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We revisit the problem of calculating the survival probability of Lévy flights in a finite interval with absorbing
boundaries. Our approach is based on the master equation for discrete Lévy fliers, previously considered to treat the
semi-infinite domain. We argue that, although the semi-infinite case can be treated exactly due to Wiener-Hopf
factorization, the approximation involved in the problem with the finite interval is actually fairly good. We
evidence the shift in the universal behavior of the long-term survival probability from the exponential decay in
the presence of two absorbing barriers to the Sparre-Andersen power-law dependence in the single-barrier limit.
In some cases, we also calculate the short- and intermediate-term behavior and present the explicit dependence
of the survival probability on the Lévy flier’s starting position. Our analytical results are confirmed by numerical
simulations.
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I. INTRODUCTION

Lévy flights and walks have been largely employed to
model anomalous diffusion, with applications pervading a
broad variety of phenomena [1–18]. They are characterized
by heavy-tailed distributions of step lengths, which allow for
the existence of rare but extremely large jumps alternating
with many short steps. Stochastic processes described by
distributions with diverging second moment are governed
by the generalized central limit theorem, with probability
density function (pdf) after many jumps converging to the
Lévy α-stable distribution and emergence of superdiffusive
behavior [6,7]. In contrast, Brownian processes with finite
second moment converge to the Gaussian pdf and display
normal diffusion, as established by the central limit theorem.
The degree of superdiffusion in Lévy processes is governed
by the Lévy index α, defined in the range 0 < α < 2, with the
Gaussian limit corresponding to the boundary value α = 2.

Though similar in some aspects, Lévy flights and walks
actually differ in a number of relevant features [6,7,11–13,18–
20]. For instance, while Lévy flights are Markovian processes
generally assigned to jumps of duration independent of the
length, steps in Lévy walks are taken with constant speed,
thus generating spatiotemporal correlation and non-Markovian
character. This property leads the second moment of the pdf
of Lévy walks in free space to diverge only in the infinite-
time limit [18,19]. On the other hand, when constrained
to a finite domain bounded by absorbing boundaries Lévy
processes show superdiffusive behavior limited to an upper
cutoff scale [15,16,21–23]. This bounded case is relevant as it
is actually representative of a variety of realistic phenomena
[11–13]. In this context, one important quantity is the survival
probability, i.e., the probability of the walker or flier to
remain unabsorbed after some time or after a given number
of jumps [24]. This quantity is also intrinsically related to
the mean first passage time to the boundary sites, which
corresponds to the mean number of steps and mean length
of the path of Lévy flights and walks, respectively [24–29].

The asymptotic behavior of the survival probability for
large times or number of jumps surprisingly depends more

on the nature of the boundary conditions than on the degree of
diffusivity set by the Lévy index α. For example, in the case of
semi-infinite domain in one dimension a theorem due to Sparre
Andersen establishes [30–32] that the survival probability of
symmetric Lévy fliers displays asymptotic decay for large
number of steps n in the power-law form 1/

√
n, irrespective

of the value of α.
On the other hand, when the boundary conditions are set

by absorbing boundaries in a finite one-dimensional domain,
Lévy flights have been most generally studied in the continuous
limit under the framework of fractional differential equations
(FDEs), which display standard first-order time derivative
and fractional α-dependent space derivative [11–13,33–41].
In this context, since the fractional derivative is defined as an
integro-differential operator, its nonlocal character introduces
a number of difficulties and subtleties in the presence of
absorbing boundaries. For instance, the possibility of long
jumps over the boundary sites [42] leads to a subtle distinction
between the first time to arrive at the boundaries and the
first passage time to the boundaries [43]. Further, this feature
also implies the failure [43] of the method of images to
solve the FDEs with absorbing boundaries for 0 < α < 2. The
presence of the boundaries also hampers the use of the Wiener-
Hopf technique [43,44] and the method of finite differences
applied to the FDE [45,46]. Notwithstanding, one successful
approach is to discretize the continuous fractional differential
operator [27,28,38], with focus on the study of the set of
eigenvalues and eigenfunctions of the FDE with absorbing
boundaries. In this context, as the spectrum of eigenvalues is
discrete and can be ordered, the survival probability for the
Lévy flier in a finite domain displays long-term asymptotic
exponential decay with the continuous time, in which the
decay constant is identified with the inverse of the smallest
eigenvalue (in absolute value) [38,39].

In this work, we revisit the problem of calculating the
survival probability of discrete Lévy flights in a finite domain
with absorbing boundaries. Here, instead of working on the
continuous FDE formalism, our approach is based on the
master equation for discrete Lévy fliers, previously considered
by Zumofen and Klafter [20] to treat the semi-infinite case.
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Under this framework, it becomes clear how the long-term
asymptotic exponential behavior of the survival probability in
the presence of two absorbing barriers shifts to the Sparre-
Andersen power-law decay in the single-barrier limit. In some
cases, we also calculate the short- and intermediate-term
behavior of the survival probability and present its explicit
dependence on the Lévy flier’s starting position. Our analytical
results are confirmed by numerical simulations.

This work is organized as follows. In Sec. II we detail
the general method and apply it explicitly to the Cauchy
(α = 1) and Gaussian (α = 2) distributions of jump lengths.
In the sequence, we present the calculation to the general
case of a Lévy flier with Lévy index 0 < α < 2, identifying
the change of universality in the long-term behavior of the
survival probability from the single-barrier Sparre-Andersen
power law to the double-barrier exponential decay. Finally,
discussion and conclusions are presented in Sec. III.

II. SURVIVAL PROBABILITY OF LÉVY FLIERS
WITH ABSORBING BARRIERS

We consider a Lévy flier that performs jumps of length
� distributed according to the Lévy α-stable pdf pα(�) in a
finite one-dimensional interval of length L (see Fig. 1). We
take a symmetric pdf so that jumps of same length to the left
and to the right are equiprobable. For convenience, we set the
position of the absorbing barriers at x = −x0 and x = L − x0,
with 0 < x0 < L/2, and the origin as the starting point. This
means that x0 represents the initial distance of the flier to the
closest boundary. The Lévy flier is absorbed if a jump takes it
to the regions x � −x0 or x � L − x0.

The calculations presented below follow the approach by
Feller [44] and Zumofen and Klafter [20]. We denote by Qn(x)
the pdf of the flier to remain unabsorbed in the interval −x0 <

x < L − x0 after n discrete jumps. We thus set Qn(x) = 0
for x � 0 and x � L − x0. Conversely, R(0)

n (x) [R(L)
n (x)]

represents the pdf to remain unabsorbed up to the (n − 1)th
jump, with absorption by the x = −x0 [x = L − x0] boundary
occurring precisely at the nth jump. Similarly, we write
R(0)

n (x) = 0 [R(L)
n (x) = 0] for x > −x0 [x < L − x0]. From

these definitions, the master equation for the discrete Lévy
flyer reads

R
(0)
n+1(x) + R

(L)
n+1(x) + Qn+1(x) =

∫ ∞

−∞
Qn(y)pα(x − y)dy,

(1)

with initial conditions Q0(x) = δ(x) and R
(0)
0 (x) = R

(L)
0 (x) =

0, and δ(x) denoting the Dirac delta function.

FIG. 1. Illustration of a Lévy flight in a finite domain of length
L, with absorbing boundaries located at x = −x0 and x = L − x0. In
this example, after starting from the origin the flier is absorbed by the
left boundary as its third jump would lead it to the region x � −x0.

By taking the Fourier transform of Eq. (1) to the k space,
the generating function approach [44] can be applied, with,
e.g., Q(k,z) = ∑∞

n=0 Qn(k)zn, where z is defined in a range
that assures the series convergence (certainly for |z| < 1, since
the Qn’s are bounded). We thus obtain

ln[1 − pα(k)z] = ln{1 −
√

2π [R(0)(k,z) + R(L)(k,z)]}
− ln[

√
2πQ(k,z)]. (2)

The contribution to the interval −x0 < x < L − x0 can be cast
in the form

ln[
√

2πQ(k,z)] =
∞∑

m=1

zm

m

∫ L−x0

−x0

Pm(x)eikxdx, (3)

in which the lower and upper limits of the integral (i.e., the
absorbing boundaries) must be excluded by definition and the
pdf Pm(x) to be at position x in free space after m jumps
has Fourier transform Pm(k) = [pα(k)]m/

√
2π . Equation (3)

is exact in the L → ∞ semi-infinite limit due to the Wiener-
Hopf factorization of the contributions from the absorbing and
nonabsorbing intervals [20,44]. In a finite interval, Eq. (3)
represents a fairly good approximation in the large-L limit
studied below. For example, the generating function Q(k,z)
of a random walker with symmetric exponential jump lengths,
p(�) = exp(−|�|/d)/2d, starting near the origin in a finite
interval 0 � x � L, can be obtained exactly using Eq. (2) [44].
The difference in ln[

√
2πQ(k,z)] between this exact result and

the one calculated from Eq. (3) nullifies as ∼e−√
1−zL/d in the

L � d limit.
By taking the Fourier transform of Pm(x) and inserting the

above relation for Pm(k) into Eq. (3) we obtain

ln[
√

2πQ(k,z)] = 1

2π

∞∑
m=1

zm

m

∫ L−x0

−x0

dx eikx

×
∫ ∞

−∞
dq e−iqx[pα(q)]m. (4)

By solving the integral in x and applying the Cauchy principal
value for improper integrals, we write

Q(k,z) = 1√
2π

exp[iφ(k,z)], (5)

with the phase

φ(k,z) = 1

2π
P

∫ ∞

−∞

ln[1 − pα(q)z]

(q − k)

× [eix0(q−k) − e−i(L−x0)(q−k)]dq, (6)

and P denoting the principal value. In Eq. (6) the Fourier
transform of the symmetric Lévy α-stable pdf pα(�) reads [6]

pα(q) = 1√
2π

exp(−b|q|α), (7)

with b a scale parameter and the Lévy index in the interval
0 < α � 2.

At this point, the time dependence of the generating
function can be obtained from the expressions in terms of
the discrete number of jumps by defining [20,24] ψn(t) as the
pdf for the nth jump to occur at time t . The following recursion
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relation holds:

ψn(t) =
∫ t

0
ψ(τ )ψn−1(t − τ )dτ, (8)

where ψ(t) is the n-independent pdf of waiting times between
consecutive jumps. The pdf J (x,t) to arrive at an unabsorbed
position x in time t thus reads

J (x,t) =
∞∑

n=0

Qn(x)ψn(t). (9)

This expression allows one to write the pdf Q(x,t) to be at x

in time t as

Q(x,t) =
∫ t

0
J (x,τ )	(t − τ )dτ, (10)

with 	(t) = ∫ ∞
t

ψ(t ′)dt ′ representing the pdf of not having
jumped until time t . We observe that the choice of the
Poissonian form ψ(t) = exp(−t/τ )/τ , with mean value τ ,
is compatible [11–13] with the associated FDE of Lévy
flights, which includes a standard first-order continuous time
derivative and fractional space derivative.

Now, by Laplace transforming Eq. (10) to space u,
with ψ(u) = 1/(1 + τu) and ψn(u) = [ψ(u)]n, we ob-
tain Q(x,u) = J (x,u)	(u) = Q(x,z = ψ(u))	(u), where
	(u) = τ/(1 + τu). The Fourier transform of Q(x,u) to space
k implies

Q(k,u) = 	(u)Q(k,z = ψ(u)), (11)

with Q(k,z) given by Eqs. (5) and (6).
The survival probability S(t) is finally obtained from

Q(k,u) by taking the inverse Laplace transform of

S(u) =
∫ ∞

−∞
Q(x,u)dx =

√
2πQ(k = 0,u), (12)

where one has that S(t = 0) = 1 and S(t → ∞) = 0.

A. Cauchy flier: α = 1

In the case of the Cauchy distribution of jump lengths, we
consider α = 1 in Eq. (7). Equation (6) thus yields

φ(k = 0,z) = − i

π

∞∑
n=1

zn

n

{
arctan

(
L

nb − x0(L − x0)/nb

)

+ π

2

[
1 + sgn

(
x0(L − x0)

nb
− 1

)]}
. (13)

We notice above the presence of the required symmetry, x0 ↔
(L − x0), concerning the starting distances to the boundaries.
The sum converges for |z| < 1 and any u > 0, since z =
1/(1 + τu). By combining Eqs. (5) and (11)–(13), we find

S(u) = τ

(1 + τu)
exp

{
1

π

∞∑
n=1

(1 + τu)−n

n

×
[

arctan

(
L

nb − x0(L − x0)/nb

)

+π

2

[
1 + sgn

(
x0(L − x0)

nb
− 1

)]]}
. (14)

FIG. 2. Survival probability S(t) as a function of time t for
the α = 1 Cauchy flier in a domain of length (a) L = 102 and
(b) L = 103, with starting positions x0/L = 0.002,0.02,0.1. The
long-term exponential behavior, S(t) ∼ exp(−t/τ ), is evidenced both
from numerical simulation results (circles), with x0-independent
best-fit value τ−1 = 2.31/L, and the analytical approach, with τ−1 =
−λk=1 ≈ 3π/(4L) ≈ 2.36/L [38] (dashed lines).

The small-u behavior of S(u) thus yields the long-time
(t/τ � 1) asymptotic dependence of the survival probability,

S(t) ∼ A(ξ ) exp(−t/τ ), (15)

in which A is a constant prefactor dependent on ξ =
x0(L − x0). By comparing this result with the FDE formalism,
the decay constant is identified with the inverse of the smallest
eigenvalue (in absolute value) of the Cauchy FDE with
absorbing boundaries, τ = −1/λk=1 [38].

These findings are confirmed by numerical simulation
results, shown in Fig. 2. In the simulations, a Cauchy flier with
α = 1 performed jumps in the domain −x0 < x < L − x0 and
was absorbed (i.e., the simulation ended) if it stepped either
at the region x � −x0 or x � L − x0. In Fig. 2 we display
results for L = 102 [Fig. 2(a)] and L = 103 [Fig. 2(b)], with
x0/L = 0.002,0.02,0.1, b = 1, so that L � b, and averages
taken over 108 runs in each case. As indicated by Eq. (15) and
also shown in Fig. 2, in the long-term asymptotic regime the
effect of the flier’s starting distance x0 is present in the prefactor
but not in the x0-independent decay rate. Indeed, the starting
point influences mostly the initial transient regime, implying a
collapse of the curves S(t)/A(ξ ) in the long-time limit. We also
notice that the best-fit numerical value τ−1 = 2.31/L shows
good agreement with the approximate result τ−1 = −λk=1 ≈
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3π/(4L) ≈ 2.36/L obtained within the FDE framework [38].
Our findings corroborate and extend on previous numerical
results on Lévy fliers in a finite domain [47].

B. Gaussian limit: α = 2

The Gaussian limit corresponds to take α = 2 in Eq. (7).
As mentioned, in contrast with the diverging second moment
of Lévy α-stable distributions with 0 < α < 2, the standard
deviation of the Gaussian pdf of jump lengths is finite, given
by σ = √

2b [6]. This fact adds one more relevant scale to the
problem, σ , besides the natural ones, x0 and L.

As a consequence, the analysis of the long-term survival
probability in the Gaussian case must be split into two
limit situations, representing the cases in which the flier
might access or not the boundary that is initially faraway.
In particular, the latter situation corresponds to the single-
boundary limit.

For convenience, we set in the following x0 
 L. There-
fore, the single-boundary limit should be recovered by con-
sidering a rather small standard deviation σ 
 L, so that
the initially very distant boundary located at the position
x = L − x0 cannot be reached asymptotically. On the other
hand, by setting a sufficiently large value of σ one allows the
barrier which was initially faraway to be effectively reached.

We start by calculating the phase from Eq. (6):

φ(k = 0,z) = − i

2

∞∑
n=1

zn

n

[
erf

(
L − x0

σ
√

2n

)
+ erf

(
x0

σ
√

2n

)]
,

(16)

where erf(x) denotes the error function. As in the Cauchy case,
the series convergence is assured for |z| < 1.

We first consider values x0 
 L and σ < L, so that both
barriers can be effectively accessed by the Gaussian flier. In
this case S(u) reads

S(u) ≈ τ

(1 + τu)
exp

[
L√
2πσ

∞∑
n=1

(1 + τu)−n

n3/2

]
. (17)

The long-time behavior of the survival probability with two
barriers is therefore

S(t) ∼ B(ζ ) exp(−t/τ ), (18)

where now the prefactor B is a function of ζ = L/σ .
On the other hand, if the boundary at x = L − x0 is initially

very far from the flier, then, by considering x0 
 σ 
 L in
Eq. (16) we find in the single-barrier limit,

S(u) ≈
√

τ/u√
1 + τu

[
1 + x0√

2πσ

∞∑
n=1

(1 + τu)−n

n3/2

]
, (19)

which gives rise to

S(t) ≈ I0(t/2τ ) exp(−t/2τ )

+ x0√
2πσ

∞∑
n=1

(
t

τ

)n
1F1(n + 1/2; n + 1; −t/τ )

n3/2�(n + 1)
.

(20)

Above, I0(x), �(x), and 1F1(a; b; x) denote the modified
Bessel function of zeroth order, gamma function, and hyper-
geometric function, respectively.

We remark that Eq. (20) is also approximately valid in the
short- and intermediate-t regimes (not only in the long-term
limit). Interestingly, as the time t becomes progressively much
larger than the time scale τ , the first term above dominates
over the second, so that, by applying the asymptotic form
I0(x) ≈ exp(x)/

√
2πx, x � 1, we obtain the long-term t/τ �

1 regime of the single-barrier limit for the Gaussian flier [20]

S(t) ∼
( τ

πt

)1/2
. (21)

The contrast between Eqs. (18) and (21) evidences a
remarkable shift of the long-term behavior of the survival
probability of a Gaussian flier from the exponential to the
power-law decay, depending respectively on whether the
initially distant barrier can be effectively accessed or not along
the flier’s path. In other words, as the ratio of the probabilities
of being absorbed by the initially faraway and close barriers
tends to zero as L/σ → ∞, the functional form of S(t) at
long times progressively shifts from S ∼ e−t to S ∼ 1/

√
t .

We show below that this shift is not exclusive of the Gaussian
flier, but also applies to general Lévy fliers between absorbing
boundaries.

These distinct long-term regimes of the survival probability
of a Gaussian flier are clearly seen in Fig. 3. In Fig. 3(a)
the long-term exponential decay of S(t) is evidenced for L =
102, x0/L = 0.01,0.1,0.2, and σ = 1. In this regime, both
boundaries can be reached by the Gaussian flier, as described
by the exponential behavior of Eq. (18). Numerical results
represent averages over 108 runs. The best-fit numerical value
τ−1 = 9.55/L2 is in close agreement with the result τ−1 =
−λk=1 = π2/L2 ≈ 9.87/L2 from the FDE framework [38].

On the other hand, by making the initially faraway
boundary essentially inaccessible to the Gaussian flier through
setting L = 103 � σ � x0, the long-time power-law decay
establishes, with exponent −1/2, as shown in Fig. 3(b) for
x0 = 0.05,0.5. For the smallest value of x0, we also observe in
Fig. 3(b) a good agreement between Eq. (20) and the numerical
data already for short times, t � 10. In this case, we took into
account 103 terms in the sum of Eq. (20) and τ = 1 (results
kept essentially unaltered when considering 5 × 103 terms).
Consistently with the above findings, we have also numerically
checked that the number of fliers that ended up being absorbed
by the faraway boundary at x = L − x0 was null in this regime.

C. General Lévy flier: 0 < α < 2

We now generalize the previous analyses to the case of a
Lévy flier with Lévy index in the interval 0 < α < 2. For Lévy
flights between two absorbing boundaries, the same procedure
above leads to

S(u) = τ

(1 + τu)
exp

{ ∞∑
n=1

(1 + τu)−n

2πn

×[In,α(x0) + In,α(L − x0)]

}
, (22)
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FIG. 3. Survival probability S(t) as a function of time t for
the α = 2 Gaussian flier. (a) In a domain of length L = 102,
with starting positions x0/L = 0.01,0.1,0.2 and σ = 1, the ini-
tially faraway boundary located at x = L − x0 can be effectively
reached. The long-term exponential behavior, S(t) ∼ exp(−t/τ ), is
evidenced from numerical simulation results (circles), with best-fit
value τ−1 = 9.55/L2, as well as from the analytical approach,
with τ−1 = −λk=1 ≈ π 2/L2 ≈ 9.87/L2 [38] (dashed lines). (b) In
a 10× larger domain, L = 103, with x0/L = 5 × 10−5,5 × 10−4,
and σ = 1, the faraway boundary is not effectively reached. The
analytical expression for S(t), Eq. (20), is depicted in dashed lines,
and the long-term behavior shifts to the Sparre-Andersen power-law
form S(t) ∼ 1/tν , with x0-independent exponent ν = 1/2 (theory)
and ν = 0.49 (best-fit numerical value).

where the α-dependent integrals above are generally defined
as

In,α(x) = P
∫ ∞

−∞

sin(y)

y
e−nb|y|α/|x|α dy. (23)

We observe that as long as the argument of the functions
In,α(x) remains positive and finite, they display monotonic
decrease with n, as shown in Fig. 4 for several α. In this case,
an analysis similar to those of the previous subsections leads
to the asymptotic exponential behavior of S(t), but with the
prefactor as in Eq. (15) dependent on α as well.

The situation changes drastically in the single-boundary
limit in which L → ∞. Now, since the following limit applies,
In,α(x → ∞) = π (see inset of Fig. 4), Eq. (22) becomes

S(u) =
√

τ/u√
1 + τu

exp

{ ∞∑
n=1

(1 + τu)−n

2πn
In,α(x0)

}
, (24)

FIG. 4. Integrals In,α(x), defined in Eq. (23), as a function of
n, associated with the Laplace transform of the survival probability,
Eq. (22), of a Lévy flier with index 0 < α � 2. When the argument
x is positive and finite, In,α(x) presents monotonic decrease with n,
as seen for α = 0.5,1.0,1.5,2.0 and x = 1. Inset: as the argument
x → ∞, convergence to the limit In,α(x → ∞) = π is achieved.

which leads to S(t) given by the first term of Eq. (20). As
a consequence, the long-time behavior of S(t) displays the
1/

√
t dependence as in of Eq. (21), consistent with the Sparre-

Andersen theorem.

III. DISCUSSION AND CONCLUSIONS

We start the discussion by comparing the above findings
for the double-barrier case with those reported by Zumofen
and Klafter for a Lévy flier in the semi-infinite domain [20].
In order to provide a proper comparison, we first generalize
the results of Ref. [20], which are valid for x0 → 0, to also
include the explicit dependence on the flier’s starting distance
x0. Further, we also calculate the dependence of S(t) in the
short- and intermediate-t regimes, thus extending the long-
time asymptotic results reported in [20].

In the semi-infinite space, with the single absorbing
boundary placed at x = −x0, we obtain for the α = 1 Cauchy
flier starting at the origin,

S(t) ≈ I0(t/2τ ) exp(−t/2τ )

+ x0

b

∞∑
n=1

(
t

τ

)n
1F1(n + 1/2; n + 1; −t/τ )

πn2�(n + 1)
, (25)

for any t and x0 
 b. The long-term t � τ limit of Eq. (25)
thus reads

S(t) ∼
( τ

πt

)1/2(
1 + πx0

6b

)
, (26)

in agreement with the result S(t) ∼ (τ/πt)1/2 reported in [20]
for x0 → 0.

On the other hand, for the α = 2 Gaussian case in the semi-
infinite domain the generalization of the result of Ref. [20]
to include the small-x0 dependence in any t leads precisely to
Eq. (20), as expected. In this case, the same long-term behavior
S(t) ∼ (τ/πt)1/2, x0 → 0, is obtained, in agreement with [20]
as well.

Remarkably, this universal (i.e., α-independent) 1/
√

t-
asymptotic behavior of the survival probability of Lévy fliers
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in the semi-infinite domain (including the Gaussian case as the
α = 2 limit) became a signature of the influence of this specific
boundary condition on the flight dynamics, as rigorously
derived by Sparre Andersen more than 60 years ago [30,31].
This result is by no means trivial, and helped to evidence the
failure [43] of some powerful analytical techniques to solve
FDEs, such as the method of images, which predicted [11–13]
a nonuniversal asymptotic behavior of S(t) as 1/t1/α for Lévy
fliers in the semi-infinite domain.

On the other hand, regarding the case of Lévy fliers in a
finite interval with absorbing boundaries investigated in this
work, the failure of the method of images and other techniques
also compels one to rely on other analytical approaches
such as the master equation for discrete Lévy flights or the
discretization of the continuous fractional differential operator
in the FDE formalism [38]. In this context, an expression of
universality emerges in the presence of double barriers, which
involves a much faster exponential decay of the asymptotic
survival probability, regardless of the particular details of the

flight dynamics, such as the specific form of the integrals
In,α(x) in Eq. (22).

In conclusion, by comparing the results on the finite and
semi-infinite domains, our calculations based on the master
equation approach for discrete Lévy flights evidenced the
shift in the universality of the asymptotic survival probability,
from the power-law Sparre-Andersen 1/

√
t dependence to the

exponential e−t decay. Our results were supported by explicit
calculations and numerical simulations on the Cauchy (α = 1)
and Gaussian (α = 2) dynamics, which provided in some cases
the dependence on the flyer’s starting distance for any time,
and also by the general long-term analysis of Lévy fliers with
index 0 < α < 2.

ACKNOWLEDGMENTS

This work was supported by CNPq, CAPES, and FACEPE
(Brazilian agencies).

[1] E. W. Montroll and M. F. Shlesinger, in Nonequilibrium
Phenomena II: From Stochastics to Hydrodynamics, edited by
J. Leibowitz and E. W. Montroll (North-Holland, Amsterdam,
1984).

[2] S. Havlin and D. Ben-Avraham, Adv. Phys. 36, 695 (1987).
[3] J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
[4] M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, Nature

(London) 363, 31 (1993).
[5] B. J. West and W. Deering, Phys. Rep. 246, 1 (1994).
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