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We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian
with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in
quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin
configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite
value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the
ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest
Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical
transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional
systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of
the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the
original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data.
Implications on postprocessing of quantum annealing on a noisy device are discussed.
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I. INTRODUCTION

Quantum annealing [1–8] is the quantum-mechanical coun-
terpart of simulated annealing [9], an optimization method
used to find the ground state of, e.g., an Ising model. Because
combinatorial optimization problems can be formulated as
the ground-state search of an Ising model [10], typically
with spin-glass-like complex interactions, the development
of efficient methods to solve these computationally hard
problems is an important target of current research activities.
Quantum annealing has attracted a great deal of attention in
recent years partly due to the introduction of its hardware
implementation, the D-Wave quantum annealer [11]. Evidence
has been provided that the machine indeed runs quantum
mechanically [11–21]; however, there remain open questions
before the device becomes practically useful. One of the
problems is the control error, i.e., imperfections in the setting
of parameter values of the Ising Hamiltonian in the device
[22,23]. Because it is difficult to set the parameter values
(interactions and local fields of the Hamiltonian) with a
high precision, the device might be attempting to find the
ground state of the wrong Hamiltonian, thus compromising
the reliability of the final output. This phenomenon arises in
any analog device like the D-Wave quantum annealer and it is
crucial to devise and implement ingenious methods to mitigate
the influence of control errors. One approach is quantum error
correction [24–28], however, at the cost of decreasing the
number of available logical qubits.

A closely related problem has been analyzed in the context
of classical error-correcting codes, in which a message is
encoded and then transmitted through a noisy channel. The
receiver has to correct errors in the received noisy signal and
retrieve the original message. It is known that a certain type of
error-correcting codes can be formulated in terms of the theory
of spin glasses [29,30]. In this formulation, the task to retrieve
the original message is translated to the inference of the ground

state of an Ising model with uniform ferromagnetic interactions
using only the information of a spin-glass Hamiltonian
derived from the original ferromagnetic Hamiltonian by the
application of noise to the interactions. It has been shown
numerically [31], as well as analytically [32–34], that the best
performance to retrieve the ferromagnetic ground state from
the spin-glass Hamiltonian is achieved at a finite temperature
rather than at zero temperature, since the Hamming distance
of the retrieved spin configuration to the true ground state is
a nonmonotonic function of the temperature. In fact, recent
experiments on the D-Wave quantum annealer [35] study the
trivial ferromagnetic case and illustrate that decoding is more
efficient at finite temperature.

In the present paper we generalize the above formula-
tion for error-correcting codes to the situation where the
original (noiseless) Hamiltonian already has randomness in
the interactions, i.e., a spin-glass Hamiltonian. The random
interactions are then disturbed by (Gaussian) noise, and the
task is to find a spin configuration closest to the ground state
of the original Hamiltonian using only the Hamiltonian with
disturbed interactions. One of the important motivations to
study such a problem lies in the noise-mitigation task of analog
devices as explained above: One is faced with the problem to
infer the correct ground state of a Hamiltonian with random
interactions out of data produced from the Hamiltonian with
noise in addition to the original random interactions. Because it
is very difficult to develop a general theory for this situation as
was done for error-correcting codes [30,32], we use numerical
methods for one- and two-dimensional models supplemented
by a mean-field-type approach. Our result shows clearly that
the original ground state is better inferred at finite temperature
rather than at zero temperature. Therefore, tuning the D-Wave
quantum annealer to the optimal decoding temperature might
actually assist in mitigating the effects of analog noise in the
device.
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The paper is organized is as follows. In Sec. II, we
formulate the problem. The results of numerical calculations
are described in Sec. III. An analysis using mean-field theory
is given in Sec. IV, followed by concluding remarks in Sec. V.
Technical details are delegated to the Appendix.

II. FORMULATION OF THE PROBLEM

The goal is to infer the original ground state of a
Hamiltonian whose interactions Ji1,...,ip follow a Gaussian
distribution and are disturbed by noise, Ji1,...,ip → J̃i1,...,ip .
We write the original spin-glass Hamiltonian with general
many-body interactions as

H (S) = −
∑

i1,...,ip

Ji1,...,ipSi1 · · · Sip , (1)

where S(= S1,S2, . . . ,SN ) is the set of Ising spins, i.e.,
Si ∈ {±1}. The original interactions Ji1,...,ip are generated
from a Gaussian distribution P (Ji1,...,ip ) with mean unity
and variance σ 2. The ground state of this Hamiltonian is
given by the sign of the zero-temperature limit of the thermal
expectation value, i.e.,

S (0)
i = lim

β0→∞
sgn〈Si〉β0

= lim
β0→∞

sgn

(
TrS Si exp [−β0H (S)]

TrS exp [−β0H (S)]

)
. (2)

We next introduce disturbed interactions J̃i1,...,ip by adding a
noise term ξi1,...,ip to the original interactions,

J̃i1,...,ip ≡ Ji1,...,ip + ξi1,...,ip . (3)

The variables ξi1,...,ip are distributed according to a Gaussian
distribution P (ξi1,...,ip ) with zero mean and variance γ 2. The
problem is to find a spin configuration closest to the ground
state of the original Hamiltonian Eq. (1) from the noisy
Hamiltonian, Eq. (5) below, at finite temperature T or the
inverse temperature β = 1/T ,

S (β)
i = sgn〈Si〉β = sgn

(
TrS Si exp [−βH̃ (S)]

TrS exp [−βH̃ (S)]

)
, (4)

where

H̃ (S) = −
∑

i1,...,ip

J̃i1,...,ipSi1 · · · Sip (5)

represents the Hamiltonian with the added noise. Notice that
we are interested only in the sign of the spin average, not the
magnitude, as indicated in Eq. (4). As a measure of similarity
between the ground state of the original Hamiltonian and the
spin configuration of the noisy system, we define the overlap
M(T ) as

M(T ) =
∫ ∏

dJP (J )
∫ ∏

dξP (ξ )S (0)
i S (β)

i , (6)

where the products run over the set of interactions. The
overlap M(T ) is closely related to the average Hamming
distance D(T ),

D(T ) =
∫ ∏

dJP (J )
∫ ∏

dξP (ξ )
N∑

i=1

(
S (0)

i − S (β)
i

)2

4

(7)

by the relation

D(T ) = N

2
(1 − M(T )). (8)

A large overlap M(T ) means a small Hamming distance. The
Hamming distance is a standard measure of the quality of
error-correcting codes [30], and we adopt it as the quantity to
be minimized [or the overlap M(T ) to be maximized] in the
present paper.

Optimal decoding occurs at the point where M(T ) has a
maximum. Here we analyze how this maximum depends on
the strength of the disorder γ .

When σ = 0, the Hamiltonian in Eq. (1) represents the
ferromagnetic Ising model. Then, S (0)

i = 1 for all i (or
maybe S (0)

i = −1 ∀i), and the overlap M(T ) is identical to
that of error-correcting codes with all original bits being
unity [30]. It is known in this case that the overlap in Eq. (6)
takes a maximum value at TN = γ 2, the so-called Nishimori
temperature [30–34]. It is difficult to apply the same theory to
the case where σ 	= 0 due to the lack of proper symmetry. We
therefore use numerical methods in the following section to
study the behavior of the disordered system.

III. NUMERICAL ANALYSIS

Following Ref. [31], we apply the numerical transfer-matrix
method to a triangular ladder with two- and three-body
interactions, as depicted in Fig. 1, using free boundary
conditions,

H = −
N−2∑
i=1

(
J

(1)
i SiSi+1Si+2 + J

(2)
i SiSi+2

)
. (9)

Furthermore, we study a quasi-two-dimensional system with
triangular ladders stacked on top of each other as depicted in
Fig. 2 using the transfer-matrix method.

The overlap for finite-size systems

M(T ) = 1

N

N∑
i=1

S (0)
i S (β)

i (10)

is calculated for these lattices with the ground-state configu-
ration S (0)

i determined by the Viterbi algorithm [36], which
is a zero-temperature transfer-matrix method. We take the
configurational average over the distributions of the original
interactions and noise by sampling 400 disorder realizations.
The number of spins is N = 105 for the ladder and N = LM

with L = 103 and M = 10 for stacked ladders. The standard
deviations of the original interactions are chosen to be σ = 1.0,
1.4, 2.0, and 3.0. For each value of σ , we apply noise with a

FIG. 1. Ising spin glass on the triangular ladder.
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FIG. 2. Ising spin glass on a stacked triangular ladder.

typical strength of γ = 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0, 1.25, 1.5, and 2.0, respectively.

Figure 3 shows typical results for triangular and stacked
ladders for several pairs of σ and γ . The ordinate is the overlap
M(T ) and the abscissa is the temperature T . The mean of the
overlap is indicated by the red solid line, and the shaded area
denotes the standard deviation. We observe a clear peak at finite
temperature in each panel. Similar results were found for all
pairs of σ and γ . These results clearly show that the ground
state of the original Hamiltonian can be inferred with higher
probability from data generated by the noisy Hamiltonian at
finite temperature than at zero temperature.

Figure 4 shows the optimal temperature Topt for decoding,
i.e., the peak position of M(T ), as a function of γ for each
fixed value of σ . The green curve is the optimal temperature
for σ = 0 (TN = γ 2). The data indicate that the naive relation
Topt = γ 2 for σ = 0 does not hold when σ > 0. The functional
form of Topt(γ ) thus depends on the lattice structure, unlike the
case of σ = 0.

IV. MEAN-FIELD ANALYSIS

Because it is difficult to develop a generic theory to derive
Topt(γ ) for the noisy case when σ > 0, we use mean-field
theory to understand its behavior qualitatively. The original
Hamiltonian is chosen to be the Sherrington-Kirkpatrick (SK)
fully connected Ising spin glass [37],

HSK(S) = −
∑
i<j

JijSiSj , (11)

where the sum runs over all distinct pairs of spins. The
interactions are drawn from a Gaussian distribution

P (Jij ) = 1

σ

√
N

2π
exp

{
− N

2σ 2

(
Jij − J0

N

)2}
, (12)

FIG. 3. Mean of the overlap M(T ) and its standard deviation as functions of the temperature T : data for the ladder (a) for σ = 1 and
γ = 0.5 and (b) for σ = 2 and γ = 0.4; data for the stacked ladder (c) for σ = 1 and γ = 0.5 and (d) for σ = 2 and γ = 0.4.
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FIG. 4. Optimal decoding temperature Topt as a function of the standard deviation of the noise γ . The green solid curve in each panel
represents the optimal temperature for σ = 0 (TN = γ 2) and the green dashed line shows the result of the mean-field analysis (σ 2 + γ 2).
(a) σ = 1, (b) σ = 1.4, (c) σ = 2, and (d) σ = 3.

where J0 represents the mean of the distribution and σ 2 its
variance. The Hamiltonian with noise is given by

H̃SK(τ ) = −
∑
i<j

J̃ij τiτj , (τi = ±1), (13)

where the interactions are affected by noise via

J̃ij = Jij + ξij . (14)

As before, the noise follows a Gaussian distribution with
variance γ 2,

P (ξij ) = 1

γ

√
N

2π
exp

(
− N

2γ 2
ξ 2
ij

)
. (15)

The overlap is

M(T ) = lim
β0→∞

[sgn 〈Si〉β0
sgn 〈τi〉β], (16)

where the square brackets denote the configurational average
over the distributions of interactions and noise,∫ ∏

i<j

dJij dξijP (Jij )P (ξij )(· · · ) ≡ [· · · ]. (17)

The angular brackets represent the thermal average with
respect to each Hamiltonian:

〈Si〉β0
= TrS Si exp [−β0H (S)]

TrS exp [−β0H (S)]
,

(18)

〈τi〉β = Trτ τi exp [−βH̃ (τ )]

Trτ exp [−βH̃ (τ )]
.

We assume β0 to be finite in the course of the calculations
and take the limit β0 → ∞ at the end. Our goal is to identify
the temperature that maximizes the overlap. As detailed in
the Appendix, the free energy per spin is calculated under the
ansatz of replica symmetry as

−[f ] = σ 2β2
0

4
q2

0 + (σ 2 + γ 2)β2

4
q2 − J0β0

2
m0

2 − J0β

2
m2

+ σ 2β2
0

4
+ (σ 2 + γ 2)β2

4
− σ 2β2

0

2
q0 − (σ 2+γ 2)β2q

2

+
∫

Dz0 ln(2 cosh H1(z0))

+
∫

Dz ln(2 cosh H2(z)), (19)
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where

H1(z0) =
√

σ 2β2
0q0 z0 + J0β0m0, (20)

H2(z0) =
√

(σ 2 + γ 2)β2q z0 + J0βm. (21)

The self-consistent equations for the order parameters read

m0 =
∫

Dz0 tanh H1(z0) = [〈Si〉β0 ],

m =
∫

Dz tanh H2(z) = [〈τi〉β],

(22)

q0 =
∫

Dz0 tanh2 H1(z0) = [〈Si〉2
β0

]
,

q =
∫

Dz tanh2 H2(z) = [〈τi〉2
β

]
.

As shown in the Appendix, the two systems defined in
Eqs. (11) and (13) decouple in the replica symmetric solution,
and we obtain

M(T ) = lim
β0→∞

[sgn 〈Si〉β0
sgn 〈τi〉β]

= lim
β0→∞

[sgn〈Si〉β0 ]σ 2 [sgn〈τi〉β]σ 2+γ 2 , (23)

where the subscript in the outer square brackets in the second
line denotes the variance of the distribution of randomness.
Since the first factor,

lim
β0→∞

[sgn 〈Si〉β0
]σ 2 , (24)

is independent of β, only the second factor,

[sgn〈τi〉β]σ 2+γ 2 , (25)

determines the temperature dependence of M(T ). The lat-
ter is nothing but the well-established case of vanishing
original variance [30–34] because the expression involves
a single system with noise. Therefore, we reach the con-
clusion that the overlap takes a maximum value at the
temperature

Topt = σ 2 + γ 2. (26)

This result is naturally consistent with the case of vanishing
original variance σ = 0, i.e., TN = γ 2.

The green dashed line depicted in Fig. 4 shows the
mean-field prediction Topt = σ 2 + γ 2. The numerical data
agree relatively satisfactorily with the mean-field prediction
for small σ and large γ . The finite value of Topt at γ = 0
should be an artifact of the replica symmetric solution because
the limit γ = 0 represents the noiseless case, where the original
and the noisy Hamiltonians coincide, and thus T = 0 should
give the best result.

V. CONCLUSION

We have examined the effects of noise added to the
interactions of an Ising spin-glass Hamiltonian. The goal is to
infer the ground state of the original Ising Hamiltonian using
only the output from the system with noisy interactions. The
spin configuration of the latter system at finite temperature has
been compared with the ground state of the original system.

It has been shown from numerical transfer-matrix calculations
that the overlap of two spin configurations has a maximum
at a finite temperature, thus giving the smallest Hamming
distance. This means that the ground state of the original
Hamiltonian is better inferred at finite temperature than at
the ground state of the noisy system. An intuitive explanation
of this result would be that the unperturbed ground state
is an excited state of the noisy system. Therefore, a finite
temperature that corresponds to the excitation energy might
increase the chances to find the ground state of the original
problem Hamiltonian. Nevertheless, the original ground state
is just one of very many states to be realized at a specific
finite temperature for the noisy system and our result is quite
nontrivial.

A similar phenomenon has been known to exist for years
for the case of uniform ferromagnetic interactions in the
original Hamiltonian under the context of error-correcting
codes [30–35]. The present work generalizes this old result
to the case with randomness already in the original model.
Although the former case of uniform original interactions has
been able to be treated analytically with full generality in the
sense that there is no restriction on the type of lattice or the
range of interactions [30,32–34], it is difficult to develop a
comparable analytical theory for the present case because of
the difference in symmetries. We therefore used the numerical
transfer-matrix method and a mean-field analysis. It is an
important direction of further research to establish analytical
results under general conditions for the case with random
original interactions. In particular, it would be very useful
to derive an explicit analytical expression for the optimal
temperature that is applicable beyond mean-field theory.

Finiteness of the optimal temperature implies an important
lesson for data analysis (postprocessing) of a real quantum
annealer. Because any device operates at finite temperature,
it is always a serious problem to keep temperature effects
under control. However, our result suggests that thermal noise
may be positively used to infer the ground state of the
original Hamiltonian when the interactions are disturbed by
noise. For example, if the original Hamiltonian has uniformly
ferromagnetic interactions, the optimal temperature is given
as

TN = J0

(
γ

J0

)2

, (27)

where J0 is the original uniform interaction and γ 2 is the
variance of noise. Notice that we set J0 = 1 in Sec. II. If
we insert the values roughly corresponding to those for the
D-Wave machine, J0 = 5 GHz and γ /J0 = 0.1, the latter
representing the standard deviation of control errors, the
optimal temperature turns out to be approximately 2 mK.
The operating temperature of the D-Wave machine is ap-
proximately 20 mK and, therefore, much higher than this
theoretical optimal temperature. It should nevertheless be
remarked that the numbers would easily change if the original
interactions are random, if the real control errors are larger than
γ /J0 = 0.1, or if the noise is distributed according to a another
distribution (e.g., 1/f or pink noise). It has indeed been shown
in our numerical calculations that the optimal temperature for
random original interactions is much higher than TN as seen in
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Fig. 4. It is, however, noteworthy that our theoretical estimate
is not much different than the real operating temperature of
the device. Therefore, it would be interesting to verify these
theoretical predictions on the actual D-Wave 2X device for
nontrivial spin-glass problems complementing previous results
on the trivial ferromagnetic case [35].

We have chosen the overlap M(T ) as the measure of better
inference of the ground state. This means to minimize the
Hamming distance to the true ground state, which is the
standard in error-correcting codes [30]. This measure is also
useful in other circumstances including the spin-glass problem,
where the spin configuration of the ground state is of as
much interest as the ground-state energy. In the context of
combinatorial optimization problems, however, it is often the
case that the energy is a prime measure of performance. It is
useful to remember here that a smaller Hamming distance
to the ground state does not necessarily mean a smaller
energy [27]. It may then happen that our present result does
not apply as is, if it is desirable to minimize the energy, not to
minimize the Hamming distance. This turns out to be a highly
nontrivial problem and will be discussed in a forthcoming
paper. It is also interesting to see how our conclusion would
change if quantum effects are taken into account explicitly.
We are studying this problem and results will be announced
before too long.
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APPENDIX: REPLICA-SYMMETRIC SOLUTION

In this Appendix, we explain the derivation of the
replica-symmetric solution of the mean-field model discussed
in Sec. IV. The calculation follows the standard modus
operandi, but with two independent systems sharing part of
the random interactions.

The configurational average of the nth power of the partition
function is

[Zn] =
∫ ∏

i<j

dJij dξijP (Jij )P (ξij )

× Tr exp

⎧⎨
⎩

∑
i<j

n∑
α=1

(
β0JijS

α
i Sα

j + β(Jij + ξij )τα
i τ α

j

)⎫⎬⎭

= Tr
∫ ⎛

⎝∏
i<j

dJij dξij

⎞
⎠ exp

⎧⎨
⎩

∑
i<j

⎛
⎝β0Jij

n∑
α=1

Sα
i Sα

j

+β(Jij + ξij )
n∑

α=1

τα
i τ α

j

− N

2σ 2

(
Jij − J0

N

)2

− N

2γ 2
ξ 2
ij + ln

(
1

σγ

N

2π

)⎞
⎠

⎫⎬
⎭.

(A1)

The standard mean-field calculation [30] leads to

−[f ] = lim
n→0

⎛
⎝−σ 2β2

0

4n

∑
α 	=β

q0
αβ

2 − (σ 2 + γ 2)β2

4n

×
∑
α 	=β

qαβ
2 − σ 2β0β

2n

∑
αβ

uαβ
2

− J0β0

2n

∑
α

m0
α

2 − J0β

2n

∑
α

mα
2

+ σ 2β2
0

4
+ (σ 2 + γ 2)β2

4
+ 1

n
ln TreL

⎞
⎠, (A2)

where

L ≡ σ 2β2
0

∑
α<β

q0
αβSαSβ + (σ 2 + γ 2)β2

∑
α<β

qαβτατβ

+ σ 2β0β
∑
αβ

uαβSατβ

+ J0β0

∑
α

m0
αSα + J0β

∑
α

mατα. (A3)

The order parameters in [f ] are determined by the saddle-point
conditions

q0
αβ = 〈SαSβ〉L = [ 〈

Sα
i

〉
β0

〈
S

β

i

〉
β0

]
qαβ = 〈τατβ〉L = [ 〈

τα
i

〉
β

〈
τ

β

i

〉
β

]
m0

α = 〈Sα〉L = [ 〈
Sα

i

〉
β0

]
(A4)

mα = 〈τα〉L = [ 〈
τα
i

〉
β

]
uαβ = 〈Sατβ〉L = [ 〈

Sα
i

〉
β0

〈
τ

β

i

〉
β

]
,

where

〈· · ·〉L ≡ Tr(· · · )eL

TreL
. (A5)

If we assume the replica-symmetric ansatz [30], this free
energy can be rewritten as follows:

−[f ] = lim
n→0

(
−σ 2β2

0

4n
(n2 − n)q2

0 − (σ 2 + γ 2)β2

4n
(n2 − n)q2

− σ 2β0β

2n
n2u2 − J0β0

2n
nm0

2 − J0β

2n
nm2

+ σ 2β2
0

4
+ (σ 2 + γ 2)β2

4
+ 1

n
ln TreL0

)
, (A6)
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where L0 represents L under the replica-symmetric ansatz. The explicit form of ln TreL0 is [38]

ln TreL0 = ln Tr exp

⎧⎨
⎩σ 2β2

0q0

∑
α<β

SαSβ + (σ 2 + γ 2)β2q
∑
α<β

τατβ

+ σ 2β0βu

(∑
α

Sα

)⎛
⎝∑

β

τβ

⎞
⎠ + J0β0m0

∑
α

Sα + J0βm
∑

α

τα

⎫⎬
⎭

= n

(∫
Dz0DzDw ln [2 cosh H1(z0,w)2 cosh H2(z,w)] − f̃

)
+ O(n2), (A7)

where

H1(z0,w) = √
az0 + √

cw + d, H2(z,w) =
√

bz + √
cw + e, (A8)

and

a = σ 2β2
0q0 − σ 2β0βu

b = (σ 2 + γ 2)β2q − σ 2β0βu

c = σ 2β0βu
(A9)

d = J0β0m0

e = J0βm

f̃ = σ 2β2
0q0

2
+ (σ 2 + γ 2)β2q

2
.

Therefore, the free energy after taking the limit n → 0 is

−[f ] = σ 2β2
0

4
q2

0 + (σ 2 + γ 2)β2

4
q2 − J0β0

2
m0

2 − J0β

2
m2 + σ 2β2

0

4
+ (σ 2 + γ 2)β2

4

+
∫

Dz0Dw ln(2 cosh H1(z0,w)) +
∫

DzDw ln(2 cosh H2(z,w)) − f̃ . (A10)

This result reduces to Eq. (19) because the w dependence of H1 and H2 disappears as explained below. It turns out the averaged
free energy does not depend on u, as can be verified by direct computations:

−∂[f ]

∂u
= 0. (A11)

We can therefore choose u = 0 without loss of generality. This implies that the original and noisy systems decouple completely
because u is the parameter that connects these two systems as seen in Eq. (A3). When u = 0, c = 0 according to Eq. (A9) and
hence the w dependence of H1(z0,w) and H2(z,w) disappears as can be seen in Eq. (A8).
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