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The average energy needed to create a magnon is high in ferromagnetic metals due to the high-strength spin
stiffness, which results in strong quantization effects that could be important even at thousands of degrees. To
take into account quantum statistics at such high temperatures, the associated effects of anharmonicity of the
spin vibrations must be taken into account. In addition to the complex nature of such effects, anharmonicity
also affects the occupation of the density of state of the vibration states in the context of quantum statistics.
Thus, an unoccupied vibration state might become occupied when its spring stiffness is substantially reduced
with anharmonicity. Combined effects of quantum statistics and anharmonicity are expected. In this regard, the
thermodynamics of ferromagnetic metals are investigated in this paper through the example of bcc iron between
10 and 1400 K. Theoretical analysis and spin-lattice dynamic simulations are performed, through which the
physics behind the complex and dramatic temperature dependence of the thermodynamic functions of bcc iron
is understood.
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I. INTRODUCTION

Vibrational thermodynamics is important to properties of
magnetic materials, particularly for high-temperature appli-
cations. Yet, dynamic modeling of the coupled spin-lattice
system is challenged on the one hand by the strongly
amplitude-dependent restoring forces of the spin vibrations,
and on the other by the coupling between the spin and lattice
vibrations via the exchange interaction. Both issues require
treatment of anharmonic effects beyond well-developed
methodologies based on the statistical mechanics of harmonic
oscillators [1,2].

In most existent calculations, effects due to such compli-
cations have to be neglected, limiting their applicability to
the low-temperature regime. Thus, Sabiryanov and Jaswal [3]
carried out first-principle studies under the static assumption
of frozen phonon and frozen magnon within the harmonic
approximation in bcc and fcc iron. Körmann and coauthors [4]
performed ab initio calculations on bcc iron, and estimated
the magnetic, electronic, and vibrational contributions to the
Helmholtz free energy also within the harmonic approxi-
mation. The calculation did not reproduce the characteristic
peak of the specific heat at the Curie temperature [5,6]. A
more recent study by Lavrentiev et al. [7] based on magnetic
cluster expansion took the local magnetic order into account.
However, the authors were cautious about the accuracy of the
calculation near the Curie temperature TC because of the im-
proper way anharmonicity of the spin vibrations was treated in
the calculation. Besides anharmonicity, the limited sample size
and the restricted phase space in these calculations may also
distort boundary conditions and frustrate studies in which lat-
tice periodicity is broken, and where long-range interactions,
correlated dynamics, critical phenomena, etc., are important.

To address the concerns of anharmonicity and sample size,
Ma, Woo, and Dudarev (MWD) [8] initiated the development
of large-scale spin-lattice dynamics (SLD) simulations.

*enchwoo@polyu.edu.hk

Thermodynamics is treated by applying classical statistical
mechanics to the anharmonic mechanical system, in a way
similar to conventional large-scale molecular dynamics (MD)
models [9].

The use of classical statistics where quantization is sig-
nificant has led to errors of epic consequences no less than
the well-known ultraviolet catastrophe in blackbody radiation.
In MD simulations where only vibrations of the atoms are
involved, the average energy to excite a phonon is ∼30 meV,
and classical statistics is sufficiently accurate above the Debye
temperature [10]. However, no matter whether it is based
on experimental spin stiffness [11] or on calculated magnon
density of states [12], the average energy needed to create a
magnon, e.g., in bcc iron, could be an order of magnitude
larger. Thus, quantization effects for spin vibrations would be
significant even at thousands of degrees and have to be taken
into account. Indeed, by comparing the predictions of classical
statistics in MWD with the observed behavior of the vibra-
tional thermodynamics of ferromagnetic metals, deep-seated
inconsistencies can be discerned. These include nonvanishing
heat capacities and divergent entropies at 0 K which violate the
third law, as well as the strong temperature dependencies of the
internal energy and heat capacity near the Curie temperature.

The need to take into account quantum statistics at such high
temperatures, where harmonic approximation is usually inad-
equate, presents a problem in the modeling and understanding
of the thermodynamics of ferromagnetic materials. To ensure
the practicality of SLD over a useful temperature range, Woo
et al. [13] introduced a scheme in which a quantum-statistical
description of the anharmonic ferromagnetic canonical en-
semble could be formulated. The ability of the quantized SLD
(QSLD) scheme to simultaneously deal with anharmonicity
and quantum statistics facilitates elucidation of their combined
effects. Such understanding is important for the interpretation
of high-temperature thermodynamic behavior of ferromag-
netic materials.

This paper is organized as described in the following. The
theoretical background is described in Sec. II. In Sec. II A,
the formulation of QSLD is reviewed. In Sec. II B, within
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the perturbative theoretic concept of anharmonic phonons
and magnons, effects of anharmonicity and quantum statistics
are considered and their interrelation established. Simulation
details are presented in Sec. III. In Sec. IV, combined effects
of anharmonicity and quantum statistics on the vibrational
thermodynamics of bcc iron are presented and discussed by
comparing the temperature dependencies of the experimental
and calculated enthalpies, heat capacities, and entropies, from
various models. The paper is concluded in Sec. V.

II. THEORETICAL BACKGROUND

A. Langevin equations of motion for a canonical
ferromagnetic crystal

The ferromagnetic metal is modeled as a canonical ensem-
ble of interacting particles and Heisenberg spins thermally
embedded in a noisy environment at temperature T . The
corresponding spin-lattice dynamics (SLD) Hamiltonian can
be written in the form [13]

HSLD =
∑

n

p2
n

2mn

+ U ({R})

−1

2

∑
n�=m

Jnm({R})Sn · Sm + Henv, (1)

where mn, pn, and Rn, respectively, are the mass, momentum,
and position of the nth atom, and U ({R}) is the interatomic
potential (many-body) corresponding to the lattice configu-
ration {R}. Jnm({R}) is the exchange interaction function, the
magnitude of which governs the interactions between the spins
of neighboring atoms m and n, i.e., the spin stiffness. Values
of Jnm({R}) are mainly determined by the overlapping of wave
functions of the d electrons, which can be deduced from ab
initio calculations [8]. Sn is the atomic spin vector (“spins”
in the rest of the paper) of the nth atom arising from the spin
polarization of the atoms according to Hund’s rule. It is related
to the net magnetic moment by Mn = −gμB〈Sn〉, where
g(≈ 2) is the electron g factor, μB is the Bohr magneton, and
〈Sn〉 is the time-averaged atomic spin vector. Henv describes
the action of the environmental noises on the embedded lattice
and spin subsystems to maintain thermodynamic equilibrium.
We envisage that the environmental noise consists of a sum
of extrinsic and intrinsic noises, in which the former is due to
thermal fluctuations and the latter due to quantum uncertainty.
In addition, Henv is also required to enable the exchange of
energy and angular momentum, without which conservation of
the total angular momentum in HSLD prevents full relaxation
of the system. Under the noisy action of Henv, the equations
of motion of spin and lattice in Eq. (1) can be expressed in the
form [13] of Langevin equations,

dRk

dt
= ∂H SLD

∂pk

= pk

mk

, (2a)

dpk

dt
= −∂H SLD

∂Rk

= − ∂U

∂Rk

+
∑

i

∂Jik

∂Rk

(Si · Sk)

− γL

mp

pk + fk(t), (2b)

�
dSk

dt
= Sk × [Hk + hk(t)] − γSSk × (Sk × Hk), (2c)

where � is the Planck’s constant and Hk =
(gμB)−1 ∑

i Jik({Ri})Si is the effective exchange field
acting on spin k. The vibrations of spin and lattice are coupled
via the exchange interaction Jij ({Ri}), which is intrinsically
anharmonic due to the amplitude-dependent restoring
forces that drives the spin vibrations in the Heisenberg
Hamiltonian. Following Ref. [13], we assume environmental
noise that is Gaussian and that can be represented by
frequency-independent delta-correlated random forces fk(t)
on atom k defined by

〈fk(t)〉 = 0 and

〈fni(t)flj (t ′)〉 = μL(T )δnlδij δ(t − t ′), (3a)

and random field hn(t) on spin n defined by

〈hn(t)〉 = 0 and

〈hni(t)hmj (t ′)〉 = μS(T )δnmδij δ(t − t ′). (3b)

Here μL and μS are parameters characterizing the
temperature-dependent amplitudes of the random forces and
random fields to mimic the action of the noisy environment
on the atoms and the spins. Parameters γL and γS characterize
the corresponding dissipative drags on the atoms and the spins
due to the random forces. Subscripts i and j denote Cartesian
components. We also define the fluctuation-dissipation ratios
for the lattice system ηL ≡ μL/2γL and for the spin system
ηS ≡ μS/2γS , respectively.

The equilibrium phase-space probability distribution func-
tions solved from the stochastic equations Eqs. (2a)–(2c) are
functions of the fluctuation-dissipation ratios (see Ref. [13]).
On the other hand, quantum equations of motion of the cor-
responding microcanonical lattice-spin system, i.e., without
Henv, can be obtained in the Heisenberg picture by imposing
the appropriate commutation relations between the operators
representing the phase-space variables in Eqs. (2a)–(2c). A
standard quantum mechanical description of the dynamics
of the harmonic crystal can then be derived in terms of
phonons and magnons, where the issue of anharmonicity will
be considered in the following section. From the corresponding
quantum statistics, Woo et al. [13] derived expressions for
ηL (ηS), known as quantum fluctuation-dissipation relations
(QFDRs), by identifying the equilibrium energies of the
canonical and microcanonical representations of the spin-
lattice system at temperature T . Thus,

ηL(T ) =
∫ ∞

0
�ω

[
1

e�ω/kBT − 1
+ 1

2

]
gp(ω,T )dω, (4a)

and

ηS(T ) =
∫ ∞

0

�ω

e�ω/kBT − 1
gm(ω,T )dω. (4b)

We note that in Eqs. (4a) and (4b) the fluctuation forces in
ηL and ηS are, respectively, mechanical and magnetic in nature,
and are determined by different densities of states (DOS) [13],
gx(ω,T ) = 4πk2�

(2π )3 [∇kω(T )]−1, where gp and gm are for the
quasiharmonic phonons and magnons, respectively, with �

being the atomic volume. ηL and ηS are explicitly temperature
dependent. The DOS can be obtained from experiments, or
from first-principle calculations, or by using a simplified
model based on the quasiharmonic approximation, as has
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been done in Ref. [13]. It is clear that Eqs. (4a) and (4b)
reduce to the classical dissipation fluctuation theorem in the
classical limit or when temperature is sufficiently high [13],
i.e., �ω 
 kBT . When quantization is important, i.e., �ω �
kBT , the fluctuation-dissipation ratios are explicit functionals
of the DOS. This is primarily different from the classical
theory, in which the neglect of the commutation relations
leads to the quenching of all quantization effects. Indeed,
the classical theory accepts thermal excitation of all vibration
frequencies as equally probable at finite temperatures, and
excludes zero-point fluctuations due to quantum uncertainty.
In this regard, we envisage that the dissipative drag produced
by the noise due to thermal and quantum fluctuations acts in
the same way and is simply additive. We note that without
the zero-point fluctuations, the vibration energy and the
fluctuation-dissipation theorem of the lattice does not tend to
the correct classical limit dictated by the equipartition theorem.

In principle, only one of the heat baths is needed to
achieve equilibrium at the correct temperature. However,
within the present context the only channel through which
the necessary heat transfer to attain equilibrium between the
spin and lattice systems is the phonon-magnon interaction.
In classical physics, thermal excitations of lattice and spin
waves are always allowed irrespective of their frequencies,
and heat transfer between the spin and lattice systems can
occur efficiently for all temperatures. This is different quantum
mechanically because of quantization. Having to rely on
phonon-magnon interaction for heat transport to and from the
lattice system, the spin system basically can only participate
in thermodynamic processes involving the lattice via the
low-frequency magnons which can interact effectively with
the phonons. Unless the system is sufficiently close to the
Curie temperature, heat transfer to the spin system would
be very inefficient due to the lack of magnons with suitable
frequencies. The resulting demand on computation resources
due to the extra-long relaxation time and large simulation cell
dimension required to produce the low-frequency magnons can
become prohibitive. The use of separate heat baths with the
same temperature for the lattice and spin systems is a practical
way to solve this problem.

B. Quantum statistics and anharmonicity

Within the quantum mechanical representations of the
dynamics of lattice and spin vibrations in terms of phonons and
magnons, the anharmonic ferromagnetic crystal Hamiltonian
H can be formally written as the sum of a harmonic com-
ponent H h and an anharmonic correction 	a ≡ H − H h.
Represented using the complete orthonormal set of eigenstates
{|n,q〉} of H h, H can be represented in matrix form as [13]

〈m,q′|H |n,q〉 = [(n + n0)�ω0(q) + 〈n,q|	a|n,q〉]δmnδqq′

+〈m,q′|	a|n,q〉m�=n,q �=q′ , (5)

where the quantum number n is an integer (n = 0,1,2, · · · ),
ω0(q) is the unperturbed phonon (magnon) frequency, and
q is the wave vector. The ground-state energy n0�ω0(q) is
due to quantum uncertainty. For phonons derived from a
particlelike Hamiltonian, we have n0 = 1/2. For magnons
derived from the Heisenberg Hamiltonian via the Holstein-
Primakoff mapping, n0 = 0 [14]. The off-diagonal elements in

the last term account for the mixing of the phonon (magnon)
states induced by anharmonicity. According to Eq. (5),
anharmonicity changes the harmonic phonon (magnon) states
through (1) spectral-frequency shift, and (2) spectral-line
broadening (or lifetime reduction). The former is a first-order
perturbation correction, and the latter, second- and higher-
order corrections. Eigenstates |ϕk〉 of H , which we may call
anharmonic phonons (magnons), can likewise be expanded
as a linear combination of the eigenstates {|n,q〉} of Hh,
i.e., |ϕk〉 = ∑

n,q |n,q〉〈n,q |ϕk〉. The expansion coefficients
〈n,q |ϕk〉 (functions of 	a) constitute the phonon (magnon)
spectrum of |ϕk〉.

To concentrate on the physics, it is sufficient to only keep
the first-order perturbation corrections in the following dis-
cussions. The anharmonic Hamiltonian H in Eq. (5) can then
be put in the diagonal form 〈ϕk′ |H |ϕk〉 = (n + n0)�ωkδkk′ ,
where we have assumed that the perturbative correction
is independent of n. The frequency shifts from ω0(k) to
ωk represent the effect of anharmonicity on the phonon
(magnon) dispersion relation. From this point on, to simplify
nomenclature, by phonons and magnons we imply the states
described by |ϕk〉, which refer to the experimentally observable
anharmonic quantities. We also follow the common practice
and define the Hamiltonian Hh of our harmonic basis with a
spring stiffness based on the “0 K” (ground state) electronic
states associated with corresponding (0 K) crystal properties
such as elastic modulus, lattice constants, magnetization,
etc. We note that in contrast to the temperature-independent
harmonic 0 K phonons (magnons), the anharmonic ones in
general have temperature-dependent properties.

In the present discussion, anharmonicity is understood in
terms of the amplitude-dependent spring stiffness character-
izing the vibration. For lattice and spin vibrations, the spring
stiffness may generally be assumed to weaken as amplitude
increases. This is obvious for the spin vibrations because
of the cos θ dependence in the Heisenberg Hamiltonian,
and is a reasonable assumption for an anharmonic lattice to
undergo positive thermal expansion. The weakened stiffness
due to anharmonicity results in a reduced vibration frequency
and a DOS shifting towards the lower-frequency side. This
is consistent with the experimentally observed softening of
the associated dispersion relations with increasing tempera-
ture [11]. The anharmonicity-induced downshift of the DOS
has important thermodynamic consequences which we will
further discuss in the following.

In terms of the Bose-Einstein statistics, quantized lattice
and spin vibrations can now be represented. From the grand-
canonical partition function the occupation number of the k-
mode vibration state at temperature T can be derived in the
form of the Planck distribution [15],

〈nk〉T = e−�ωk/kBT

1 − e−�ωk/kBT
. (6)

To facilitate discussion, we define the “ignition” temper-
ature of state k by Tk = �ωk

kB
from the mean thermal energy

required to excite a vibration mode of frequency ωk. It
is then clear that high-frequency states have high ignition
temperatures and require high temperature for their excitation.
In terms of Tk, Eq. (6) can be rewritten approximately in the
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form

〈nk〉T ≈
{

T
Tk

− 1
2 for T � Tk

0 for T < Tk
. (7)

Equation (7) simply says that at temperature T , only states
with low ignition temperatures Tk � T are excited. Indeed, the
lower the temperature T , the smaller is the fraction of DOS
occupied. As T → 0, the DOS is empty. Using Eq. (7), the
mean energy of the state k can be written as

Ek(T ) = 〈nk + n0〉T �ωk

≈
{
kBT + (

n0 − 1
2

)
�ωk for T � Tk

n0�ωk for T < Tk
(8)

Summing up contributions from all modes, the total
vibration energy at T , i.e., 〈E〉T = ∑

k (〈nk〉T + n0)�ωk, may
be expressed approximately in the form Nfoc(T )kBT + ε0

using Eq. (8), where N is the total number of modes and
ε0 the quantum ground-state energy which vanishes in the
classical limit � → 0. In terms of the DOS g(ω; T ), one
may write foc(T ) = ∫ kT /�

0 g(ω; T )dω to represent the occupied
fraction of the DOS (i.e., ignited states) as a monotonic
increasing function of T. It is clear that as T → ∞ or � → 0
(classical limit) foc(T ) → 1 and the DOS is filled. In this
case, ε0 vanishes and the corresponding total energy in the
classical limit is 〈E〉T = NkBT which is also derivable from
the equipartition theorem. As a result of anharmonicity, the
spring stiffness is amplitude dependent and ωk is temperature
dependent. In this context, Eqs. (6)–(8) have the same form
as those within the quasiharmonic approximation [16]. At
the same time, the anharmonicity-induced downshift of the
ignition temperatures corresponding to ωk will produce an
increase in foc(T ) with the same effect as increasing T .
The temperature dependence of foc(T ) and its effect on the
vibration energy are entirely quantum in origin, the effects
of which also enter other thermodynamic functions, such as
the heat capacity, entropy, and free energy due to standard
thermodynamic relations.

We have seen from Eqs. (7) and (8) that as temperature
or anharmonicity increases, foc(T ) → 1 as the DOS is being
filled up and the difference between quantum and classical
statistics narrows. One may describe this process as dequan-
tization, and the resulting change of statistics and thermody-
namics of the system as a quantum-classical transition (QCT).
The increased occupancy of the DOS during dequantization
is directly reflected in the vibrational thermodynamics we are
investigating.

According to Eqs. (7) and (8), increasing the occupancy of
the DOS can be achieved via two different but nonexclusive
routes: (a) thermally induced by increasing temperature T ;
and (b) anharmonicity-induced downshift of the DOS [see
discussion following Eq. (5)] leading to the increase of foc(T ).
We shall distinguish the two mechanisms by referring to
(a) as thermal dequantization (TDQ) and (b) as anharmonic
dequantization (ADQ). This can be most easily understood
following the example of a Debye-type model in which
increasing the DOS occupancy can be accomplished via
temperature increase by either increasing temperature or
reducing the Debye temperature. In both cases, full occupancy
is achieved at the Debye temperature.

Due to the relatively low energy of phonon creation,
the associated quantum and classical statistics differ only at
low temperatures, i.e., below the Debye temperature, where
anharmonicity is weak. This means that quantum statistics
and anharmonicity are uncoupled, and QCT can only be
activated by TDQ. On the other hand, harmonic magnons
have high frequencies due to the strong 0 K spring stiffness
of the spin vibration. Below the Curie temperature, their
occupation of the magnon DOS is heavily suppressed. Without
anharmonicity, the spin degrees of freedom simply cannot
effectively participate in the thermodynamics of the system
below the Curie temperature (see Sec. IV). However, strong
anharmonicity arising from the Heisenberg Hamiltonian could
produce, via the softened spring stiffness and the resulting
frequency downshift, a more fully occupied magnon DOS
to allow QCT to occur via ADQ. From the foregoing, one
does not seem to be able to escape having to deal with the
coupling between quantum statistics and anharmonicity. In this
regard, anharmonicity tends to suppress quantum behavior and
enhance classical behavior by increasing the occupancy of the
DOS. Conversely, quantum statistics reduces the occupancy
of phonon (magnon) DOS and weakens anharmonicity by
reducing its perturbative contributions [see Eq. (5)].

The foregoing theory is conceptually illustrated with the
schematics in Fig. 1. In this figure, the concepts of ignition
temperature, TDQ, ADQ, the temperature variation of the oc-
cupancy of the DOS and effects due to the interaction between
the phonons and magnons are demonstrated. Nevertheless,
numerical solution of the Langevin equations of motion in
Eqs. (2a)–(2c) in a SLD scheme based on stochastic forces
derived based on quantum-statistical mechanics [13] may be
more ideal to put the theory to the test. Our results in this
regard will be reported in the following sections.

III. SIMULATION METHODOLOGY

We consider the typical case of ferromagnons in bcc iron.
The full set of SLD equations of motion in Eqs. (2a)–(2c) is
solved numerically. The nonmagnetic part of the interatomic
interaction U is derived from Ucs , the CS3-33 potential [17],

U = Ucs −
(

−1

2

∑
i �=j

Jij SiSj

)
, (9)

where the ground-state energy of the spin system (the second
term on the right-hand side) has been subtracted off. In Eq. (9),
Si is the magnitude of the ith spin, which is fixed in our
calculation. We note that the interatomic interaction given by
CS3-33 [17] is strongly harmonic with an almost temperature-
independent phonon DOS. As a result, there is no phonon
softening and the bcc lattice remains stable up to 1400 K in
the present calculation.

The cubic simulation cell we used has 16000 atoms
contained in 20 × 20 × 20 bcc unit cells, subjected to periodic
boundary conditions. The model is designed to have a
sufficiently large size to reduce, to a tolerable level, errors
due to the missing energy and entropy contributions from
the long-wavelength vibration modes, i.e., low-frequency
phonons and magnons, caused by the interference of the
periodic boundary condition. Increasing the simulation box to
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FIG. 1. Illustration of the concepts of ignition temperature, TDQ,
ADQ, and occupancy of the DOS, and their relations to temperature
dependence of the phonon-magnon (P-M) interaction. The density
of states (DOS) of phonon and magnon are shown as a function
of the ignition temperature Tig = �ω/kB at various temperatures.
The practically temperature-independent phonon DOS is due to
the harmonic nature of the lattice potential. In contrast, the strong
temperature shift of the magnon DOS is due to the sensitivity of the
spin stiffness to the vibration amplitude (cosθ ). The dependence of
the DOS occupancy (shaded in red) on ambient temperatures and the
related TDQ (phonons) and ADQ (magnons) are noted. (a) At low
temperature, e.g., 200 K, there is little phonon and magnon excitation,
producing a low specific heat showing little effect of P-M interaction.
(b) At medium temperature, e.g., 600 K, all phonon modes are excited,
resulting in the saturation of the specific heat due to phonons. Despite
the ADQ, the Tig for magnons is still too high for excitation. The
magnon specific heat and effects of P-M interaction are still almost
completely suppressed. (c) At high temperature, e.g., 1000 K, all the
phonons and the lower-frequency magnons are excited, giving rise
to the strong rise in specific heat and effects due to P-M resonant
scattering.

54000 atoms or doubling the simulation time produces errors
less than 1%. Equilibrations are performed with canonical
simulations for a minimum duration of 2 ns with time
steps of 1 fs, for various temperatures ranging from 10 to
1400 K. For each temperature, the equilibrium atomic volume
is determined by equilibrating the simulation cell under zero

pressure [18]. For QSLD, the Langevin thermostat based on the
quantum fluctuation-dissipation relation (QFDR) in Eqs. (4a)
and (4b) is employed for temperature control. The phonon and
magnon DOS employed in this regard are based on Debye-type
quasiharmonic models in which anharmonicity is taken into
account [13]. To achieve a stress-free lattice, the dimension
length along each direction in the Cartesian coordinate system
is sampled using the Berendsen barostat [19] in the sampling
time range of 1 ns after equilibrium. The integration algorithm
is based on Suzuki-Trotter decomposition [20] which allows
parallel computing [21].

For comparison, classical SLD simulations [13] based on
classical statistical mechanics, i.e., without accounting for the
nonzero commutation relations, and the quantum-harmonic
(QH) crystal model (with 0 K phonon and magnon DOS) are
also performed. In the latter case, the vibrational energy of the
QH model is obtained based on the Debye model [22], where
the Debye temperatures used for the phonons and magnons
are D = 430 K and θD = 11 892 K, respectively (interested
readers are referred to Secs. III and IV of Ref. [13] for
details). Standard analytic expressions [16] are used for the
calculation of vibrational energy, entropy, and heat capacity.
Anharmonic and quantum-statistical effects on the vibrational
thermodynamics of bcc iron are evaluated in this comparison.

IV. RESULTS AND DISCUSSIONS

Thermodynamic functions, namely, vibrational enthalpies,
heat capacities, and entropies, of bcc iron between 10 and
1400 K, are calculated using three models: (1) the standard
Debye-type quantum-harmonic (QH) model [16], (2) the
quantum SLD (QSLD) model [13], and (3) the classical
SLD (CSLD) model [8]. The QH model describes the 0 K
noninteracting quantum-harmonic phonons and magnons,
the QSLD model describes quantum-statistical anharmonic
phonons and magnons, and the CSLD model, anharmonic
classical lattice and spin waves. Effects of quantum statistics
and anharmonicity on the vibrational thermodynamics are ex-
amined by comparing the thermodynamic functions, namely,
vibrational energies, heat capacities, and entropies, obtained
from the three models. Experimental results [5] are also plotted
and compared to aid the analyses.

A. The vibrational energy

Vibrational energies from the QH, QSLD, and CSLD
models and experimental data [5] are compared in Fig. 2(a).
The corresponding spin components are shown in the inset.
There is excellent agreement between the experimental data
and the QSLD results in which quantum statistics and
anharmonicity are simultaneously taken into account. Noted in
Fig. 2(a) are (1) the good agreement between the results of both
quantum models, QH and QSLD, with the experimental data
at low temperatures; (2) the overestimation of the classical
result from CSLD compared with the experimental data,
reflecting the overexcitation due to the overoccupancy of the
DOS in classical statistics; and (3) the underestimation of
the QH results at higher temperatures in comparison with
the experimental data, signaling errors due to the neglect of
anharmonicity. These effects are all anticipated in the general
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(kelvin)

(kelvin)

FIG. 2. (a) Total vibrational energies of ferromagnetic bcc iron
(involving interacting phonons and magnons) calculated from QH,
QSLD, and CSLD models as a function of temperature. Experimental
data [5] are plotted for comparison. (b) Correlation of quantum
(left label, magenta) and anharmonic effects (right label, blue) on
magnon vibrational energy for various temperatures. Insets: magnon

energy spectra for wave vector q = 0.22 Å
−1

for different models and
temperatures (as marked).

theory considered in Sec. II B. Inaccurate interatomic potential
for large-amplitude atomic vibrations in the paramagnetic
phase above ∼1050 K may account for the overestimation
of the QSLD vibrational energy at these temperatures. In this
connection, the instability of the bcc phase due to phonon
softening, which leads to the bcc-fcc structural phase transition
at ∼1300 K, is also absent in the present calculation.

As a measurement of anharmonicity of the spin vibra-
tions, the difference between the vibrational energies of the
anharmonic (QSLD) and harmonic (QH) magnons are plotted
as blue dots in Fig. 2(b). To correlate, we also display in
the same figure the effect of quantum statistics (magenta
triangles) measured by the difference between the QSLD
and CSLD vibration energies. It is clear that both effects are
substantial. The vibrational energies due to the three models,
from which the blue dots and red triangles are derived, are

TABLE I. Frequency ωm, broadening �m, and lifetime τm of

magnon with wave vector q = 0.22 Å
−1

at 200, 600, and 1000 K
along the [100] direction in bcc iron, using classical (C) and quantum
(Q) fluctuation-dissipation relation.

T (Kelvin) 300 600 1000

ωm (meV) C 15.83 13.55 8.243
Q 16.58 15.43 11.40

�m (meV) C 0.264 0.431 1.800
Q 0.151 0.298 0.528

τm (fs) C 3788 2320 555.6
Q 6623 3356 1894

shown in the inset in Fig. 2(a). From this figure, it is clear that
quantum statistics only allows a limited fraction (foc) of spin
vibration states, i.e., the low-frequency ones, to contribute
to the thermodynamics of the canonical ensemble. This is
consistent with the underestimation of the magnetization in
MWD [8] where classical statistics is used.

Blue dots in Fig. 2(b) show close-to-zero anharmonic
effects below ∼400 K, reflecting the harmonic nature of
the spin vibrations at low temperatures. Quantum statistics
(magenta triangles) corrects the classical vibration energy [see
inset in Fig. 2(a)] that has been overestimated due to the
excessive occupation of the DOS. The correction is negative
and can be seen to remain substantial and shows no sign
of letting up until above ∼900 K. With further temperature
increase, Fig. 2(b) sees the QCT in the form of sharp correlated
increase in both quantum and anharmonic effects due to ADQ
as discussed in Sec. II B. In this connection, the calculated
frequency shift and spectral-line broadening of the anharmonic
magnons for different temperatures are listed in Table I and
shown in the inset magnon spectra for further discussions
later in Sec. IV B. From the magnon spectra in the inset the
overestimated anharmonic effects in the classical spin waves
(CSLD) can also be seen.

B. The magnon spectrum

Inserted in Fig. 2(b) in various temperature regimes are

the spectra of magnons |ϕq〉 with wave vector q = 0.22 Å
−1

for various models calculated for temperatures at 200, 600,
and 1000 K. The normalized density of states in the magnon
spectra are calculated using the standard approach, i.e., the
Fourier transform of the autocorrelation function of spin-
vector trajectories [23]. The magenta delta-function-like line
corresponds to the 0 K harmonic magnon states calculated
from the QH model. The magnon spectra from QSLD
is represented by a broadened spectral line outlined by
red circles with frequencies downshifted from the magenta
unperturbed state. The spectra outlined by black squares
represent spin vibrations from the CSLD model. The notably
reduced frequency shift and line broadening going from the
black (classical statistics) to red (quantum statistics) spectra
reflects the reduced occupation in the magnon DOS due
to quantum statistics [see Eq. (5)]. Comparing the magnon
spectra for increasing anharmonicity as temperature increases,
one can recognize the increasing frequency downshifts and line
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broadening of the corresponding red and black spectra. The
reduction of the frequency shift (from black to red) at 1000 K
compared with that at 600 K reflects the increased occupancy
of the magnon DOS due to increase of anharmonicity, i.e.,
ADQ. The physical basis of the correlation between quantum
statistics and anharmonicity shown here is as predicted by the
theory in Sec. II B. The corresponding numerical values of the
mean frequency, spectral-line widths and magnon lifetimes are
listed in Table I.

C. Heat capacity and vibrational entropy

In Fig. 3(a), we compare the heat capacities calculated
from the vibrational energies in Fig. 2(a) by differentiating
with respect to temperature. The inset is the spin component
of the heat capacity. Consistent with the vibrational energies,
there is excellent agreement at low temperatures between the
experimental data [5] and both quantum models (QH and

(kelvin)

(kelvin)

FIG. 3. (a) Total heat capacities of ferromagnetic bcc iron
(involving interacting phonons and magnons) calculated from QH,
QSLD, and CSLD models as a function of temperature. Experimental
data [5] are plotted for comparison. (b) Correlation of quantum (left
label, magenta) and anharmonic effects (right label, blue) on magnon
heat capacity for various temperatures.

QSLD). We note that the zero heat capacity at 0 K is not
only experimentally observed, but also theoretically required.
The corresponding classical results based on CSLD in Fig. 3(a)
remain at 4kB at 0 K, consistent with the equipartition theorem.
Historically, Einstein was the first to show that this mistake
could be corrected by taking into account Planck’s quantization
in the formulation of the thermal excitations of the crystal
lattice [24].

The rapid increase of the heat capacity at low temperatures
reflects the increased occupancy of the phonon DOS during
the TDQ of the lattice vibrations which leads to QCT as
discussed in Sec. II B. Above ∼400 K, accuracy of the classical
CSLD model starts to improve, but worsens for the QH model.
The former is due to the completion of the QCT of the
lattice vibrations, and the latter is due to the increasingly
anharmonic spin vibrations as temperature increases. The
excellent agreement between the QSLD magnons and the
experimental result [5] remains intact even beyond 1000 K,
successfully reproducing the characteristic sharp rise near the
Curie temperature caused by QCT due to the ADQ process
as the spring stiffness for spin vibrations softens as discussed
in Sec. II B. Without anharmonicity, both the phonons and
magnons are noninteracting and the complete absence of the
peaking behavior in the harmonic model is expected. On
the other hand, the partial suppression of the sharp rise in the
classical model is due to the absence of ADQ in a pure classical
model in which only the direct effects of anharmonicity, but
not its coupling with quantum statistics, are present. We note
that the small peak in the CSLD result is due to the coupling
between the phonons and magnons.

In Fig. 3(b), quantum-statistical effects (magenta triangles)
on the heat capacity of the spins are expressed in terms of
the difference between the QSLD magnons and the CSLD
spin waves. Corresponding anharmonic effects (blue dots)
are measured as the difference between the heat capacities
of the QSLD and QH magnons. It is clear from the plots
that quantum-statistical and anharmonic effects are highly
correlated, as we have discussed in Sec. II B. These results
also corroborate those in Secs. IV A and IV B. Increasing
temperatures from low to medium causes enhancement of
anharmonicity and reduction of quantum-statistical effects,
which is shown Fig. 3(b). As temperature increases beyond
∼1000 K, anharmonicity due to magnon softening increases
rapidly, resulting in the sharp downshift of the magnon DOS
and its much higher occupancy due to ADQ. This is what
leads to the large increase in the heat capacity of the spin
component. The highly correlated and very strong anharmonic
and quantum-statistical effects are the prominent features of
Fig. 3(b), which confirms the significance of the theoretically
forecasted ADQ in Sec. II B. Compared with a value of 1kB

for the classical spin heat capacity, the quantum-statistical and
anharmonic effects shown in Fig. 3(b) are very significant, if
not enormous, particularly near the Curie temperature.

In a related issue, it may be intuitive that short-range
magnetic order may still exist in the paramagnetic (PM) phase.
However, due to the loss of long-range order, long- wavelength
low-frequency ferromagnetic spin waves (magnons) cannot
form. On the other hand, the formation of short-wavelength
(i.e., high-energy) ferromagnetic magnons need very high
thermal energies. Thus, quantum statistics do not favor the

032104-7



HAOHUA WEN AND C. H. WOO PHYSICAL REVIEW E 94, 032104 (2016)

formation of ferromagnetic magnons in the PM phase. This is
in contrast with the results of classical dynamics in which the
magnon probability distribution is independent of the magnon
frequencies [14].

The vibrational entropy S(T ) at temperature T can now
be calculated from the heat capacity CV (T ) according to
the thermodynamic relationship S(T ) = ∫ T

0
CV (T ′)

T ′ dT ′, which
satisfies the third law of thermodynamics as long as the
integrant is bounded at 0 K [15]. The same procedure cannot be
used with the classical statistical theory, because CV (T ) tends
to a constant as T → 0, and the integral diverges as ln(T )
in this limit. Nevertheless, if the difference between quantum
and classical statistics may be assumed to vanish at some
temperature TC+ beyond the Curie temperature, one may still
obtain the vibrational entropy at T from the heat capacity by
integrating from T to TC+. Figure 4(a) shows the vibrational
entropies calculated from the heat capacities in Fig. 3(a). Sim-
ilar to the vibrational energies and heat capacities, agreement

(kelvin)

(kelvin)

FIG. 4. (a) Total vibrational entropies of ferromagnetic bcc iron
(involving interacting phonons and magnons) calculated from QH,
QSLD, and CSLD models as a function of temperature. Experimental
data [5] are plotted for comparison. (b) Correlation of quantum (left
label, magenta) and anharmonic effects (right label, blue) on magnon
vibrational entropy for various temperatures.

between the two quantum-statistical models, i.e., the QH and
QSLD models and the experimental data, is excellent due
to the harmonic nature of the lattice and spin dynamics at
low temperatures. The quantum results are in marked contrast
with the classical results which diverge approaching 0 K,
corroborating the gross overestimation of the occupancy of
both the phonon and magnon DOS’s at low temperatures.
With increasing temperature, anharmonic effects increase,
particularly for the spin component. Their influence starts to
become clearly visible above ∼400 K. However, the excellent
agreement between QSLD and experimental results remains
intact to 1400 K.

To obtain a vanishing vibrational entropy at 0 K against
the divergent behavior of T −1, CV (T ) has to vanish faster
than T , as T approaches 0 K [15]. This is a result that cannot
be obtained within classical statistics [see Fig. 4(a)]. Beyond
the Debye temperature at ∼400 K, quantum-statistical effects
on the phonons disappear due to the thermally induced QCT.
Further temperature increase sees the narrowing difference
between the quantum (QSLD) and classical (CSLD) anhar-
monic models of the spin vibrations due to the increase of
anharmonicity. Above 1000 K, the narrowing of the difference
becomes very conspicuous due to the progression of ADQ.
The increase of anharmonicity is also evident in the widening
entropy difference between the quantum anharmonic (QSLD)
and quantum-harmonic models in Fig. 4(a).

Figure 4(b) concentrates on the magnon contribution to vi-
brational entropy. The effect of quantum statistics is measured
from the difference between the QSLD and CSLD models, and
the anharmonic effect from that between the QSLD and the QH
models. The prominent feature is the large quantum-statistical
effect at low temperatures. This can be traced to the use of the
equipartition theorem in the definition of temperature, which
is inconsistent with the quantum nature of thermal excitation.
The effect of ADQ on the vibrational entropy of the magnons
is also clearly shown in Fig. 4(b). Relative to the classical
entropy of the spin vibrations which has a value of ∼1kB, both
the quantum-statistical and anharmonic effects shown here are
very prominent throughout the entire ferromagnetic phase. In
this regard, the case of the specific heat is also similar.

V. SUMMARY AND CONCLUSIONS

Given temperature T , Bose-Einstein statistics basically
only allows thermal excitations of vibration modes with
ignition temperature Tk = �ωk

kB
� T . That Tk → 0 for all k

as � tends to zero means that in the classical limit all existent
vibration modes are excited at any nonzero temperature; i.e.,
all eigenstates of the DOS are filled. Quantum-statistical
effects are progressively suppressed with the filling up of the
DOS, which can be achieved via two different nonexclusive
mechanisms: (a) thermal dequantization (TDQ) by increasing
T , and (b) anharmonic dequantization (ADQ) by downshift-
ing the eigenstates of DOS with increasing anharmonicity
(reduction of spring stiffness). A DOS concentrating on
low-energy (low-frequency) eigenstates, such as is typical of
lattice vibrations (phonons), can be completely filled at low
temperatures. Only TDQ is involved in such cases because the
anharmonicity of such vibrations is rarely important. On the
other hand, with high-energy eigenstates, such as is typical of
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magnons representing spin vibrations, complete occupation of
the DOS requires high-temperature activation. In such cases,
simultaneous operation of both TDQ and ADQ has to be
considered.

The foregoing consideration underlies the approach of the
present study of the combined effects of quantum statistics
and anharmonicity in the vibrational thermodynamics of
ferromagnetic metals. Thermodynamic functions, namely,
vibrational enthalpies, heat capacities, and entropies, of bcc
iron between 10 and 1400 K, are calculated using three
models: (1) the QH model describing the 0 K noninteracting
quantum-harmonic phonons and magnons, (2) the QSLD
model describing quantum-statistical anharmonic phonons and
magnons, and (3) the CSLD model describing anharmonic
classical lattice and spin waves. Effects of quantum statistics
and anharmonicity are examined by comparing the results of
the three models among themselves and with experimental
results. It is clear that the two effects are coupled and both are
important. Detailed analysis allows us to conclude as follows:

(1) Quantum statistics affects all thermodynamic func-
tions, in the form of reduced thermal excitation and heat
content relative to the classical counterpart at the same
temperature. For lattice vibrations quantum statistics is most
significant at temperatures below the Debye temperature, and
for spin vibrations, throughout the entire ferromagnetic phase.

Excluding excitation of the high-frequency modes, quantum
statistics rectifies the divergent vibrational entropy and restores
the vanishing specific heat at 0 K.

(2) As temperature increases, quantum-statistical effects
are suppressed as the DOS gets filled. Quantum-classical
transition (QCT) induces extra temperature dependence of
the vibrational energy, yielding the experimentally observed
surges in the specific heat near the Debye and Curie tempera-
tures, which is absent in a classical treatment.

(3) Anharmonicity shifts the DOS towards lower fre-
quencies, thus increasing its occupancy. This reduces the
quantum-statistical effects (dequantization), resulting in an
increase of the heat content of the sample. Anharmonicity
couples with quantum statistics resulting in the enhancement
of QCT via ADQ. In the absence of either anharmonicity or
quantum statistics, the QCT of the spin vibrations cannot occur,
and the sharp peak in the heat capacity of iron due to the spin
vibrations would not have existed.
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