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Integrable dissipative exclusion process: Correlation functions and physical properties
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We study a one-parameter generalization of the symmetric simple exclusion process on a one-dimensional
lattice. In addition to the usual dynamics (where particles can hop with equal rates to the left or to the right with
an exclusion constraint), annihilation and creation of pairs can occur. The system is driven out of equilibrium by
two reservoirs at the boundaries. In this setting the model is still integrable: it is related to the open XXZ spin
chain through a gauge transformation. This allows us to compute the full spectrum of the Markov matrix using
Bethe equations. We also show that the stationary state can be expressed in a matrix product form permitting to
compute the multipoints correlation functions as well as the mean value of the lattice and the creation-annihilation
currents. Finally, the variance of the lattice current is computed for a finite-size system. In the thermodynamic
limit, it matches the value obtained from the associated macroscopic fluctuation theory.
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I. INTRODUCTION

In the context of biology (going from the microscopic size
describing molecular dynamics in the cell to the macroscopic
one for the evolution of different populations in competition),
chemistry, physics, and mathematics, the reaction-diffusion
models have been intensively studied. To understand the nature
of the stationary state of such models, driven lattice gas models
have been proposed [1-4] and then their generalization with
dissipation [5-14]. For particular choices of the parameters,
one-dimensional diffusive gas with dissipation can be mapped
equivalently to a free fermions problem, which can be solved
easily [15-27].

Recently [28], we have introduced an alternate one-
dimensional integrable stochastic model. Most of the known
integrable stochastic models are derived starting with rep-
resentations of quotients of the Hecke [29] or Brauer [30]
algebras. The new integrable stochastic model is of a different
kind. It was pointed out to us by Pyatov [31] that in fact
one deals with a special representation of a quotient of the
Birman-Murakami-Wentzel algebra. This is new and it is still
an open question how to generalize this model. It is the aim
of this paper to understand what are the physical properties
of the model having in mind possible generalizations. This
task is simplified by the observation [28] that the probability
distribution function in the stationary state can be written
in terms of the matrix product ansatz. The dynamics of the
model can be obtained using as usual, the Bethe ansatz or, as
shown in the paper, the macroscopic fluctuation theory (MFT)
[32,33].

The model is a one-parameter deformation of symmetric
simple exclusion process (SSEP) model, allowing pairs of
particles to be generated or get annihilated with equal rates.
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These rates are fixed by the parameter. We call the model
DiSSEP, where Di stands for dissipative. Similar to SSEP, one
can add sources and sinks at the end of the system keeping the
integrability of the model. What can we expect to be the physics
of the model? Since hopping takes place in a symmetric way, in
the thermodynamic limit one can have only weakly correlation
functions (the correlators see only the boundaries and not the
distance between the particles). Finite-size effects, however,
can be new since one can make the parameter dependent on
the size of the system.

The stationary state is expressed using a matrix product
ansatz, which allows us to compute the correlation functions
and the mean value of the currents. A new feature is that we
have two currents: one of them given by particles crossing
the bonds and a second one given by particles leaving the
system. A new feature appears also here in comparison to the
SSEP with sinks and sources: the values of these currents are
not homogeneous and depend on the site where we measure
them. We describe in details the different behaviors of these
physical quantities depending on the boundary parameters in
the thermodynamic limit.

Using recursive relations between the correlation functions,
we succeed in giving a closed analytical relation for the
variance of the lattice current. This variance depends also
on the site of the lattice, which makes it more involved in
comparison to the SSEP. A byproduct of our research was the
check of the applicability of the MFT to stochastic processes
with creation and annihilation of particles. We have shown
that in a particular case when the dynamics is of a diffusive
kind the results obtained from lattice calculations and MFT
coincide. This result is relevant since up to now the validity of
MFT developed in Refs. [34-36] was confirmed only in purely
diffusive models such as SSEP [37].

Finally, using Bethe ansatz approach, the spectrum of the
associated Markow matrix is completely characterized by
Bethe equations. Comparing with the exact diagonalization
of the Markov matrix for small lattices, we can determine the
Bethe state allowing us to compute the greatest nonvanishing
eigenvalue. In this way, we can compute the spectral gap
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for large lattices (up to 150 sites) and we conjecture its
thermodynamic limit by extrapolation.

The plan of the paper is as follows. In Sec. II, we describe
precisely the DiSSEP, its symmetries, and its associated
Markov matrix. Then, in Sec. III, we remark that for a
particular choice of this parameter the eigenvectors and
the eigenvalues become simpler and can be all computed
explicitly. This allows us to infer the gap and the large deviation
function for the current entering in the system from one of
the reservoirs. Then, we start the study of the general case.
In Sec. IV, we present the computation of the stationary
state using the matrix product ansatz method that provides us
analytical expressions for correlation functions. We compute
also exactly the variance of the lattice current (which depends
on the site where it is measured). We take the thermodynamic
limit of the model in Sec. V: we show that the additional
parameter must be rescaled with the length in order to have
a competition between the hopping and the evaporation. We
deduce from the previous microscopic computations the exact
expressions for the densities, the currents, and the variance
of the lattice current. In Sec. VI, we show that the latter
is in agreement with the results obtained from macroscopic
fluctuation theory. Finally, we relate in Sec. VII the Markov
matrix of the DiSSEP to the Hamiltonian of the XX Z spin
chain with triangular boundaries [38]. The eigenvalues of
this Hamiltonian have been computed previously using Bethe
ansatz methods. We present the associated Bethe equations
and we solve them to get the spectral gap. In Sec. VIII we
summarize our results and give an outlook for further research.

II. A ONE-PARAMETER DEFORMATION OF THE SSEP

A. Description of the model

We present here the stochastic process, DiSSEP. It describes
particles evolving on a one-dimensional lattice composed of L
sites and connected with two reservoirs at different densities
on its extremities. There is a Fermi-like exclusion principle:
there is at most one particle per site. Hence a configuration C of
the system can be formally denoted by an L-tuple (ny, ... ,np),
where n; = Qif there is no particle at site i and n; = 1 if the site
is occupied. During each infinitesimal time dt, a particle in the
bulk can jump to the left or to the right neighboring site with
probability dt if it is unoccupied. A pair of neighbor particles
can also be annihilated with probability A> x dt and be created
on unoccupied neighbor sites with probability A% x dt (see
Table I and Fig. 1). Let us mention that there is a slight
change of notation in comparison to Ref. [28] in order to make
the limit to the SSEP easier. At the two extremities of the
lattice the dynamics is modified in order to take into account
the interaction with the reservoirs: at the first site (connected
with the left reservoir), during time df, a particle is injected

TABLE I. Dynamical rules of DiSSEP.

Left Bulk Right
0-% 1 01 < 10 120
2
1250 00 <= 11 021
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FIG. 1. Dynamical rules of the model.

with probability o x dt if the site is empty and extracted
with probability y x dt if it is occupied. The dynamics is
similar at last site (connected with the right reservoir) with
injection rate § and extraction rate 8. The dynamical rules
can be summarized in Table I, where O stands for vacancy
and 1 stands for a particle. The transition rates between the
configurations are written above the arrows.

We choose the coefficient of condensation and evaporation
to be A% and not A for later convenience. Let us remark that
the SSEP is recovered when the creation and annihilation rate
A% vanishes. The limit A2 — oo provides a model with only
condensation and evaporation.

The system is driven out of equilibrium by the boundaries.
Asshownin Sec. IV, there are particle currents in the stationary
state for generic boundary rates «, 8, ¥, and §. We will see in
Eq. (65) that these choices of rates describe particle reservoirs
with densities

=0 ey
B+

Remark: The system will reach a thermodynamic equilibrium
if and only if both the densities of the reservoirs are equal to
1/2, thatis « = y and B = §. Indeed, the detailed balance is
only satisfied in this case.

Pa and pp

=a+y,

Symmetries of the model

We can make the following observations:

(1) Since we chose the evaporation/condensation rate to be
A2, all the results shall be invariant under the transformation
A —> —A.

(i1) The left-right symmetry of the chain is given by the
transformations @ <> §, y <> B and a change of numbering of
the sitesi — L + 1 — 1.

(iii) The vacancy-particle symmetry translates into o < y
and § < B.

B. Markov matrix

We denote by P,(C) the probability for the system to be in
configuration C at time 7. P,(C) obeys the master equation

dP,(C) _ Z MC,CHPC) — Z M ,C)P(C)
dt oz C'#C
= Y ME.CHPC), 2)
-

where M(C,C’) is the transition rate from the configuration
C’ to the configuration C. The second equality is obtained
by setting M(C,C) = — Zc,;ﬁc M(C',C). This equation can be
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recast in a compact way: let us set

P:((0, ...,0,0,0))

P,((0,...,0,0,1))
|P) = P (O, ...,0,1,0))
P,((l,....,l,l,l))

= Y Pm,...n))m.n), 3

with [ny...n.) = |n1) ® -+ @ Iny), |0) = (o), and [1) = ().
In this formalism, each site of the lattice corresponds to one
copy of C? in the tensorial space ((Cz)®L. The master Eq. (2)
is then rewritten as
d|P;)
dt
The Markov matrix M corresponding to the dynamical rules
(see Table I) can be expressed as
L—1
M=Bl+zwk,k+l+EL, (5
k=1

=M |P). “4)

where the local jump operators B, B, and w are given by
_ (> v =_(-96 B
() () e

—22 0 0 A2

0 -1 1 0

0 1 -1 o | )
A2 0 0 -2

and

w =

The subscripts in Eq. (5) indicate on which sites the local
operators are acting.

III. STUDY OF THE PARTICULAR CASE A =1

Before studying the general model, we focus on the
case A = 1, where the calculations simplify drastically: it
corresponds to the free fermion point of the model we
introduced.

A. Eigenvectors and relaxation rate

For A = 1, all the eigenvalues and the eigenvectors can be
computed easily. Indeed, for L > 3, the 2L eigenvectors are
characterized by the set € = (¢€},€, ... ,€.) withe; = £1 and
are given by

Q(f) = 0(617627a’y) ® <€12> ® (;3) ® ttt
S (6 ! ) ® v(eLseLflsgvﬂ)» (8)
L—-1

'+
(I+u+€f(s,‘e)’,u+u>) and f(e,€',7) =

€€’ — 1 — 5(1 — €). The corresponding eigenvalues are

where v(e,e’,u,v) =

L-2

A€) = flerer.a+y)+ Y (€j€jp1— 1)
j=2

+ fer,er—1,6 + B).
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Let us remark that the ASEP on a ring with Langmuir kinetics
has been treated similarly in Ref. [39]. From the previous
results, we deduce that the stationary state is

1 14+ % 1 ®L-2 1+ ,8
Q(+,+,.--,+)—Z—L<l+a ®1; ® 1+5)
where Z; = 2L 2Q +a + ¥)(2 + B + §) is the normalisation
such that the entries be probabilities.
From this stationary state, we can compute the mean value

of the injected current by the left reservoir (respectively, by
the right reservoir)

s—B
m) ©)

We see that the current has the sign of o — y (respectively,
8 — B). As expected, it goes to the left when extraction is
promoted, and to the right when injection is proeminent. It
vanishes for @« = y. The lattice current in the bulk vanishes.

We can also compute easily the first excited state whose
eigenvalue provides the relaxation rate. Indeed, the greatest
nonvanishing eigenvalue is

a—-y

Jleft = m

(respectively, Jright =

G=—-4 ifa+y>2 and B+46§>2,
G=-2-8-6§ ifa+y>2 and B+ <2,
G=-2—-—a—y ifa+y<2 and B+5>2,
G=—-a—-y—B—-06 ifa+y<2 and B+6§<2.

These results shall be generalized in Sec. VIIB for any A
using the Bethe equations. The general result displayed on
Fig. 9 matches the above values of the gap for A = 1 (¢ = 0).

B. Current large deviation function

For this particular choice of A, it is also possible to get the
generating function of the cumulants of the current entering
in the system from the left reservoir (the same result is also
obtained by symmetry for the right reservoir). For general A,
one obtains the variance in Sec. IV C. It is well established
that this generating function is the greatest eigenvalue of the
following deformed Markov matrix [40],

L—1

M = Bi(s)+ Y _ wei + By, (10)
k=1

where the local jump operator B(s) is deformed as follows:

_(—a ye”F
B = (ocef —y ) (11)
One can show that the greatest eigenvalue is given by
24 a4y

1
E(s) = — + §J4 + daes +4dyes + (a + y)?,

2

with the eigenvector

_ ®L-2
_ 14 ye™ 1 14+ 8
Q(s)_<l+a+E(s)>®<l> ®(1+5)'
The rate-function G(j) associated to the current is the
Legendre transformation of this generating function of the
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FIG. 2. Example of large deviation function G(j) (on the plot
a=2,y =0.5).

cumulants:

iE(s)

G(j)=s"j — E(s"), Is =J 12)

*

§=s

Then its explicit form is given by
2
o+ o+
G(j) = 1+Ty—\/1+A(j)+<TV)

. . 2
+j1n[A(” + é\/l +AG) + (%) ] (13)

20

where

AG) =272+ VHay + 2+ jH+ jHa+y?R (14

Let us stress that Eq. (13) represents an exact result on the
large deviation function of the current on the left boundary.
The function G(j) is convex and vanishes when j is equal
to the mean value of the current on the left boundary given
by Eq. (9) as expected; see Fig. 2. Note that it is not
Gaussian.

IV. STATIONARY STATE AND PHYSICAL OBSERVABLES
FOR ARBITRARY A

We now turn to the general case (i.e., for generic A).
Although one cannot perform all the calculation presented
in the L =1 case, one can still obtain interesting analyt-
ical results, in particular when focusing on the stationary
state.

A. Matrix product ansatz

The integrability of the model reflects in the simple
structure of its stationary state which can be built in a matrix
product form. The power of this technique was revealed in a
pioneering work [41], where the phase diagram of the totally
asymmetric simple exclusion process (TASEP) was computed

PHYSICAL REVIEW E 94, 032102 (2016)

analytically, using a matrix product expression of the steady
state wave function. It has led to numerous works and gener-
alizations, among them can be mentioned the multispecies
TASEP [42-44] and more complicated reaction-diffusion
processes [26,45]. A review of these results can be found
in Ref. [46]. In the framework of integrable Markov matrix,
the stationary state can be expressed through a matrix product
ansatz, which takes a simple form: the complete algebraic
structure can be determined thanks to the Zamolodchikov-
Faddeev and Ghoshal-Zamolodchikov relation as it was first
seen in Ref. [47]. A systematic construction of the matrix
product ansatz for integrable systems can be found in Ref. [28].

It was shown in Ref. [28] that the steady state |S) of the
present model can be built as follows:

1 E QL
S)=—(W vy, 15
|S) ZL« |<D) [V) (15)
where Z; is the normalization factor,
Zy = (W|(E+ D)"|V). (16)

The algebraic elements E and D belongs to an algebra
composed of three generators E, D, and H. The commutation
relations between these generators are given by

[H,E] = [H,D] = A\X(D* — E?).
(17)

[D,El=EH + HD,

These relations are equivalent to the very useful telescopic
relation

()0 (5)-(5)o () (D)o () »

Notice here that, in contrast with the SSEP case (see Sec. IV D),
where H is a scalar, the commutation relations between H and
E, D are not trivial. The action of the generators E, D and H
on the boundary vectors (W] and |V)) is given by

(WleE —yD)=(W|H, (BE —BD)|V)) =—H|V).

It is equivalent to

<<W|B(f;) = <<W|<‘,f),
E<g>w» = —(‘,f)w»

It is straightforward to see using Eqgs. (18), (19), and (20)
that M|S) = 0 with M defined by Eq. (5) and |S) defined by
Eq. (15). Indeed, we get a telescopic sum. We showed also
in Ref. [28] that the algebra is consistent with the boundary
equations by giving an explicit representation of the generators
E, D, and H and of the boundary vectors |V)) and (W|. We
have tried, without success, to get the probability distribution
function for the stationary state in the case of the asymmetric
hopping rates. This would have been very interesting. It is
surprising since our matrix product ansatz is close to the one
used to solve the symmetric simple exclusion process. Our
failure is probably due to the nonintegrability of the system in
this case.

(19)
and

(20)
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Assuming that A is nonvanishing, we make a change of
basis from the generators E, D, and H to G|, G, and G3 as
follows:

E =G+ Gy + G3,

D =G, -G - Gs,

H =2)MG3 — Gy). (21)
This change of basis will simplify the calculation; moreover,
it is natural in the general framework developed in Ref. [28].

The commutation relations between E, D, and H [Eq. (17)]
are equivalent to

[G1,G3]1=0, G2G1=¢G Gy, and G3Gr=¢ G12G3,
(22)
. 1_
wlth(b:H_—i.

J

(WIGTG3G5IV)

Do 1=+ ad g7 ) T, Zo(d ¢\ + be g7+t
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The relations on the boundaries become

(WI(G1—c G2 —a G3) =0,

(G3=b G —d G|V)) = (23)
with
2h—a—vy y —«
a=——" = ——),
224+ a+y 224+ a+y
20 —6 — )
ek el A S e B
2b+8+8 20 +84+ 8

We can now give the main result of this paper. Indeed, in
this new basis, it is possible to compute a closed expression
for any word, for p,q,r =0,1,2, ...,

(WG vy

where by convention H;zlo(-) = 1. Let us mention that this
formulais not valid if ab¢* = 1, which occurs for A = 0 (SSEP
case) or A — o0o. However, these limits can be performed for
the physical quantities (see Sec. IV D).

Proof of Eq. (25): In order to compute (W|G{G1G5|V)),
we use a change of generators defined as follows

. G
Li=— —aGs¢', and Rk=¢—,f—bcl¢k. (26)

This is built so that L; and R; fulfill the following relations
[derived straightforwardly from Eqgs. (22) and (23)],
GiL; = LoG5, R.G% = GARy, (27)

[Li,G1]=1[Li,G3] = [Rx,G1] = [Rk.G3] = 0,
and  (W|Lo = c(W[G2, RolV)) =dG,|V). (28)
The change of generators Eq. (26) can be inverted to get

¢k+i Li )
G ZTW(ﬁ +a¢ Rk), (29)
and
_ ¢k+i ‘ Rk

We can now begin the computation

(WIGG3G5I V)

¢ L s
- TW«W|<¢_Z +aRq>Gf 'GIGE|V)
1 .
= g (WIeG2GY T GLGE V)

1 P=1 ~q ~r q
+W«W|Gl G3G3add? G| V)
cp?~! +adgptr _ ,

= g WiGT G GV,

PRl — ab ¢?)

(25)

[
The first equality is obtained using Eq. (29) with i = 0 and
k = g to transform the leftmost G;. The second equality
relies on the relation Egs. (27) and (28). We get the last one
using Eq. (22). This relation is a recursive relation between
(WIG"G1G5|V) and (WGP 'GIT'G5|V)) that we can
iterate to obtain

(WIGTG3G5IV)
(111_[1 cdP=1l + adgrrat!

1= abg?atD )«WIGZ*”GSW». (€29)

=0

Performing similar computations with G3 we obtain the
following recursive relation:

(WIGST" G5 V)

Patr . Ro
= 1= abg2atp (WIGT™ G bLgsp + gorr )IVD

_ d¢r—l +bc¢q+p

= T apgrern (WIGETT GV,

to get

(WIGSPGLIV)Y)
<i_i d¢r717n +bc¢q+p+n

1— ab¢2(q+p+n)

)<<W|G§*"*’|V>>. (32)
n=0

Recombining Eqs. (31) and (32) together, the desired result,
Eq. (25), is proved.

Let us stress that since G, G,, G3 form a basis, the
knowledge of all words built on them allows us to reconstruct
all words built on £ and D using the two first relations of
Eq. (21). In particular, we are able to compute exactly physical
observables, as it is illustrated below.
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B. Calculation of physical observables:
Correlation functions, currents

As usual the matrix product ansatz permits us to compute
the physical observables (see Ref. [41]). For example, the one-
point correlation function (or density) is expressed as follows
in terms of the matrix product ansatz,

(wic—'pct vy

i = T wichvy

, (33)

where we have used the usual notation C = E 4 D. Let us
remark that, in our basis, C = 2G,. It is well-known that
similar expressions exist also for all the correlations or the
currents (see below).

Thanks to Eq. (25) of any words, it is now possible to
compute physical observables for DiSSEP. In particular, we
can compute the one-point correlation function,

1 (WIG5 (=Gi + G2 — G3)G; V)
2 (WIG5IV)

(n;) =

1 C¢i71 +ad¢L+i72+d¢L7i +bc¢2L7i71 (34)
) 2(1 — ab@?L-2) ’

the connected two-point correlation function, for 1 <i < j <
L b

(ninj)e = (ninj) — (n;)(n;) (35
i-1 pei-i-1 peL-j
_ (WIC'DCI DCE|v) 6
(wict|vy
_(WICT ' DCE V) (WICTTIDCH V)
(wictvy (wictivy

M = A + bept (e + adg )
T 40— abp LD (1 — abgL-D)

x(1+bp* )1+ ag™ D),

(37

and the connected three-point correlation function, for 1 <
i<j<k<L,

(ninjng).
= (ninjng) — (n;){nng) — (nj)(ning) — (ne)(ninj)
+2(n;) (n;) (n)

¢L+k7i75(1 _ ¢2)2(d +bC¢L71)(C +ad¢L71)
8(1 — abp L-D)3(1 — ab>L-D)(1 — abp?L-)

x (14 b¢* ™)1 +ag™ ")
x [¢" 77 (d + beg" )1 + 2a¢* ™D + abgp* D)
+ ¢/ c +adg )1 +2b¢* LD + abp* V)], (38)

Note that for generic i, j, k, the two- and three-point correla-
tion functions satisfy both a set of closed linear relations:

(1= 2DUnimin e + (miganj)e + (minj—1)e + (ninjii)e)

= 4(1 + A (ninj)., (39)
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and
(1= A)((nizinjnede + (niginng)e + (ninj_ing)e
+ (ninjng)e + (ninng_1)e + (ninngg)e)

= 6(1 + A (ninjng).. (40)

We can also compute the particle currents. There are two
different currents: the lattice current, which stands for the
number of particles going through the bond between site i
and i 4+ 1 per unit of time, and the evaporation-condensation
current, which stands for the number of particles evaporating
or condensing at sites i and i + 1 per unit of time. The lattice
current is given by

(‘]ilii-i—l)

(W|CI—Y(DE — ED)CL=i=1|V))
(WICE|V)

B 1— ¢ bc¢2L7i72 +d¢L7i71 _ ad¢L+i72 _ C¢i71
T2 1 — ab¢?L2 '

(41)

Counting positively the pairs of particles that condensate on
the lattice and negatively the pairs that evaporate, we get for
the evaporation-condensation current,

(/i)
B (W|CI=122(E? — DYHCL--1|V)
(wict vy
(- @) bed?t =12 4+ dpti= + adptti=2 4 cpi~!

T 21+ ¢) 1 — abg?L-2

(42)

Note that the above expressions behave as expected under
the three symmetries:

(1) The symmetry A — —A, which translates into ¢ —
1/¢,a — 1/a,c — —c/a, b — 1/b,and d — —d /b, leaves
them invariant.

(2) The left-right symmetry, which becomes a <> b, ¢ <>
d,andi — L + 1 — i, changes the sign of the lattice current,
keeps the condensation current and the density invariant.

(3) The particle-hole symmetry, which reads a — a, b —
b, c > —c, and d — —d, changes the sign of both currents
and transforms (n;) into 1 — (n;).

The physical quantities computed above are not all inde-
pendent. The particle conservation law at site i reads

() = (T )+ (I2) + (59) = 0, @3)
which can be seen on the matrix product ansatz using relations
Eq. (17). From the identity [ D, E] = [D,C], one then deduces

(I 00) = () — (i), (44)
and using E> — D* = C?> — CD — DC, one gets
(7289) = 22 (1 = (ny) — (i) (45)
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From these three relations, one obtains
(205) = () + A2 () + () =0 (46)
and

(ni_1) + (niy1) — 2(n;)
+222 = (nimy) — (nip1) —2(ni)) = 0.  (47)

C. Fluctuations of the currents

As mentioned previously, there are closed linear relations
between the two- and three-point correlation functions, which
allow one to compute the cumulant of the currents. In this
section, we present the computations of the second cumulant
of the lattice current between sites i and i + 1. Let us note that
itdepends on the site, because of the evaporation-condensation
process. As usual for such a purpose [40], we use the deformed
Markovian matrix defined as follows:

i1 -1
s s n
M’ = B, + E Wi k+1 + Wi + E Wi k41 + Br,
k=1 k=i+1

with
22 0 0 A2
N 0 -1 ¢ 0
0 e* -1 0
A2 0 0 -2

Let |v*) be the eigenstate of M* with highest eigenvalue
M* v*) = u(s) [v°) . (43)

wu(s) is the generating function for the cumulants of the lattice
current between sites i and i + 1. We introduce the following
notation for vectors

(U3 = (01 +(IDZV™D @ (11 @ (0] + (1=,
(k= (0] + (AIP®YU=D @ (1] ® ((0] + (1)®*~=1
®(11 ® (0] + (1D*E",

and similarly for ({ji, /2, ...,jm}|- In words, these vectors
represent configurations with one particle at site ji, jo, ...,
Jju, and anything else on the other sites. Remark that this
definition applies whatever the order on ji, ..., jy, and thus
extends the one given in the above equations. By extension,
we note (@] = ((0] + (l|)®L. Then, we define the components:

_ ),
Tj(s) = T] = ((/)|U5> 5
_ k)
Ujk(s) = UJk = —(ﬂh)s) (49)
({J.k.[}v*")
and ijl(s) = ij[ = W

Note that by construction, U and V are symmetric, e.g., Uj; =
Uy;. Now, projecting Eq. (48) on (4], we get

pls) = (e = D(Tiv1 — Vi) + (&8 = D(T; = Uiiv).
(50)
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We also project Eq. (48) on ({j}| for j =1,
ue) T =a(l =T) =y +2°(1 =T = T»)
+0 -1+ (e = DWUii+1 — Viiit1)
+(" — DWW — Viii+1)s (51)
forl <j<iandi+1<j <L,
u(s) Ty = 322 = 2T; = Ty — Tj1)
+Tj —2T; + T,
+( = DWjiv1 = Vjiis1)
+ (' — DWUj; — Vjiit1), (52)
for j =1,
WO T = 2%2 = 2T = Tipy — Tic1) + Ty — 2T + Ty
+ (e = D(Tit1 — Uiit1), (53)
forj=i+1,
W) Tip1 =2Q—=2T = T =T+ T2 = 2T + T,
+ (€ — )(T; — Uiit1), (54)

andfor j = L,

w(s) Ty = 8(1 = Tp) — BT +2*(1 — Ty — Tp_y)
+ T — T+ — DWiti,L — Viit1,n)
+( = DW= Viit1,0)- (59)

These equations are solved iteratively, expanding all quantities
as series in 5. We set

2
N
wis) = p¥ + s+ Zp® +o(s?),
Tj(S) = Tj(o) + 5 T;l) + o(s),
Uji(s) = U +s U + o(s).

In the above expansions, 1 = 0 is the greatest eigenvalue
of the undeformed Markov matrix and p" = (J, ) is
the mean value of the lattice current measured between the
site { and i + 1, where the deformation occurs. We recall

that (Ji'ﬁl. +1) has been computed in Eq. (41). The value of

Tj(o) = (n;) has also been already calculated; see Eq. (34).

Similarly, U;f),() is linked to the two-points correlation function;
see Eq. (37).

We wish to compute 1(s) up to order 2, which corresponds
to the variance of the lattice current. We get it through the
expansion of Eq. (50) up to order 2:

u =1 1O, (56)

i+1 i,i+1° (57)

Equation (56) just reproduces Eq. (44) between the mean
values of the lattice current and of the density.
To get Tj(l), one considers Egs. (51)—(55) at first order in

s. They only involve Tj(l), Tj(o), and Uj(g), and can be solved
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recursively in T;l). We get

(1) L b¢L7i71+¢i+lfL
(Tm) _ ¢ ( P
W) = T 77ma | st
T, 1 —abg ¢ +¢

=

ag'+¢~*
¢>—1
agi =4

=

x( Z;:(l)(‘@l + ¢4 )
i g+ o DIy

with
;_ @17
J 4¢
0 0 0 . :
O 1O+ T Uy, forj =i,
ROTE =T+ U, forj =i+ 1.
u® TJ-(O) + U]('f)i)+1 — U](.f)l.) , otherwise.

Plugging these values into Eq. (57), we get the analytical
expression of the variance of the lattice current:

2
Q=104 79 209 4+ =
I i + i+1 ii+1 + 1+¢

i—1

i(pp2L—2~1 _
s ) > (ap' + ¢ i
£=0

1 — abgp?L-2

L—i—1

L—i 2i-1 _q
A > by +¢‘f)m}. (58)
=0

1 — abg?L=2

Using the explicit form of /;, one can compute the sums in
Eq. (58) to perform the thermodynamic limit for u®; see
Sec. V. Let us conclude this subsection by mentioning that
the higher cumulants may be computed in principle by similar
methods. However, the computations become much harder and
are beyond the scope of this paper.

D. Comparison with SSEP

As mentioned previously the DiSSEP is a deformation of
the SSEP that can be easily recovered when taking A = 0.
This limit already reveals at the level of the matrix product
ansatz algebra: the commutation relations between E, D, and
H Eq. (17) become simpler when A = 0. We have indeed
[H,E]l=[H,D] = 0. Hence, H can be chosen equal to the
identity. In this case we recover the well-known relation
[D,E]l= D + E, relevant in the construction of the steady
state of the SSEP. Remark that the generators G, G, and G3
in contrast “diverge” when taking the limit A — O [this can be
seen by inverting the change of basis (21)].

We can also take the limit A — 0 at the level of the physical
observables. For the one- and two-points correlation function
we get

_ pL+B—i)+p(i — 1+ A)
- L+A+B-1

li ;
lim (n;)

’

with
1 1
A: 9 = 9
oa+y B+$6

PHYSICAL REVIEW E 94, 032102 (2016)

and

=1+ AB+L = j)pa—p)
(L+A+B—-1DXL+A+B-2)

which are in agreement with the known expressions for the

SSEP [48,49]. For the lattice and evaporation-condensation
currents we get

lim (n;n;), =
A—>0< i ])C

. 1 Pa — Pb .
lim (%)= ;g =7 ad lim {

also in agreement with the SSEP results.
We can also take carefully the limit of Eq. (58) to recover
the variance of the lattice current for the SSEP model [48]:

2(p2 + paps + O})

3(L+A+B-2)

N e+ 0}
(L+A+B—1)(L+A+B-2)
(A—3A%+2A%3+ B —3B2+2B% (0, — pp)*

3(L+A+B—13L+A+B-2)

B (ba = pv)’
3L+A+B—-1D3(L+A+B-2)

cond\ __
Ji,i-H) - 0’

_ Pa + Pb N
osSEr = A B -1

V. THERMODYNAMIC LIMIT

In this section, we study the thermodynamic limit of the
previous model when there exists a competition between the
diffusion of particles and the evaporation and condensation of
pairs.

A. Scaling of the parameters

In order to maintain the competition in the continuous limit,
we have to scale properly the parameters of the model. In other
words, the mean time for a particle to go through the lattice by
diffusion must be comparable to the time for it to be evaporated.

Let us write the time evolution of the one point correlation
function for 1 <i < L:

d(n;)
dt

= (ni—1(1 —ny)) + (A —npnig)

—{(( = n;_pn;) — (ni(1 —niq))
+ A2 = ni—)(1 = 1)) + (1 = n)(1 — 1))

—(ni_1n;) — (niniq1)) (59)
= (1) + (ri11) — 2(n;)
+ 222 = (ni—1) — (nig1) — 2(n)). (60)

Note that although the two-point correlation functions cancel
when going from Egs. (59) to (60), the mean-field approxi-
mation is not exact in the sense that the connected two-point
function does not vanish; see Eq. (37).

Remark: The one-point correlation function verifies a
closed set of equation as for the SSEP, in contrast with the
ASEP case where the equations couple the one-point function
and the two-points function. This property remains valid for
the higher-order correlation functions Eq. (39), which allows
in principle to compute them. However, for the multipoints
correlation functions, solving this set of equation can be very
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hard. This points out the usefulness of the matrix product
ansatz, which makes the calculations much easier.

We want to take the large L limit in Eq. (60). We seti = Lx
with x € [0, 1] and (n;) = p(x). We get

d 1
d—f(x) = 10" () + o] + 22711 = 2p(6) + o(DL. (6]

We see on the previous equation that we have to take A = A/L
in order to have a balance between diffusion and creation-
annihilation. After a rescaling of the time ¢+ — L?¢, we obtain

dp _p .o

o= L 2= 2p), (62)
with the boundary conditions p(0) = p, and p(1) = pp. This
equation shows that the correlation length for this scaling
is finite. Indeed, the stationary density obtained in Eq. (65)
decays as p(x) — 1/2 ~ exp(—2r0x) for x far from the
boundaries. The correlation length can thus be defined as
1/(220).

Without rescaling A and the time with respect to L (or for

A = Ag/L* with i < 1 and rescaling the time t — L?“t), the
diffusive term drops out and the density satisfies

9
8_’; = 232(1 = 2p). (63)

In the case where A = Ao/L" for u > 1 with the rescaling of
the time + — L?t, the system becomes a pure diffusive model
for large L and one gets for the density

b _ o

ar ~ ox2’ (64)

B. Thermodynamic limit of the observables

From Eq. (34), we can compute the expression of the one-
point correlation function in the continuous limit (i = Lx and
A =2o/L),

p(x) == Llirr;o (nrx)
— l + 1 (qlef2)u(](xfl/2) + qzezko(xfl/Z)) (65)
2 2sinh2Xg ’

where

q1 = (pa + pp — 1) sinh(Ao) — (op — pa) cosh(rg),  (66)

and

g2 = (pa + pp — 1) sinh(Ao) + (0p — pg) cOsh(Ag).  (67)

It is easy to check that it satisfies the stationary version of
Eq. (62).

We can also compute the two-point correlation function in
this limit. One can see that it scales as +, i.e., it has weak

L’
correlations. We get
cr(x,y) = lim L x (np,npy).
L—oo
_ 2Mq192
(sinh 2X¢)*

For Ay < 1, this two-point correlation function behaves
algebraically with respect to x and y, whereas it behaves
exponentially and is short range for Ao > 1.

sinh 2Ao(1 — y)sinh2Xpx.  (68)
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FIG. 3. Density for p, = 0.35, p, = 0.2, and %, = 3.

The limit of the particle currents are given by
1 — T 1
J at(x) = LILH;O L x (JL%E—>LX+1>

_ Ao (qre~2Pox=1/2)
sinh 2

— @), (69)
and

-cond . 3 2 d

JeMe = lim L2 < (JE )

)2 B 3 B
= sinhZO)L (qre 2ho(x 1/2)+q262,\0(x 1/2)). (70)
0

Remark that these expressions are consistent with the fact
that when the system reaches a thermodynamic equilibrium,
that is for p, = p, = 1/2 (or equivalently g; = g, = 0), both
currents vanish.

The particle conservation law Eq. (43) becomes in the
thermodynamic limit

+lat

dj

dx

which is satisfied by the expressions above. In the same way,
relation Egs. (44) and (45) become in the thermodynamic limit

(x) + 2jCOnd(x) — O,

dp )
ﬁ(x)+j‘dt(x>=0, JM0 =201 —2p(x)). (71

1. Behavior of the density and the currents

Depending on the values of g; and g, defined in Eqgs. (66)
and (67), the behavior of the density may change:

(i) the density is not monotonic when e~?* < % <e
which implies that g; and g, have the same sign. In that case,
it possesses an extremum at X satisfying e**@~1/2) = L. The
lattice current vanishes at this point.

(a) the density presents a maximum,

_ .«/611612 ’ (72)
sinh(2)

20
s

1
P(X)—E
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34

FIG. 4. Mean value (—) and variance (- - - ) of the lattice current
for p, = 0.35, p, = 0.2, and Xy = 3.

when g1,q, < 0. Let us remark that in this case, the density
is everywhere smaller than 1/2. Example of such behavior
can be seen on Fig. 3.

The lattice current changes direction at the point X, as
expected since the lattice current goes from high density
to low density. At this point, the condensation current is
minimal but positive, since the density is smaller than 1/2,
so that condensation is promoted.

(b) It presents a minimum,

__ 1 VO q2
PO =3 ¥ Gohrg)

when ¢q1,g, > 0. In this case, the density is everywhere
greater than 1/2.

The condensation current is negative but maximal, so
that the evaporation is minimal. As previously, the lattice
current changes sign at x, still going from high density
to low density. Example of such behavior can be seen
on Fig. 5.

(i) The density is monotonic from p, to p, when Z—; <

(73)

e~ or % > ¢2*_ In this case, the lattice current never
vanishes. Example of such behavior can be seen on Fig. 7.

J

sinh[240 2x — ]
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FIG. 5. Density for p, = 1, p, = 0.65, and 1o = 3.

The condensation current follows the same pattern, due to
Eq. (71). The lattice current behaves as follows:

() it is not monotonic when e~ < —4L < ¢2%_ which
implies that ¢| and g, have opposite sign. There is an extremum
at X satisfying ¢**®~1/2 = —4. The condensation current
vanishes at this point. “

(a) When g; < 0, the lattice current presents a maximum,

2X0
-lat —
=/ . 74
JH&) Sinh(ig) ¥ N4 (74)
(b) When ¢g; > 0, it presents a minimum (see Fig. 8),
. 2X0
-lat —
=—\\/- . 75
7o) sinh(2ig) ¥ 9192 (75)

(i) The lattice current is monotonic when —% < e P or

4

&> e?; see Figs. 4 and 6.

2. Variance of the lattice current

The thermodynamic limit of the variance of the lattice
current, computed exactly in Eq. (58) for any size, takes the
form

o 2 —
m2(x) =2q1 9> )‘O{(ZX D [sinh(2 10)]3

e4kox + 674)@(17):) _ 64)\.0(2X71) +3

cosh(2 Ag) cosh[2 19 2x — 1)] + 1
[sinh(2 Ag)]*

64)\0(17,\7) +674)L0x _ 64)L0(172x) +3

2
-y
aro 4[sinh(2 10) P

n Ao cosh(2 Ag x) cosh[2 1 (1 — x)]
sinh(2 A¢) ’

As all physical quantities of the model, the variance is invariant
under the transformation g¢; <> ¢ and x — 1 — x, which is

pesy
qito 4[sinh(2 1) P

(76)

(

the left-right symmetry. The particle-hole symmetry amounts
to change g; — —¢q; and ¢» — —¢q5: it leaves u, invariant,
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FIG. 6. Mean value (—) and variance (- - - ) of the lattice current
for p, =1, p, = 0.65, and 1y = 3.

transforms p(x) into 1 — p(x), and changes the sign of the
currents. The symmetry A — —A reads Ag — —X¢ and q; <
(—g>) and leaves all quantities invariant.

3. SSEP limit

Finally, by taking the limit Ay — 0 in the previous quanti-
ties, we recover the well-known SSEP expressions [48]:

Dssep(®) = pa(l — X) + ppx,  jEo(X) = pa — pbs
c2,5s8p(x,y) = —x(1 — ¥)(pa — p1)7,
M2,ssep(X) = 0 + Pp — %(pf + papp + P4).- (77)

0.8 1

0.6 1

0.4

0.2

0 0.2 0.4 0.6 0.8 1
X

FIG. 7. Density for p, = 1, p, = 0.2, and %y = 3.
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VI. COMPARISON WITH MACROSCOPIC
FLUCTUATION THEORY

A. Presentation of the macroscopic fluctuation theory

The model presented in this paper belongs to a larger class
of models describing lattice gas with diffusive dynamics and
evaporation-condensation in the bulk, which are driven out
of equilibrium by two reservoirs at different densities. In the
thermodynamic limit, the dynamics of these models can be
understood (under proper assumptions) through the so-called
macroscopic fluctuation theory (MFT). More precisely the
large deviation functional for the density profile and the parti-
cle currents has been computed in Refs. [32,33] based on the pi-
oneering works for diffusive models, Refs. [34-36]. The aim of
this section is to extract from this general framework the local
variance of the current on the lattice for the DiSSEP model and
check its exact agreement with the value of u,(x) computed
previously; see Eq. (76) from the microscopic point of view.

Let us start by briefly presenting the key ingredients of
the MFT related to our model. A detailed presentation can be
found in Refs. [32,33]. It has been shown that the microscopic
behavior of the system can be averaged in the thermodynamic
limit and can be described at the macroscopic level by a small
number of relevant parameters: D(p), o(p), A(p), and C(p).
These parameters depend on the microscopic dynamics of the
model and have to be computed for each different model. The
two first are related to the diffusive dynamics on the lattice:
D(p) is the diffusion coefficient and o (p) is the conductivity.
For the DiSSEP, the diffusive dynamics is the same as for the
SSEP and hence these coefficients take the values D(p) = 1
and o(p) = 2p(1 — p). The two other parameters A(p) and
C(p) are related to the creation-annihilation dynamics. A(p)
can be understood intuitively as the mean number of particles
annihilated per site and per unit of time when the density profile
is identically flat and equal to p in the system, whereas C(p)
stands for the mean number of particles created. A rigorous
definition of these parameters can be found in Ref. [32]. For
the DiSSEP, we have A(p) = 2)%,02 and C(p) = 2)»%(1 —p)>.

39

251"

1.5

0.5

0 02 04 06 08 1
X

FIG. 8. Mean value (—) and variance (- - - ) of the lattice current
for p, = 1, p, = 0.2, and Xy = 3.

032102-11



N. CRAMPE, E. RAGOUCY, V. RITTENBERG, AND M. VANICAT

When the number of sites L goes to infinity, the probability of
observing a given history of the density profile p, of the lattice
current @, and of the creation-annihilation current K during
the time interval [0,7],' can by written as

Po.r1({p, @, K}) ~ expl—LT0,r1(p, O, K),
with the large deviation functional
Tyo,11(p, QK)

_ / " / 1 {(Q'<x,r)+D(p(x,r»axp(x,r»2
= t dx
20 (p(x,t))

(78)

+ <I>(,0(x,t),K(x,t))},

where

.1 ;
P(p.K) = 5[14(,0) + C(p) — K> +4A(p)C(p)

K < K2 +4A(p)C(p) + K)}
2C(p)

The factor 1/2 in the definition of @ is a slight modification in
comparison to Ref. [32] due to the fact that we consider here
creation-annihilation of pairs of particles instead of creation-
annihilation of single particles.

The quantities p, Q, and K are related through the
conservation equation

3 p(x,t) = —3,0(x,1) + K(x,1), (79)

and the value of p is fixed on the boundaries p(0,7) = p,,
p(1,t) = pp. The minimum of the large deviation functional
To,7) is achieved when the particle currents take their typical
values, that is Q(x,t) = —D(p(x,t))d,p(x,t) and K(x,t) =
C(p(x,t)) — A(p(x,t)). The typical evolution of the density
profile is hence given by

9 p(x,1) = 0x(D(p(x,1))d, p(x,1))
+ C(p(x,1) — A(p(x,1)),
which matches Eq. (62) for the DiSSEP.

B. Computation of the variance of the lattice current

Using the previous formalism and following Ref. [32], it
is possible to compute the local variance of the lattice current
Q in the stationary regime. Due to the fact that the dynamics
of the model does not conserve the number of particle, this
current and its fluctuations depend on the position in the
system. Hence, given a function t(x), we want to compute the
generating function of the cumulants of the integrated current

foT dt fol dx t(x) Q(x,t) for T going to infinity:

F{t}h = hm lim L

T—ooL—oo LT

T 1
x InE 7 [exp (f dt/ dxr(x)Q(x,t)):|.
0 0

"'We keep here all the notations used in Ref. [32]. The link with
the quantities previously computed is given by the fact that in the
stationary state the mean value of Q(x) is j"(x) and the mean value
of K(x) is 2 jd(x).
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The previous expression can be simplified using Eq. (78) and
a saddle point method. It reduces to maximize a functional
over the time dependent fields p, Q, and K. Assuming that
the extrema of this functional is achieved for time independent
profiles, we end up with the following expression (the reader
is invited to refer to Ref. [32] for the details):

1
f({r}>=sup< / dxr(x)Q(x)—i(p,Q)), (80)
0.Q

0

with

(Q(x) + Dlp(x)]d.[p(x)]?
I(p.0) = / {
0 20[p(x)]
<I>(p<x>,axQ(x>)}. (81)
To compute the local variance of the lattice current Q at the
point y, it is enough to take 7(x) = §(x — y) and expand
F({et}) up to order €. For a small perturbation €, the fields
are expected to be close to their typical value,

o f(x)
p(x) = p(x) + GD[ﬁ(x)]’
Q(x) = —D[p(x)]d,:p(x) + €q(x),
with the constraint f(0) = f(1) = 0 due to the boundaries.
‘We then obtain
2
F(let) = —eDEMILD0) + SHa(). (82)
with the variance of the lattice current at the point y,
b g+ 0P
=2 | a0
) = 2o [Q(y ) /0 x( 20150)]
[q'(x) + U) f(x)]? )} 83)
HAlo(x)] + Clo()]}

and U(x) = W =423, We make the following

change of variables to solve this optimization problem:

oy IO+
[Pl
oy = 4O HUDFW) .

2{A[P()] + Clp()1}
so that the Euler-Lagrange equations become for the DiSSEP,

Y'(x) = p(x) = 8(x — y),

¢'(x) = 4y (x). (85)
Note that there are slight modifications in Eqs. (82) and (84)
with respect to Ref. [32], in accordance with the modification
of @ [see discussion after Eq. (79)].

These equations can be solved analytically, and we get
sinh(2A0x) cosh[21¢(1 — y)]
sinh 2
sinh[2Xo(x — 1)] cosh(2Agy)

6 :
o> ) sinh 24

Y(x) =0 <y)
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21 cosh(219x) cosh[2A(1 — y)]
sinh 2
210 cosh[21o(x — 1)] cosh(2Apy)
sinh 2 ’

The function g(x) can be also computed analytically by solving
q"(x) — 4r5q(x) = 9. {A[P(x)] + C[E(N)]}Y (x))
— 4150 [P(N)]@(x).

Note that it depends on y; see, for instance, the above
expressions of (x) and ¢(x). It allows us to deduce the
expression of g (x) at the special point y [as needed in Eq. (82)],

@(x) =0(x < y)

+0(x > y)

1
() = /0 dx (o [P (x)?

+2{A[p(x)] + C[PON ¥ (x)?),

with ¢ and i are given above. Hence, for the DiSSEP, the
variance of the current lattice computed from MFT is

w2(y)

1
= / dx(o[p(0)]p(x)* + 2{A[p(x)] + C[P()}Y (x)?)
0

_ 4agcosh’220(1 — y) !
B sinh? 2 0
4)% cosh? 20y
sinh® 2

dx{o[p(x)] + sinh? 2x0x}

1
/ dx{o[p(x)] + sinh? 2xo(1 — x)}.
0

Using the explicit form for o', we show that this result obtained
from MFT matches perfectly the previous result, Eq. (76),
computed exactly from a microscopic description of the model.
Let us remark that a similar comparison between MFT for
diffusive model [34-36] and microscopic exact computations
has been performed in Ref. [37] for the SSEP. The result
obtained here is a confirmation of the MFT developed in
Refs. [32,33] for a system with diffusion and dissipation.

VII. SPECTRUM OF THE MARKOV MATRIX

A. Link with the XXZ spin chain, integrability,
and Bethe equations

The model introduced above (DiSSEP) possesses the
distinctive feature of being integrable, i.e., the Markov matrix
M governing the process belongs to a set of commuting
operators. Let us recall briefly the main objects to get this
set. The detailed construction for this particular model can be
found in Ref. [28]. This set is constructed through a generating
operator depending on a spectral parameter, the so-called
transfer matrix #(x). The building blocks of this transfer matrix
are the R matrix, obeying the Yang-Baxter equation, and
the boundary matrices K and K satisfying, respectively, the
reflection equation and the dual reflection equation. These
equations ensure the commutation of the transfer matrix for
different values of the spectral parameter as it was shown in
Ref. [50]: [#(x),?(y)] = 0. The Markov matrix is then obtained
as the first moment of the transfer matrix: M o #'(1).

The integrability of this model is also revealed through
its unexpected connexion with the X XZ model. To be more
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precise, let us introduce the following Hamiltonian H:

o+ A2 —1
H:(a—y)of'—Ty(of—i—l)— 7
L—1 2
X __X ) )‘ +1
x Y [ffk Oyt + 0000 — m(“;fff;fﬂ - 1)}
k=1
5+
+(© — Bo;, — 7 p (o7 +1), (86)

where 0%V~ are the Pauli matrices. It corresponds to the
open X X Z spin chain with upper triangular boundaries. This
Hamiltonian H is conjugated to the Markov matrix M defined
in Eq. (5). Namely, one has

H=0i0...0.MQ7'0;" ... 0", (87)

where Q = (_11 }). Let us also mention that the X X Z Model
for particular choices of boundaries is conjugated to the
Markov matrix of the open ASEP. However, for the boundaries
present in Eq. (86), the conjugation provides non-Markovian
boundaries.

We deduce from Eq. (87) that the spectrum of M is identical
to the one of H. Moreover, the eigenvalues (but not the eigen-
vectors) of X X Z spin chain with upper triangular boundaries
are the same that the ones for diagonal boundaries and one can
use the results of Refs. [S0-52]. Let us mention that equality
between the spectrums of two different models has been used
previously to study models with only evaporation [24]. Note
also that for A2 = 1, the bulk Hamiltonian becomes diagonal,
and the full Hamiltonian triangular, allowing to get its spectrum
easily without Bethe ansatz, in accordance with the results of
Sec. III.

The eigenvalues of H with diagonal boundaries can be
parametrized in two different ways depending on the choice
of the pseudovacuum:

(i) For the pseudovacuum with all the spins up and in the
notations of the present paper, the eigenvalues of H are given
by

E=-a—B—y—38

N

tap—1py — (88)
; w; — pHw; — 1)

where N = 0,1, ...,L and u; are the Bethe roots. The Bethe
roots must satisfy the following Bethe equations:

u; +a¢®  u; + bep? [qs(u,» -~ 1>]2L
plau; + 1) plbu; + 1) | w; — ¢

_ 1 P @ — i — 1)
(u; — Q%uj)uju; — %)’

(89)

j=1
J#

where i = 1,2,...,N and a and b are defined in Eq. (24).
(i1) For the pseudovacuum with all the spins down, the
eigenvalues of H are given by

N

E=dp—172y — % 90
@ )E(U:‘—W)(U:‘—l) G0
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where v; satisfy the following Bethe equations:
avi +¢* bv; + ¢’ [qs(vi - 1>]2L
(v +a) ¢(v; +b)| v —¢?

_ T £ = v, — D
(vi — @*v))(viv; — P*)

oD
yt
Let us stress again that although the spectrum of the X X Z
spin chain is the same for diagonal or upper boundaries, the
eigenvectors are different. For the XXZ spin chains with
upper triangular boundaries, the eigenvectors associated to
the parametrization Eqgs. (88) and (89) of the eigenvalues
were computed only recently by algebraic Bethe ansatz in
Refs. [38,53] based on the previous results for the X X X spin
chain [54-56]. The computation of the eigenvectors associated
to the parametrization Eqs. (90) and (91) is still an open
problem.

B. Computation of the spectral gap

In this section, we want to study the dynamical properties
of the model: using the previous Bethe equations, we study
the approach to the stationary state at large times for a large
system. We must compute the eigenvalue, denoted by G, for the
first excited state (i.e., the one with the greatest nonvanishing
eigenvalue).

We start by presenting the main results for the gap then we
give the sketch of the numerical evidences for them.

(1) Inthe case when evaporation rate A is independent of the
size of the system L, there is a nonvanishing gap. The values
of this gap depends on the boundaries parameters and on A.

b
I . _ -1 -1 b—1
G = G =253 (7 + 1)
||
0 @l @

2

G = _4ﬂ£|—_122_
(¢+1) _ —A{p—1)*a

G= (¢*+a){a+1)

FIG. 9. Value of the gap G depending on the parameters a, b, and
¢. The equation of the curve is b = ¢*/a. [This particular figure is
drawn for ¢ = 1/4 (A = 0.6), even though similar one is valid for
any ¢.]
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FIG. 10. Behavior of the gap in the thermodynamic limit when A
behaves as ﬁ: plotof z(L) = % as a function of % The lines
represent the values obtained from Bethe ansatz for 4 < L < 150,
while the dots correspond to direct diagonalization of H for4 < L <

10, pu=20u=10u=07+u=050mu=04).

We present these different values of the gaps on Fig. 9. They
are consistent with the analytical result obtained for A = 1 (see
Sec. IID).

(ii) If the rate A behaves as L%, for large system, the model
is gapless and we get

1
G~ —

T for

0<p<l, (92)

and

GN% for wp>1. (93)
We show in Fig. 10 numerical evidence for such a behavior.
We plot z(L) = % as a function of %: as % tends
to 0, it tends to 2u (respectively, 2) for u < 1 (respectively,
u = 1). The # behavior of the gap for u > 1 is expected
since the system becomes in this case a diffusive model in the
thermodynamic limit as discussed in Sec. V A.

To prove these results, we must study in detail the Bethe
Egs. (89) and (91). The comparison of the eigenvalues obtained
by the exact diagonalization of M or by the numerical
resolutions of the Bethe equations for small system (up
to 10 sites), show that the gap is obtained for N =1 in
Egs. (90) and (91) or is equal to G=—a - —y — 8 =
— %(% + lb’—:) [which corresponds to N = 0 in Egs. (88)
and (89)]. We assume that this behavior holds for any L then we
must solve only Eq. (89) for N = 1. This Bethe equation can
be written as the vanishing of a polynomial of degree 2L + 2
with respect to v;. This polynomial has two obvious roots ¢
and —¢, which are not physical since they corresponds to a
vanishing “eigenvector.” The remaining factor is a polynomial
of degree 2L with respect to v;, which can be transformed,
thanks to Eq. (90) (and up to a normalization), to a polynomial
of degree L with respect to E. Then, the Bethe Eq. (91) for
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= 1 becomes

L 2 L—p

Z(l—l—d))”E” 0% | ab p+q\(L—qg—2
por = q p—2

tqg—1\(L-q—1
e ()50
+<P+g_2)(qu>} 0. (94)

The left-hand side of the previous equation is a factor of the
characteristic polynomial of the Hamiltonian H Eq. (86) or
of the Markov matrix M Eq. (5). It is possible now to find
numerically the roots of the polynomial (94) for large system
(up to 150 sites) and pick up the largest ones. Performing this
computation for different values of A and of the boundary
parameters, we obtain the results for the gap summarized
previously; see Fig. 9.

VIII. CONCLUSION

The DiSSEP model (see Fig. 1) was recently introduced in
Ref. [28]. It was shown that the model is integrable and that the
probability distribution function describing the stationary state
can be written using the matrix product Ansatz. In the present
paper we discuss in detail the properties of the model. If one
chooses the symmetric hopping rate equal to 1, the physics is
dependent on the parameter A whose square is the common
rate for annihilation and creation of pair of particles.

It can be shown that the Hamiltonian (Markov matrix) has
the same spectrum as a XX Z spin 1/2 quantum chain with
nondiagonal boundary terms [see Eq. (86)]. One observes that
if A vanishes, one gets the ferromagnetic X X X model, which
corresponds to the well-known SSEP model. A natural idea is
to study the system in the weak dissipation limit A ~ 1/L*,
where L is the size of the system. We have studied the effect
of this Ansatz on the physics of the model. We remind the
reader that the weak ASEP model [57] is defined in a similar
way. The size dependence enters in the forward-backward
hopping asymmetry

As a warmup exercise we have studied in detail the A =1
case. In the bulk, the Hamiltonian is diagonal in this case
and the spectrum can easily be computed. The current large
deviation function on the first bond has been derived. The
function is convex and behaves like j In(j) for large values of
the current j.
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The case where A is arbitrary was considered next. Using
the matrix product Ansatz, we have obtained Eq. (25) for
the average value of an arbitrary monomial of the generators
of the quadratic algebra Eq. (22) in a specific representation
Eq. (23). This expression allows us to compute any correlator.
We give the expressions for the average values of the local
density Eq. (34), of the two-point and three-point densities
correlators Eq. (37), respectively, Eq. (38). We also show
[see Eq. (47)] that to derive the average density profile, the
mean-field result is exact. There are two kinds of currents
in our problem. The first one is given by particles crossing
a bond between two sites, the second one is given by the
pair of particles that leave or enter the system by the creation
and annihilation processes. Both expressions are given [see
Egs. (41) and (42)]. The variance of the first current was also
computed; the result can be found in Eq. (58).

In order to study the properties of the model in the large
L limit, as mentioned before, we take A vanishing like L™".
Using Eqgs. (34) and (37) one sees that the correlation length is
proportional to 1/A, which suggests that the system is gapless
for u > 0. Using the Bethe ansatz, we have shown that this is
indeed the case. The energy gap behavior is given in Egs. (92)
and (93). We could be tempted to look closely at the value . =
1/2 when the gap vanishes like 1/L, suggesting conformal
invariance. This is not the case as one can see from the behavior
of the average density and the two-point correlation function,
which do not have the expected behavior [58]. We have decided
to consider in detail the case u = 1, which corresponds to a
critical dynamic exponent z = 2 corresponding to diffusive
processes. The results are given in Sec. V.

We have also compared our results with those that can be
obtained using the macroscopic fluctuation theory [32,33]. The
variance of the current computed using this method coinci-
des with the lattice calculation described earlier in the text.

Finally, we would like to point out two generalizations that
look interesting to us. The first one is to consider asymmetric
hopping rates. The system will probably be not integrable
but mean-field, and Monte Carlo simulations will reveal new
physics. The second generalization deals with the multispecies
problem keeping integrability. This implies a generalization of
the results obtained in Ref. [28].
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