an average fraction p̄ of a collection
of random walkers located at y = 0 at time t0. In particular,
p̄ ≈ 0.6827 for d = 1, p̄ ≈ 0.6321 for d = 2, and p̄ ≈ 0.6084
for d = 3.

Returning to the analogy with the definition of the light
cone in cosmology, we now introduce the characteristic
distance r̄Bh = [2dDτ (t)]1/2, which is simply the radius of the
d-dimensional hypersphere defined in the previous paragraph.
We shall term this distance “Brownian horizon” at time t

[loosely speaking, we can say that the pulse (typically) reaches
a distance rBh at time t]. This definition can be compared
with the usual cosmological definition of particle horizon
r̄h = cτc(t) as the distance to the most distant object which
can be seen at time t (c stands for the speed of light). This
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comparison makes it natural to define the Brownian event
horizon rBeh as the largest comoving distance a diffusive pulse
emitted at t0 typically ever reaches, that is,

r2
Beh = 2dDτ (∞). (52)

As an aside, we note that the idea embodied by the
formula (51) can be easily extrapolated to the case of a fixed
comoving distance by considering the probability p∗(t) that at
time t > t0 our Brownian particle is found inside an expanding
hypersphere centered at the origin. Let us denote by R0 the
radius of the hypersphere at time t0. At later times t , the radius
is given by a(t)R0, and one has

p∗(t) ≡
∫ a(t)R0

0
G(y,t)dy = 1

�(d/2)

∫ R̄2
0/4Dτ

0
ud/2−1e−udu

= 1 − �
[
d/2,R2

0/(4Dτ )
]

�(d/2)
, (53)

where the dependence on the scale factor enters the above
equation solely via the conformal time τ (t). In particular,
p∗(t) → 0 when τ (t) → ∞ for t → ∞ [recall that �(·,0) ≡
�(·)], while p∗(∞) > 0 when τ (t) remains finite at all times t .
For example, for a power-law expansion, a(t) = (t/t0)γ , one
finds that p∗(t) → 0 when 0 � γ � 1/2, while p∗(∞) > 0
when γ > 1/2 [see Eqs. (54) and (55)]. In passing, we note
that this behavior is somewhat reminiscent of the extinction
phenomenon in Galton-Watson processes [26].

Equation (53) admits a simple probabilistic interpretation,
namely p∗(t) = Pr[χ � R2

0/(4Dτ )]; in other words, p∗(t) is
equal to the probability that χ � R2

0/(4Dτ ), where χ is a ran-
dom variable drawn from the γ distribution �(d/2,1). When d

is even the following alternative probabilistic interpretation in
terms of the Poisson distribution holds: p∗(t) = Pr[χ � d/2],
where χ is a random variable following a Poisson distribution
with parameter R2

0/(4Dτ ), i.e., χ ∼ Poi[R2
0/(4Dτ )].

Note that p∗(t) is an upper bound for the so-called survival
probability 
(τ (t)), i.e., the probability that the Brownian
particle never leaves the interior of the hypersphere. This is
the case because the definition of p∗(t) does not preclude
recrossing of the boundary of the hypersphere. In Sec. IV we
show how to compute 
(τ (t)).

C. Power-law expansion

Let us consider in detail the case of a uniform expansion
whose time evolution is described by a power law, a(t) =
(t/t0)γ (with γ > 0). This case is relevant for at least two
reasons. The first one is that this type of expansion corresponds
to a flat Friedmann-Lemaı̂tre-Robertson-Walker universe. For
example, a(t) ∝ t1/2 corresponds to a radiation-dominated
universe, while a(t) ∝ t2/3 describes the expansion of a
matter-dominated universe. The second reason is that the
typical spread length of diffusive particles in a static medium
only grows as t1/2. This results in a nontrivial, interesting
interplay between the two coexisting transport mechanisms,
i.e., diffusion (possibly with an intrinsic bias v) and the drift
due to the medium expansion.

For a(t) = (t/t0)γ one finds

τ (t) = t
2γ

0

t−2γ+1 − t
−2γ+1
0

1 − 2γ
, γ 
= 1/2, (54)

τ (t) = t0 ln

(
t

t0

)
, γ = 1/2. (55)

For v = 0 the propagator is given by Eq. (40), and one has
〈y〉 = 0, as well as 〈y2〉 = a2(t)〈x2〉 with 〈x2〉 = 2Dτ (t), i.e.,

〈y2〉 = 2Dt

1 − 2γ

[
1 −

(
t

t0

)2γ−1
]
, γ 
= 1/2, (56)

〈y2〉 = 2Dt ln

(
t

t0

)
, γ = 1/2. (57)

Note that for γ < 1
2 and long times the growth of the

typical spread length, 〈y2〉1/2 ∝ t1/2 is faster than the domain
expansion, a(t) ∝ tγ , implying that the diffusing particles
spread across the full expanding domain. In contrast, for γ > 1

2
and long times the diffusive spread length grows as fast as the
scale factor [〈y2〉1/2 ∝ tγ vs. a(t) ∝ tγ ]. This means that the
medium expansion dominates, and particles are not able to
efficiently spread across the medium, resulting in strong local-
ization effects. An alternative way to see this consists in exam-
ining the long-time behavior of the second moment of the trav-
eled distance expressed in comoving coordinates, 〈y2〉/a2(t) =
〈x2〉 = 2Dτ (t). From Eqs. (54) and (55) one finds

〈x2〉 ∼

⎧⎪⎪⎨
⎪⎪⎩

2D
t

2γ

0
1−2γ

t1−2γ , γ < 1
2 ,

2Dt0 ln (t), γ = 1
2 ,

2D t0
2γ−1 , γ > 1

2 ,

(58)

in the limit t → ∞. Thus, for γ < 1/2 (which includes the
case of contracting media γ < 0), one has 〈x2〉 → ∞ as
t → ∞; in the language coined in Sec. III B by analogy with
universe expansion models used in cosmology, the Brownian

FIG. 2. Simulation results for the probability P (y,t) to find the
random walker at position y after a time t given the initial value
P (y,0) = [δ(y − y0) + δ(y + y0)]/2. We have set y0 = 10, D = 1/2,
t0 = 100, and t − t0 = 10, 20, 100, 500, 5000 (symbols: solid circle,
solid square, circle, square, and star, respectively). The medium
expands according to the power law a(t) = (t/t0)γ for γ = 1/4. The
solid lines represent the corresponding theoretical results.
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FIG. 3. Simulation results for the probability P (y,t) to find the
random walker at position y after a time t for a double-peaked
initial condition P (y,0) = [δ(y − y0) + δ(y + y0)]/2 representing a
pair of diffusive pulses. We take y0 = 10, t0 = 100, D = 1/2, and
t − t0 = 10, 20, 100, 500, 5000 (symbols: solid circle, solid square,
circle, square, and star, respectively). The medium expands according
to the power law a(t) = (t/t0)γ and γ = 2. The solid lines represent
the corresponding theoretical results. There is no complete mixing
between the two diffusive pulses, since the Brownian event horizon
rBeh = [2Dt0/(2γ − 1)]1/2 ≈ 8.16 is shorter than the semidistance
(=10) between the two source points located at y = ±y0.

event horizon rBeh is infinite in this case, which means that
the particles are eventually able to spread across the full
size of the expanding domain. This behavior is clearly seen
in Fig. 2, where two diffusive pulses corresponding to two
sets of noninteracting particles that initially start at y = −y0

and y = y0 are shown. One sees that, after a certain time
(e.g., for times �5000), diffusional particle mixing blurs the
double-peaked initial condition almost entirely. However, for
γ > 1/2 one has 〈x2〉 → constant as t → ∞, so factoring out
the effect of the medium expansion one sees that the spread of
particles due to diffusion becomes less and less relevant in the
course of time. This effect is remarkable, since it implies that
for a sufficiently fast expanding medium (γ > 1/2) the initial
condition of the system is much less blurred in comparison
with a standard diffusive process in a static medium; therefore,
a remnant of this initial condition persists for arbitrarily long
observation times. This is simply a consequence of the fact
that the Brownian event horizon [cf. Eq. (52)] is finite in this
case: rBeh = [2Dt0/(2γ − 1)]1/2. Then, two diffusive pulses
whose initial separation is larger than 2rBeh never (effectively)
meet, that is, their overlap or mixing is limited. These effects
are shown in Fig. 3 where, again, two diffusive pulses are
initially located at y = −y0 and y = y0. However, in the
present case, diffusional mixing is strongly hindered by the
medium expansion, and the trace of the double-peaked initial
condition persists for arbitrarily long times, as opposed to the
behavior shown in Fig. 2. Note that the curves for t = 100,
500, and 5000 are almost coincident. The evolution of the
Brownian horizons for the cases corresponding to Figs. 2
and 3 are shown in Fig. 4, together with the classical case
(γ = 0) and the marginal case (γ = 1/2), which are plotted
for comparison. Note the qualitative agreement of the results
plotted in this last figure with those shown in the previous two
figures.

The simulation results shown in Figs. 2 and 3 were obtained
from a collection of random walkers performing jumps after
each time unit, whereby the jump length was drawn from
a Gaussian distribution with zero mean and unit variance
(this amounts to setting D = 1/2). A total of 104 runs were
performed for t − t0 = 10, 20, whereas 5 × 104 runs were
performed for t − t0 = 100,500, 5000.

For γ = 1
2 the domain expansion makes the dispersion of

the particles within the system only marginally faster, since
the second moment 〈y2〉 = 2Dt is only increased by the
logarithmic factor ln(t/t0) with respect to the case of a static
medium.

For the sake of completeness, we also give below the first
and the second moment of the physical distance for the case
of a constant nonzero velocity drift, v 
= 0:

〈y〉 = vt

1 − γ

[
1 −

(
t

t0

)γ−1
]
, γ 
= 1, (59)

〈y〉 = vt log

(
t

t0

)
, γ = 1. (60)

The second moment 〈y2〉 is obtained by performing the
replacement 〈y2〉 → 〈y2〉 − 〈y〉2 in Eqs. (56) and (57).

Finally, it is interesting to note that for power-law expansion
and v = 0, Eq. (36) has the form of a Batchelor’s equation,
giving rise to so-called scaled Brownian motion [27,28]. This
means that, in the comoving representation, the diffusion
process is nonstationary and nonergodic in a way similar
to continuous time random walks displaying memory ef-
fects [27].

D. Exponential expansion

Let us now consider the case of the exponential expansion
a(t) = exp[H (t − t0)] with H being the Hubble parameter.
This case corresponds to a dark-energy-dominated flat uni-
verse, and it also describes the growth of many biological
media, at least in the early stages [29]. From the definition of
Brownian conformal time, Eq. (37), one easily finds

τ (t) = 1

2H
[1 − e−2H (t−t0)]. (61)

Then, 〈x2(t)〉 = (D/H )[1 − e−2H (t−t0)] and

〈y2(t)〉 = D

H
[e2H (t−t0) − 1]. (62)

For H > 0 (expanding medium), one obtains τ (∞) =
tH /2, where tH = 1/H stands for the Hubble time. The
Brownian event horizon is then rBeh = √

2Dτ (∞) = √
DtH ,

which could be termed the “Brownian Hubble distance,” as two
points separated by an initial comoving distance x larger than
rBeh cannot be connected by a Brownian pulse; in other words,
sets of walkers starting at points separated by rBeh cannot be
effectively mixed. This is completely similar to the behavior
we described in Sec. III C for the power-law expansion with
γ > 1/2.

For H < 0 we have a contracting medium. In this case
τ (∞) and the Brownian Hubble distance are infinite. This
means that, no matter how far two points are initially separated,
either of the two will eventually be reached by a Brownian
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FIG. 4. Brownian horizons r̄Bh as described in the main text. The parameter values are the same as in Figs. 2 and 3 (except γ , which is
specified in each subfigure). The solid (dashed) line corresponds to the Brownian pulse that is emitted at y = 10 (y = −10) at time t0. It is
clear that in comoving coordinates both pulses become narrower as γ grows. Note also that for γ = 1/4 both pulses overlap, but they do not
for γ = 2, in agreement with what is shown in Figs. 2 and 3. (a) γ = 0; (b) γ = 1/4; (c) γ = 1/2; and (d) γ = 2.

pulse starting from the other one. In other words, any double-
peaked initial distribution of walkers will result in both peaks
eventually merging into a single one. In fact, one finds from
Eq. (62) that 〈y2(∞)〉 = −D/H , implying that the tendency
of the particles to spread out due to diffusion is eventually
compensated by the contracting drift of the medium. In this
way, a stationary state where the particles diffuse in a region of
finite size of order �H = −D/H (a kind of contractive Hubble
length) is reached. According to Eq. (44), for a δ-peaked initial
condition, the stationary particle distribution in this region is

Gs(y) = 1√
2π�2

H

e−y2/2�2
H . (63)

For any given initial probability distribution P0(y), the
resulting stationary distribution Ps(y) is given by convolution
Ps(y) = [Gs ∗ P0](y).

In Fig. 5, we compare this distribution for several values of
H with simulation results for P (y,t) and long-enough times
(t − t0 = 100,400,800 for H = −1/50,−1/200,−1/400, re-
spectively), so changes in P (y,t) are barely noticeable. As
expected, these times scale as t − t0 ∝ H−1. The simulation
results were obtained from 5 × 104 random walk realizations,
whereby each walker performed a jump after each time unit

FIG. 5. Simulation results for the probability P (y,t) to find
random walkers at position y after a time t in an exponentially
contracting medium with P (y,0) = δ(y), t0 = 100, D = 1/2, and t −
t0 = 100 for H = −1/50 (circles), t − t0 = 400 for H = −1/200
(squares), and t − t0 = 800 for H = −1/400 (triangles). The solid
lines represent the corresponding final stationary distribution Ps(y) as
given by Eq. (63). The corresponding theoretical distributions P (y,t)
are also plotted (broken lines), but they are hardly distinguishable
from the stationary distribution.
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and the jump length was drawn from a Gaussian distribution
with zero mean and unit variance.

The onset of a stationary distribution is an exclusive feature
of the case with exponential contraction. Notice, for example,
that no stationary distribution is reached in the case of power-
law contraction, γ < 0.

IV. SURVIVAL PROBABILITY AND FIRST-PASSAGE TIME
DISTRIBUTION FOR THE CASE OF A UNIFORM

EXPANSION

So far, we have only considered the free propagator
solution of the diffusion equation. However, problems with
absorbing boundaries are of fundamental importance, as they
provide a standard route to compute first-passage properties.
In turn, the latter are of special relevance in the context
of diffusion-controlled reactions, where the corresponding
reaction rates are essentially limited by the time needed
to attain the reactive interface (or the interaction radius in
the case of binary reactive collisions). In what follows, we
discuss a basic class of problems associated with an absorbing
boundary condition, namely the computation of the survival
probability of particles enclosed by an expanding, fully
absorbing hyperspherical surface.

Consider a Brownian point particle with v = 0 in physical
space. We assume that the particle is placed at the center
of a hypersphere of expanding radius Ry = Ry(t) = a(t)R0,
where R0 denotes the initial radius. We ask for the probability

(t) that the particle has not escaped from the expanding
region defined by the hypersphere up to time t . This problem
can be solved by making the surface of the hypersphere
fully absorbing and by identifying the escape process (surface
crossing) with absorption, which justifies the use of the term
“survival probability” for 
(t). This quantity can be obtained
from the solution of the d-dimensional version of Eq. (33) for
v = 0, namely

∂

∂t
P (y,t) = − ȧ

a
∇ · [yP (y,t)] + D∇2P (y,t). (64)

The above equation must be complemented with the δ-peaked
initial condition P (ry,t = t0) = sd (ry)−1δ+(ry) [where sd (ry)
is the surface of a hypersphere of radius ry] and the absorbing
boundary condition P (ry = Ry,t) = 0. One also has the
implicit condition that P (ry,t) must remain finite everywhere
at all times. The notation δ+(·) has been used for the
slightly modified δ function with the property

∫ R

0 δ+(r)dr = 1
for any R > 0. Once the corresponding solution P (ry,t)
is known, the survival probability follows immediately as

(t) = ∫ Ry

0 P (ry,t) sd (ry)dry .
Proceeding as in Sec. III A, it is possible to reduce Eq. (64)

to a simpler form by introducing comoving coordinates |x| ≡
rx = ry/a(t) as well as a new function Q defined by the
substitution P (ry,t) = Q[rx,τ (t)]/a(t). The resulting equa-
tion, ∂Q/∂τ = D∇2Q, is the d-dimensional generalization of
Eq. (38) for the case of a hyperspherical geometry, i.e.,

∂Q(r,τ )

∂τ
= D

{
∂2

∂r2
+ d − 1

r

∂

∂r

}
Q(r,τ ). (65)

In the above equation we have set rx ≡ r; this notation will
be used throughout the remainder of the present section.

Taking into account the equations τ (t0) = 0 and a(t0) = 1
as well as the initial and boundary conditions for P (ry,t),
one finds Q(r,τ = 0) = sd (r)−1δ+(r) and Q(r = R0,τ ) = 0.
In addition, the normalization condition

∫ R0

0 P (r,t0) sd (r)dr =∫ R0

0 Q(r,τ = 0)sd (r) dr ≡ 1 must be fulfilled. The well-
known solution to the above problem (easily found by
separation of variables) can be written as follows [30,31]:

Q(r,τ ) =
∞∑

n=1

(
jn

2R0

)d/2−1
r1−d/2

πd/2R2
0J

2
d/2(jn)

× Jd/2−1

(
jn r

R0

)
e−j 2

n Dτ/R2
0 , (66)

where jn ≡ jd/2−1,n is the nth positive zero of the Bessel
function of order d/2 − 1, i.e., Jd/2−1(jd/2−1,n) = 0. For
simplicity, we use the short-hand notation jn; however, the
reader should bear in mind that jn depends on the spatial
dimension d.

In terms of Q, the survival probability 
(t) = 
[τ (t)] is
expressed as


(τ ) =
∫ R0

0
Q(r,τ )sd (r) dr = 22−d/2

�(d/2)

×
∞∑

n=1

j
d/2−2
n

Jd/2(jn)
e−j 2

n Dτ/R2
0 . (67)

We see that the behavior of 
(t) depends on how τ (t) behaves.
For example, if τ (t → ∞) ≡ τ∞ 
= 0, then the probability
that a particle is never trapped is simply 
(τ∞), a nonzero
quantity. This is the case for the previously defined power-law
expansion with γ > 1/2, which gives τ∞ = t0/(2γ − 1) [cf.
Eq. (54)]. On the other hand, if τ∞ = ∞, then the probability

(τ∞) that a particle is never trapped is zero. This is the
case, for example, for the power-law expansion with γ � 1/2.
A previous derivation of the above results for d = 1,2,3 has
been given in Refs. [32,33].

There is an alternative and instructive way to see that 
(τ∞)
must vanish when τ∞ = ∞. In this case, it is possible to define
the Laplace transform of the survival probability as


̃(u) ≡
∫ ∞

0
e−uτ
(τ ) dτ, (68)

since the conformal time variable τ spans the full range of
positive real numbers. It turns out that the analytic form of the
Laplace transform given by Eq. (68) is known [34]:


̃(u) = 1

u
− 21−d/2

u

(
uR2

0

/
D

)(d/2−1)/2

�(d/2)Id/2−1
(√

u
D

R0
) . (69)

Hence, the final value theorem yields

lim
t→∞ 
[τ (t)] = lim

τ→∞ 
(τ ) = lim
u→0

u 
̃(u) = 0 (70)

regardless of the value of the spatial dimension.
Finally, we note that the result expressed by Eq. (66) for a

δ-peaked initial condition is just a particular case of the general
problem with the (hyperspherical) initial condition P (ry,t0) ≡
Q(r,0), as described in, e.g., Ref. [35] or in Refs. [30,31]
for the case of a subdiffusive particle (in this last case, one
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must replace the Mittag-Leffler functions appearing in those
references with exponential functions). Thus, one obtains

Q(r,τ ) =
∞∑

n=1

an r1−d/2Jd/2−1

(
jn r

R0

)
e−j 2

n Dτ/R2
0 (71)

with

an = 2

R2
0J

2
d/2−1(zn)

∫ R0

0
rd/2Q(r,0)Jd/2−1

(
jn r

R0

)
dr. (72)

In dimensions d = 1 and d = 3, the aforementioned initial
condition leads to coefficients an, which are expressible
in terms of trigonometric functions, whereas in d = 2 the
corresponding an’s are given by Bessel functions. In Ref. [33],
a specific form of the initial condition was studied, namely
Q(r,0) ∝ 1 − �(r − r0), where �(·) stands for the Heaviside
step function and r0 � R0. This kind of initial condition
is relevant for the development of the enteric nervous
system [36].

A. Moments of the first-passage time
for power-law expansion

The moments of the first-passage time 〈tn〉 can be straight-
forwardly computed from the first-passage time distribution
F (t) = −d
(t)/dt . The mth-order moment is given by the
following formula:

〈tm〉 =
∫ ∞

t0

dt F (t)tm, m = 0,1,2, . . . . (73)

or, integrating by parts,

〈tm〉 = − tm
(t)
∣∣∞
t0

+ m

∫ ∞

t0

tm−1
(t)dt. (74)

We shall consider different subcases for the power-law scale
factor a(t) = (t/t0)γ depending on the value of γ .

1. Case γ < 1/2

In this case Eq. (67) gives


(t) = 22−d/2

�(d/2)

∞∑
n=1

j
d/2−2
n

Jd/2(jn)
exp

[
−j 2

nDt
2γ

0

t1−2γ − t
1−2γ

0

(1 − 2γ )R2
0

]
.

(75)

This can be expressed in a more compact way as follows:


(t) =
∞∑

n=1

ρne
−αn(t1−2γ −t

1−2γ

0 ), (76)

where the quantities ρn = 22−d/2 j
d/2−2
n /[�(d/2) Jd/2(jn)] and

αn = j 2
nDR−2

0 t
2γ

0 /(1 − 2γ ) have been introduced. For t = t0
the series 
(t0) = ∑∞

n=1 ρn is divergent for d � 3. This singu-
larity in the initial condition is well known from the analogous
diffusion problem in static domains; however, we know that the
physical value of the sum is

∑∞
n=1 ρn ≡ 1 in all dimensions.

On the other hand, this value can be recovered by regularizing
this divergent series. To this end, a technique akin to Abel
summation [37] can be applied, whereby suitable regulator
functions involving Bessel functions are employed [31]. In
particular,

∑∞
n=1 ρn is just 22−d/2/�(d/2) times the series

denoted by S(d/2 − 1,0) in Ref. [31], which is equal to
2d/2−2�(d/2) (see the result below Eq. (26) in Ref. [31]).

When γ < 1/2, 
(t) → 0 for t → ∞ and Eq. (74)
becomes

〈tm〉 = tm0 + m

∫ ∞

t0

tm−1
(t)dt (77)

as 
(t0) ≡ 1 by construction. Taking Eq. (76) into account,
one obtains

〈tm〉 = tm0 + m

∞∑
n=1

ρne
αnt

1−2γ

0

∫ ∞

t0

tm−1e−αnt
1−2γ

dt. (78)

The above expression for 〈tm〉 can be rewritten in terms of
incomplete � functions. One has

〈tm〉 = tm0 + m

1 − 2γ

∞∑
n=1

ρnα
− m

1−2γ

n

× eαnt
1−2γ

0 �

(
m

1 − 2γ
,αnt

1−2γ

0

)
. (79)

Note that, since we have assumed γ < 1/2, one has αn > 0. On
the other hand, for a fixed value of the spatial dimension, one
has jn → [n + (d − 3)/4]π for large n according to McMa-
hon’s asymptotic expansion [38]. Besides, for fixed order
and large values of the argument, the following asymptotic
expansion of the Bessel function holds [38]:

Jν(z) ∼
√

2

πz
cos

(
z − νπ

2
− π

4

)
, |z| → ∞, (80)

implying that Jd/2(jn) → (−1)n−1[2/(π2n)]1/2 for n → ∞.
Using the large-x approximation �(a,x) ∼ xa−1e−x , one finds
that the series expansion (79) converges for arbitrary m > 0 in
one, two, and three dimensions.

2. Case γ = 1/2

Taking τ = t0ln(t/t0) in Eq. (67) and using the definition
of ρn, we obtain


(t) =
∞∑

n=1

ρn

(
t0

t

)ηn

(81)

with ηn ≡ j 2
nDt0/R

2
0 . For t > t0 this series tends to zero as

t → ∞ in any spatial dimension. Let us now examine the
behavior of the moments of the first-passage time. In this case,
Eq. (74) becomes

〈tm〉 = −
∞∑

n=1

(
1 + m

ηn − m

)
ρnt

ηn

0 tm−ηn

∣∣∣∣
t=∞

t=t0

(82)

when m 
= ηn. Since the ηn’s increase monotonically with n, it
is necessary and sufficient that η1 = j1Dt0/R

2
0 > m for 〈tm〉

to be finite. When this is the case, the upper boundary term
vanishes and one finally obtains

〈tm〉 = tm0 + m

∞∑
n=1

ρn

tm0

ηn − m
. (83)

For large n one has ηn ∝ jn ∝ n, and ρn ∝ (−1)n−1n(d−3)/2.
Hence, the above series converges in one, two, and three
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dimensions for any m > 0. The condition η1 > 1 implies that
the diffusion coefficient must exceed a threshold value,

D >
1

jd/2−1,1

R2
0

t0
, (84)

for the mean first-passage time 〈t〉 to exist. We have restored
the full notation for the jn’s to emphasize the dependence
on dimensionality. In more general terms, if the condition
m + 1 � η1 > m holds, i.e., if

m + 1

jd/2−1,1

R2
0

t0
� D >

m

jd/2−1,1

R2
0

t0
(85)

holds, then the mth moment of the diffusion coefficient is
still finite, but neither the m + 1-th moment nor higher-order
moments exist in one, two, or three dimensions. Note that
when η1 = m the m th moment diverges logarithmically.

3. Case γ > 1/2

As already mentioned, Eq. (67) also holds in this case
and one finds 
(τ∞) > 0 with τ∞ = t0/(2γ − 1). Thus, since

(t → ∞) 
= 0, neither the mean first-passage time nor higher
order moments exist.

V. CONCLUDING REMARKS

In this work, a Chapman-Kolmogorov equation for diffu-
sion in an expanding medium has been obtained and subse-
quently employed to deduce the corresponding d-dimensional
FP equation. The free solution or propagator in physical space
P (y,t) has been explicitly obtained for the case of uniform
expansion. Typical properties associated with the diffusive
spread of particles in expanding media have been investigated
in terms of what we call Brownian horizon, a characteristic
distance somewhat analogous to the particle horizon defined
in cosmology.

We have subsequently focused our discussion on the
important case of a uniform expansion with power-law scale
factor a(t) ∝ tγ . The value γ = 1/2 plays a special role, as it
separates the regime of complete mixing (infinite Brownian
event horizon, γ < 1/2) from the regime of truncated or
imperfect mixing (finite Brownian event horizon, γ > 1/2).
Theoretical results for the probability distribution functions in
these two regimes have been confirmed by means of numerical
simulations.

Finally, we have considered diffusion problems in the
presence of a fully absorbing hyperspherical boundary. We
have confirmed and extended previous results for the survival
probabilities of a particle initially localized at the center
of an expanding hypersphere with a fully absorbing sur-
face. In this case, we have discussed interesting crossover
effects in the context of a uniform medium expansion
described by a power law, both at the level of the survival
probability and of the moments of the first-passage time
distribution.

We see this work as a step towards a stochastic theory of dif-
fusion in expanding spaces. As discussed in the Introduction,
our motivation was originally fueled by important problems
in connection with cosmology and biology, but we anticipate
that a variety of other systems where the medium expansion

occurs on time scales commensurate with diffusive transport
are likely to display similar features.

Regarding possible extensions of the present work, we favor
two main lines of research. The first one is rather fundamental
in nature, as it aims to enlarge the theoretical framework for
nonequilibrium statistical mechanics in expanding spaces by
considering purely diffusive systems as a first step towards
a more general description of a wide class of reaction-
diffusion systems. In this context, an interesting example
concerning a coupled set of 1D linear reaction-diffusion
equations describing cell proliferation within a growing tissue
has recently been studied in Ref. [39]. It would be interesting to
extend this study by allowing for a time dependence of the rate
constants in the linear reaction terms, in which case it should
be possible to find an uncoupling transformation similar to the
one used in this reference. The extension to higher dimensions
or different types of boundary conditions appears to be less
straightforward, but it is also of interest.

A second line of research addresses the connection of
our theory with experiments and astrophysical observations.
Of particular interest in this context is the fact that, for a
radiation-dominated universe, one has a(t) ∝ t1/2. According
to our findings, this is precisely the critical expansion rate
separating the regime in which the walker remains strongly
localized at all times (and where a strong memory of the initial
condition persists) from a regime where the walker delocalizes
rather quickly (essentially as it happens in a static medium). In
view of this, it is possible that nontrivial probabilistic effects
happened in some stages of the universe evolution. On the other
hand, given the wide plethora of behaviors found in biology, it
would be surprising that such effects were not present in certain
types of biological systems, too. In this context, we wish to
point out that the case of a medium whose expansion saturates
in the course of time may be relevant for the phenomenology of
certain living systems [29]. In this case, the scale factor may be
logistic or described by more complex S-shaped curves [29].
For the case of logistic growth, one expects that diffusive
particle mixing is not as effective on short time scales as it is
in the long-time limit.

Contracting media driven by stretched exponential scale
factors are also of interest, at least from a methodological point
of view. As we have shown in Sec. III D, an exponential scale
factor leads to the onset of a stationary distribution in physical
coordinates. It would be interesting to see how this behavior
arises as the exponent of the stretched exponential approaches
1. These are just two examples of the many possibilities that the
study of the statistical mechanics of systems with expanding
geometries opens.
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