
PHYSICAL REVIEW E 94, 032112 (2016)

Duality and reciprocity of fluctuation-dissipation relations in conductors
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By analogy with linear response, we formulate the duality and reciprocity properties of current and voltage
fluctuations expressed by Nyquist relations, including the intrinsic bandwidths of the respective fluctuations. For
this purpose, we individuate total-number and drift-velocity fluctuations of carriers inside a conductor as the
microscopic sources of noise. The spectral densities at low frequency of the current and voltage fluctuations and
the respective conductance and resistance are related in a mutually exclusive way to the corresponding noise
source. The macroscopic variances of current and voltage fluctuations are found to display a dual property via
a plasma conductance that admits a reciprocal plasma resistance. Analogously, the microscopic noise sources
are found to obey a dual property and a reciprocity relation. The formulation is carried out in the frame of the
grand canonical (for current noise) and canonical (for voltage noise) ensembles, and results are derived that are
valid for classical as well as degenerate statistics, including fractional exclusion statistics. The unifying theory
so developed sheds new light on the microscopic interpretation of dissipation and fluctuation phenomena in
conductors. In particular, it is proven that for fermions, as a consequence of the Pauli principle, nonvanishing
single-carrier velocity fluctuations at zero temperature are responsible for diffusion but not for current noise,
which vanishes in this limit.
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I. INTRODUCTION

The dual property in electrical transport in the linear-
response regime asserts that perturbation (applied voltage V

or imposed current I ) and response (measured current or
voltage drop) can be interchanged with the associated kinetic
coefficients (conductance G or resistance R, respectively),
being reciprocally interrelated. According to Ohm’s law, for a
homogeneous conductor the dual property gives

I = GV and V = RI, (1)

with the reciprocity relation given by

GR = 1. (2)

The most used applications of the above properties are
Thévenin’s and Norton’s theorems, which in electrotechnics
are two equally valid methods of reducing a complex linear
network down to something simpler to analyze [1].

The aim of this paper is to formulate an analogous dual
property and reciprocity relation for electrical fluctuations at
thermal equilibrium. Here the perturbation is the microscopic
source of spontaneous fluctuations inside a conductor (taken
as the physical system), and the response is the variance of the
macroscopic response (i.e., the variance of current or voltage
fluctuations) measured in the outside circuit. The individuation
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of the noise sources at a kinetic level, and thus beyond the
simple temperature model, is a major issue in statistical physics
that has received only partial, and sometimes controversial,
answers even in the basic literature [2–6]. Ultimately, a uni-
fying theory that applies generally to classical and degenerate
statistics, including explicitly Fermi-Dirac and Bose-Einstein
distribution functions, is not available to our knowledge. Here,
all these issues will be addressed and formally solved in the
framework of the basic laws of statistical mechanics.

For the analysis of current or voltage fluctuations on a
kinetic level, a correct system definition becomes of prime
importance. On the one hand, the microscopic model for carrier
transport implies a well-defined equivalent circuit. On the other
hand, the measurement of current or voltage fluctuations in
the outside circuit is reflected in the boundary conditions for
the microscopic modeling, which determine the choice of the
appropriate statistical ensemble. Current noise is measured in
the outside short circuit, which implies an open system where
carriers may enter or leave the sample, thus referring to the
grand-canonical ensemble (GCE). Voltage noise is measured
in the outside open circuit when the carrier number in the
sample is fixed, thus referring to the canonical ensemble
(CE). While it is well known that in the thermodynamic limit
different statistical ensembles become equivalent [7], this does
not hold anymore in the case of fluctuations, when a finite
system size has to be considered. Nevertheless, we will show
that the dual property provides a direct link between the noise
sources in the GCE and the CE.
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II. THEORY

Electrical fluctuations of a conductor in the limit of low fre-
quency (i.e., ω → 0) are described by the Nyquist relations [3]

SI (ω = 0) = 4
I 2

�fI

= 4KBT G, (3)

SV (ω = 0) = 4
V 2

�fV

= 4KBT R, (4)

where SI and SV are the spectral densities of instantaneous
current and voltage fluctuations, respectively, I 2 and V 2

are the variances of the corresponding current and voltage
fluctuations (we recall that being at thermal equilibrium,
their average values are identically zero), �fI and �fV

are the corresponding intrinsic bandwidths determined by
the decay of the corresponding correlation functions, KB

is Boltzmann’s constant, and T is the absolute temperature.
Here and henceforth, the bar over physical quantities
denotes the ensemble average. The dual property we are
interested in refers to the above Nyquist relations, also called
fluctuation-dissipation theorems (FDTs) [5].

To describe the real conductor on a macroscopic level,
the ideal resistance R has to be complemented by a kinetic
inductance L associated with the inertia of the carriers and
a capacitance C associated with the contacts resulting in the
equivalent circuit shown in Fig. 1. Note that current and voltage
fluctuations are measured under different operation conditions:
Voltage noise is measured at the contacts in the open circuit
[i.e., for I (t) → 0] while current noise is measured in the
outside short circuit [i.e., for V (t) → 0].

While the open circuit, being characterized by a closed
system with no particle exchange, is a well-defined concept,
the short circuit deserves some more comments. To be an
ideal short circuit, the resistance of the external circuit has
to be negligible compared to the resistance of the conductor
under consideration. The resistance of a material is inversely
proportional to the momentum relaxation time and the number
of carriers [see, e.g., Eq. (7)]. Since the momentum relaxation
time typically cannot be varied to a large extent (unless
extremely low temperatures are considered), the ideal short
circuit requires a very large number of carriers, such that it
indeed can be treated as a reservoir in the sense of the GCE.

On a microscopic level, current and voltage fluctuations
are generated by the stochastic motion of the carriers in the

FIG. 1. Equivalent circuit with impedance Z(ω) of a real homoge-
neous conductor of resistance R. The capacitance C and inductance L
account for the presence of the contacts and for the inertia of carriers,
respectively.

conductor. For the sake of clarity of the model, we assume
a homogeneous conductor with length L the in x direction,
cross section A, and with the length much smaller than the
transverse dimension. The link between the microscopic and
the macroscopic picture is provided by the Ramo-Shockley
theorem [8,9], which for our geometry reads

d

dt
V (t) = L

ε0εrA

[
N (t)q

L
vd (t) − I (t)

]
, (5)

where ε0 and εr are the vacuum and the relative dielectric
constant of the host lattice material, respectively, and

vd (t) = 1

N (t)

∑
i

vi,x(t) = 1

N (t)

∑
k

vk,xnk(t) (6)

is the instantaneous drift velocity in the x direction of the
N (t) carriers with charge q and effective mass m moving with
velocities vi(t) in the conductor, the second form being written
in terms of the fluctuating occupation number of carriers nk(t)
in the state k with the velocity component vk,x in this state,
which explicitly accounts for the indistinguishability of the
carriers. Extensions of the theorem to more general boundary
conditions and quantum-mechanical currents can be found in
Refs. [10,11]. We notice that under voltage noise operation
(CE), N (t) = N , with N the fixed number of carriers inside
the conductor, and for average quantities the usual assumption
N = N is well justified [7]. This microscopic model indeed
leads to the equivalent circuit shown in Fig. 1, and, using
kinetic theory and a Drude model for the carriers, its lumped
elements are related to the microscopic properties according to

R = L2m

q2Nτ
, L = L2m

q2N
, C = A

L
ε0εr , (7)

with τ being the momentum relaxation time. Note that on
the microscopic level, the different operation conditions are
reflected in different boundary conditions for the carriers. Volt-
age noise operation refers to a closed system with a fixed carrier
number, while current noise operation refers to an open system
in which carriers enter or leave the system through the contacts.

Within a correlation function scheme, the intrinsic band-
widths are directly related to the decay of the correlation
functions associated with the current and voltage fluctuations.
In the case of current noise, �fI = 1/τ = R/L is determined
by the momentum relaxation time τ or, equivalently, by the RL
time constant of the equivalent circuit. Analogously, the intrin-
sic bandwidth of voltage fluctuations �fV = 1/τd = 1/(RC)
is determined by the dielectric relaxation time τd = τ 2

p/τ

or, equivalently, by the RC time constant of the circuit. Here,
τp denotes the plasma time (i.e., the inverse of the plasma
frequency ωp),

τp = ω−1
p =

√
ε0εrmAL

Nq2
=

√
LC, (8)

which is related to the LC time constant of the circuit. We
remark that also outside the static limit (i.e., for ω �= 0)
the equivalent circuit in Fig. 1 gives the impedance (or
the admittance) whose real parts reproduce the frequency
dependence of the current and voltage spectra in the classical
limit KBT � �ω, with � being the reduced Planck constant.
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These spectra are associated with the microscopic time scales
of the corresponding correlation functions, as was validated
by Monte Carlo simulations [12]. Furthermore, the equivalent
circuit consistently recovers the standard relations

V 2 = KBT

C and I 2 = KBT

L , (9)

which in this form are valid for any type of inductance and
capacitance in a circuit, as given in Fig. 1. As such, this circuit
is of the highest physical importance, and it should replace
alternative equivalent circuits (such as, e.g., simple RC parallel
and RLC serial circuits), which are also sometimes used in
the literature.

Making use of statistics, the temperature can be associated
with the microscopic quantities defining two noise sources
that are present in the conductor, one for each operation
condition. These sources should be taken as mutually exclusive
for each of the two boundary conditions. Accordingly, a
constant-voltage (i.e., current noise) operation is associated
with a GCE reflecting the open system in which [13]

δN2 = KBT
∂N

∂μ0
. (10)

Here, δN2 is the variance of the instantaneous number of
carriers inside the sample, and μ0 is the chemical potential.
A constant-current (i.e., voltage noise) operation, on the other
hand, is associated with a CE with a fixed carrier number
(N = N ) and

δv2
d = 1

N2

∑
k

v2
k,x δf 2(εk), (11)

where δv2
d is the variance of the fluctuations of the in-

stantaneous carrier drift velocity averaged over the sample,
vk,x = �kx/m is the x component of its velocity, εk is the

corresponding energy, δf 2(εk) = n2
k − n2

k is the variance of
the occupation number, and f (εk) = nk is the equilibrium
distribution function normalized to the carrier number, which,
according to statistics, satisfies the property

δf 2(εk) = −KBT
∂f (εk)

∂εk
. (12)

Using the symmetry of the problem, v2
k,x can be replaced by

(2εk/md), where d denotes the dimension of the system. With
the density of states of a d-dimensional carrier gas satisfying
D(ε) ∝ ε(d/2)−1, Eq. (11) can be evaluated to

δv2
d = KBT

m N
, (13)

independent of the dimension d. We remark that since these
noise sources are directly obtained from the properties of
the statistical ensembles, they hold for carriers obeying any
type of statistics, in particular for Fermi-Dirac (FD) and
Bose-Einstein (BE) statistics, but also for carriers obeying
a fractional exclusion statistics (FES) [14,15]. In all cases,
Maxwell-Boltzmann (MB) statistics is implicitly recovered in
the limit f � 1.

By using Eq. (10) to replace the temperature in Eq. (3), the
current fluctuations can be expressed as

I 2 = G

τ
δN2

∂μ0

∂N
. (14)

By taking G from the generalized Einstein relation [16],

G =
(

q

L

)2

D
∂N

∂μ0
, (15)

where

D = v2′
x τ (16)

is the longitudinal-diffusion coefficient [16] with the dif-
ferential (with respect to carrier number) quadratic velocity
component along the x direction given by

v2′
x =

∑
k

v2
k,x

∂f (εk)

∂N

=
∑

k

v2
k,x

∂f (εk)

∂μ0

∂μ0

∂N
= KBT

m

N

δN2
, (17)

where the last equality, obtained in the same way as Eq. (13),
follows from Eq. (11) and additionally using Eq. (10).
Notice the explicit appearance of the Fano factor, δN2/N ,
to account for the effective interaction among carriers due to
the symmetry properties of their wave functions and thus for
the correct statistics.

Then, Eq. (14) takes the equivalent forms

I 2 = KBT

L = q2v2′
x δN2

L2
= q2δN2

τ 2
N

, (18)

with τN =
√

L2/ v2′
x being an effective transport time through

the sample [17] determining the conversion of total-number
fluctuations of carriers inside the sample into total-current
fluctuations measured in the external short circuit.

For the variance of voltage fluctuations, substitution of
Eq. (13) into Eq. (4) gives the equivalent expressions

V 2 = KBT

C = mNLδv2
d

Aε0εr

= m2L2δv2
d

q2τ 2
p

(19)

with the plasma time τp given in Eq. (8). Introducing the
variance of electric-field fluctuations averaged over the sample
length δE2 = δV 2/L2 and the plasma carrier mobility μp =
qτp/m, Eq. (19) can be written in terms of a generalized Ohm’s
law,

δv2
d = μ2

p δE2, (20)

describing the conversion of carrier drift-velocity fluctuations
inside the sample into electric field (or voltage) fluctuations at
the terminals of the open circuit.

By using Eqs. (3) and (10), the macroscopic conductance
is associated with carrier total-number fluctuations by

G = q2v2′
x τ

L2KBT
δN2. (21)
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Analogously, using Eqs. (4) and (13), the macroscopic resis-
tance is associated with drift-velocity fluctuations by

R = L2m2

q2τKBT
δv2

d . (22)

From a microscopic point of view, Eqs. (2), (21), and (22)
imply that the noise sources satisfy the relations

GR = v2′
x δN2m2δv2

d

(KBT )2
= v2′

x

δv2
d

δN2

N2
= 1 (23)

and thus

δN2 v2′
x = N2 δv2

d = NKBT

m
, (24)

where again Eq. (13) has been used to eliminate the tempera-
ture in Eq. (23).

Equations (23) and (24) express the reciprocity and duality
properties of the microscopic noise sources associated with the
fluctuation-dissipation relations. In other words, at thermody-
namic equilibrium, carrier total-number fluctuations inside a
conductor under constant-voltage conditions are interrelated
with carrier drift-velocity fluctuations under constant-current
conditions.

The dual property of the macroscopic FDTs is obtained
from Eqs. (18), (19), and (24) as

I 2 = G2
p V 2 and V 2 = R2

p I 2 (25)

with a plasma conductance Gp = (qNμp)/L2 and a plasma
resistance Rp satisfying the reciprocity relation

GpRp = 1. (26)

By satisfying the relations (3) and (4), the expressions (25)
and (26) justify the identification of the intrinsic bandwidths
assumed here.

Equations (25) and (26) express the duality and reciprocity
properties of fluctuation-dissipation relations and parallels
Eqs. (1) and (2) of linear-response relations. Notice that all
the above expressions hold for any type of statistics (in the
case of bosons for temperatures above the critical temperature
for Bose-Einstein condensation [18]), thus complementing the
standard FDT in the limit of low frequencies. From statistics,
the two boundary conditions are associated with a GCE and
a CE, respectively, and Eq. (24) shows the interesting results
that both statistics provide the same result even outside the
thermodynamic limit conditions [7].

III. CONCLUSIONS

We have formulated the dual property and the reciprocity
relation of the FDTs in the limit of low frequency by expressing
conductance and resistance in terms of the proper microscopic

noise source, which we call the dissipation-fluctuation rela-
tions. Analogously, by accounting for the intrinsic bandwidth,
the variances of current and voltage fluctuations are related to
the same noise sources, which are usually called the fluctuation
dissipation relations. All these relations are given in a form
that is independent of the type of distribution functions, thus
including MB, FD, and BE statistics (the latter at temperatures
above Bose-Einstein condensation) as well as FES. From a
physical point of view, the temperature entering the Nyquist
relations (3) and (4) is expressed here in kinetic terms and
associated with the variance of instantaneous fluctuations (i)
of the total number of carriers inside the sample, or (ii) of
the carrier drift velocity inside the sample. Calculations are
carried out in the framework of the GCE and the CE, and
the result summarized in Eq. (24) provides an interesting
example in which both ensembles give the same result even
outside the thermodynamic limit.

While thermal noise and shot noise are typically described
as different noise phenomena, one originating from the
thermal agitation of the carriers [2,3] and the other from
the discreteness of the charge [19–21], our results clearly
indicate the close relationship between both of them. Indeed,
by expressing current fluctuations in terms of the ratio between
the variance of carrier number fluctuations and the effective
transport time τN , we show that the source of the shot noise is
already present at thermal equilibrium [22].

The present formulation shows that for fermions, the
vanishing of the low-frequency current spectral density at
T → 0 is associated with the vanishing of the variance of
carrier total-number fluctuations, i.e., with the instantaneous
correlation (coherence) between the appearance and disap-
pearance of an elemental carrier number fluctuation inside the
sample as dictated by the Pauli principle. This is essential
because for fermions the value of the diffusion coefficient
[Eq. (16)] does not vanish at T → 0, and thus the notion
of diffusion being synonymous with noise fails completely.
In contrast, for the classical case the absence of motion at
T = 0, i.e., D = 0 and τN → ∞, is definitely responsible for
the vanishing of current noise.

For the case of voltage fluctuations, the vanishing of thermal
noise at T → 0 is associated with the tendency of the drift-
velocity fluctuations to approach zero, which is a property
independent of the kind of statistics.

As a final remark, we notice that the equivalent circuit intro-
duced herein reproduces the correct frequency dependence of
both current and voltage spectral densities, the latter including
the plasmonic contribution in the case τd � τ [12]. We want
to stress that the time scales of the fluctuating macroscopic
variables are generally not related to those of the respective
noise sources. Instead, they should be treated in the framework
of the time or frequency dependence of the corresponding
correlation functions or spectral densities.
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[19] W. Schottky, Über spontane stromschwankungen in ver-
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