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We reply to the Comment by Schmelzer and Baidakov [Phys. Rev. E 94, 026801 (2016)]. They suggest that a
more modern approach than the classic description by Tolman is necessary to model the surface tension of curved
interfaces. Therefore we now consider the higher-order Helfrich correction, rather than the simpler first-order
Tolman correction. Using a recent parametrization of the Helfrich correction provided by Wilhelmsen et al.
[J. Chem. Phys. 142, 064706 (2015)], we test this description against measurements from our simulations, and
find an agreement stronger than what the pure Tolman description offers. Our analyses suggest a necessary
correction of order higher than the second for small bubbles with radius �1 nm. In addition, we respond to other
minor criticism about our results.
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Our recent publications [1–3] report on large-scale molec-
ular dynamics (MD) simulations of bubble nucleation and the
corresponding improvements for theoretical bubble nucleation
rate models which they motivate. Comments from Schmelzer
and Baidakov are critical of some methodologies in our
work [4]. In particular, they pointed out that the correction of
the planar surface tension based on the Helfrich expansion [5]
should be used rather than a simple first-order Tolman
correction. We would like to thank them for the comments
and take this opportunity to further clarify these points.

We agree with their statement that bubble nucleation can
be described appropriately in terms of classical nucleation
theory (CNT), if the size dependence of the surface tension
is included adequately for nanosized bubbles. The model of
surface tension based on the Helfrich expansion is interesting
to consider, although it includes some additional parameters.
Recently, Wilhelmsen et al. [6] obtained values for the
parameters in the Helfrich expansion for various temperatures
and cutoff radii in the case of a Lennard-Jones liquid using
density functional theory (DFT) calculations. The validity
of the Helfrich expansion for nanosized bubbles has not yet
been fully clarified [6]. In this Reply, we test the Helfrich
expansion model for various bubble sizes and temperatures,
using results for surface tension from our MD simulations and
from Baidakov and Babrov [7]. We also respond to minor
comments given by Schmelzer and Baidakov.

First, we would like to comment on the preexponential
factor in the nucleation rate. The surface tension of nanosized
bubbles can be precisely estimated from the nucleation rates
when given the correct preexponential factor. Kagan [8]
formulated a suitable preexponential factor for the nucleation
rate; however, he did not give the final explicit expression for
the preexponential factor in general cases. For large negative
pressures, bubble growth is regulated by the viscosity of the
liquid. In this case, the approximate expression given by
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Kagan [8] is valid and widely used in the previous studies.
Although a similar expression was also presented in Eq. (8) of
Ref. [7], it contains a typographical error. In the expression,
the molecular number density of the liquid should be replaced
by that of the saturated vapor. Based on the method of
Kagan [8], we have presented the final explicit expression
for the preexponential factor [Eq. (49) in Ref. [3]]. We also
pointed out the importance of the inertia effect on bubble
growth at moderate negative pressures and derived another
useful approximate expression including the inertia effect,
which is more accurate than Kagan’s. Our improved prefactor
enabled us to evaluate the surface tension of nanosized bubbles
precisely from the numerical (or experimental) data, as done
in Ref. [3].

In Baidakov and Babrov [7], the Tolman equation is
introduced as

γ = γ0

1 + 2δT/r
, (1)

where γ is the surface tension, γ0 is the planar surface tension,
and r is the radius of the bubble. We have evaluated Tolman
length δT, by comparing our simulation with Eq. (1) (see
Figs. 3–5 in Ref. [3]):

Schmelzer and Baidakov pointed out that the sign of the
second term in the denominator in the right-hand side of Eq. (1)
should be negative in the case of a bubble. We agree with the
use of a unified expression to avoid confusion, although in
the literature, Eq. (1) is often used. In any case, our results
suggest that the surface energy is smaller than the planar
value at various temperatures (� the triple point) for both
bubbles as well as droplets [1,3,9,10]. Thus, if the custom that
they suggested is followed, then the negative Tolman length
indicates a smaller surface energy than the planar value for
bubbles.

Up to now, we have argued with the simple formula of
Eq. (1) in Refs. [1,3]; however, it is also important to compare
with other models. Schmelzer and Baidakov recommend
modeling the curvature dependence of the surface tension of
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FIG. 1. Parameters in Eq. (3) as a function of the temperature
T ∗(=kBT/ε) obtained by Wilhelmsen et al. [6], where T , kB, and ε

are the temperature, the Boltzmann constant, and the binding energy
in the Lennard-Jones potential, respectively. The parameters obtained
at rc = 2.5σ (6.0σ ) are shown as open (filled) symbols. The surface
energies γ0 in Ref. [7] are also shown as cross marks.

bubbles and droplets by the relation

γ = γ0

1 + 2δTcs + l2c2
s

, (2)

where cs is the bubble curvature (cs < 0) or droplets (cs >

0). We agree with the validity of Eq. (2), although there is
an inconsistency in their Comment because cs > 0 is used
for bubbles, which is the same in Eq. (1), in Baidakov and
Bobrov’s paper (Ref. [7]).

The expression (2) follows from the interfacial free energy
in the Helfrich form given by

γ = γ0 ± 2δTγ0

r
+ 2k + k̃

r2
+ · · · , (3)

where k and k̃ are the bending rigidity and the rigidity constant
associated with Gaussian curvature [5,6], respectively. In the
double sign of Eq. (3), the upper one (i.e., +) corresponds to the
bubble case, while the lower is the droplet case. From Eq. (3),
the coefficient l2 in Eq. (2) is given by 4δ2

T − (2k + k̃)/γ0

within the second-order accuracy. Note that the corrections
higher than the second order should also be included in
Eqs. (2) and (3) for very small bubbles. These expressions
are reasonable, and should be compared with MD simulations
as a separate model. Thus, we compare the surface energy
obtained by MD simulations with Eqs. (2) and (3) (see below).

When comparing with MD simulations, we should be
cautious regarding the cutoff radius in the MD simulations.
The coefficients in the Helfrich expansion [and in Eq. (2)] are
strongly sensitive to the cutoff radius. In our simulations [1,3],
we adopt a cutoff radius of 2.5σ . Recently, Wilhelmsen
et al. [6] obtained the coefficients δT, k, and k̃ in Eq. (3)
for various values of the cutoff radius and temperature based
on DFT, as shown in Fig. 1. With these parameter values, it is
possible to compare the theoretical model of Eqs. (2) and (3)
with the results from the MD simulations.

Figure 2 shows a comparison of the surface tension between
the MD simulations [3,7] and theoretical models with Eqs. (1)
and (3) as a function of the critical bubble radius, r . Figure 2(a)
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FIG. 2. Comparison of surface tension between the MD simula-
tions [3,7] and theoretical models using Eqs. (1) and (3), as a function
of the critical bubble radius, r . (a) Surface energy ratio γ /γ0, obtained
by our MD simulation (open symbols) and from Ref. [7] (filled
symbols) with various temperatures. The Tolman equation, Eq. (1),
with δT = 0.3σ is shown by the solid curve. (b) Our MD simulations
at T ∗ = kBT/ε = 0.6, 0.7, 0.8, and 0.855 (open symbols) and the
theoretical model with Eq. (3) (solid curves). (c) Results by Baidakov
and Bobrov [7] (filled symbols) and with Eq. (3) (solid curves).

shows the results for various temperatures obtained from MD
simulations [3,7] compared with the simple model of Eq. (1)
with δT = 0.3σ proposed by Tanaka et al. [3]. This simple
model can well reproduce the surface tension obtained from
MD simulations [3,7] for a wide range of critical bubble radii,
although the theoretical validity of this model is uncertain.

In Figs. 2(b) and 2(c), the model of Eq. (3) is compared
with MD simulations [3,7], respectively. In Fig. 2(b), we used
the parameter values with the cutoff radius 2.5σ obtained by
Wilhelmsen et al. [6] for δT, 2k + k̃, and γ0. Wilhelmsen et al.
did not calculate these for T ∗ < 0.7. The parameters δT and
2k + k̃ are almost independent of temperature (see Fig. 1);
therefore, we assumed that the values of δT and 2k + k̃ at
T ∗ < 0.7 are the same as those at T ∗ = 0.7. The values of
γ0 at T ∗ = 0.6 are obtained from a linear extrapolation of the
values at T ∗ = 0.7 and 0.8. We find that the model of Eq. (3)
also well reproduces all the results of our MD simulations [3]
with relatively large critical bubble radii. Equation (2) was
also tested and it was determined that the original Helfrich
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expansion of Eq. (3) gives better agreement with the MD
results than Eq. (2).

In Fig. 2(c), we used the values of γ0 obtained by Baidakov
and Bobrov [7]. For δT and 2k + k̃, the parameter values with
6σ in Ref. [6] are used because rc = 6.7σ is adopted in the
MD simulation by Baidakov and Bobrov [7]. For T ∗ � 0.7,
δT and 2k + k̃ are assumed to be constant. Figure 2(c) shows
relatively large deviations between Eq. (3) and the MD results
from Ref. [7]. Baidakov and Bobrov [7] have already reported
similar deviations of their MD simulations from the results of
DFT calculations. They suggested that the parameter values
of l should be smaller than those obtained from previous DFT
calculations [11].

It should be noted that Baidakov and Bobrov [7] used an
overestimated preexponential factor, as stated above, which
causes an overestimation of the surface tension. Therefore,
the deviations in Fig. 2(c) would be reduced by the use of an
accurate preexponential factor. These deviations between the
MD results and the DFT calculations could also be due to small
critical bubble radii. The Helfrich expansion assumes that the
bubble radius is not very small. Wilhelmsen et al. [6] pointed
out that the expression of Eq. (3) is valid only when γ � 0.8
at T ∗ = 0.9 (see Fig. 5 in Ref. [6]). Thus, the deviations in
Fig. 2(c) may indicate that higher order terms than the second
order should also be included in the Helfrich expansion for
small bubbles with radius <1 nm, although the higher order
terms also require the estimation of additional parameters.
Furthermore, another problem with the work required for
the critical bubble formation was recently pointed out in
Refs. [12,13]. These unclear points regarding the surface
tension and formation work should be investigated in detail
in future studies using DFT calculations and MD simulations.

In Refs. [1,3], we gave an approximate expression of the
work for critical cluster formation as

�G = 16πγ 3

3(Peq − Pl)2δ2
, (4)

where Peq and Pl are the equilibrium vapor pressure at
saturation and the liquid pressure, respectively, and δ is a
correction factor referred to as the Poynting correction. The
model with δ = 1 (or δ < 1) was labeled CNT (or PCNT)
in Refs. [1,3]. Schmelzer and Baidakov [4] pointed out that
the name CNT should be used for the exact expression rather
than the above approximate one. In the most previous studies
with MD simulations, however, the model with δ = 1 is

adopted as CNT since δ is close to unity in most cases [14–
16]. Only a small deviation of δ from unity causes a huge
difference in the evaluation of the nucleation rate because
of its strong exponential dependence on �G. The deviation
in the nucleation rate can be several orders of magnitude at
temperatures below the triple point and moderate negative
pressures, as shown in Fig. 4 of [3]. In such cases, the Poynting
correction is crucial. We demonstrated the importance of the
Poynting correction by comparing the PCNT with the CNT.

In the last paragraph of [4], they gave three additional
comments. In comment (i), they emphasized that the results of
their MD simulations are reproduced well with the appropriate
expression for the curvature dependence of the surface tension
based on the Helfrich expansion. However, their adopted value
of l2 is smaller than that obtained from the DFT calculations
by [6]. If the value obtained from the DFT calculations is used
for l2, there are relatively large deviations between their MD
results and Eq. (3), as shown in Fig. 2(c).

In comment (ii), they criticized our expression for the
growth rate of bubbles. Indeed, the growth rate is the key
factor in the prefactor of the nucleation rate. But what we need
is the growth rate only around the critical size rc. Around rc, the
growth rate is approximately proportional to r − rc, as pointed
out by [8]. Under this valid approximation for the growth rate,
we also include the inertia effect, which is neglected in most
previous studies.

In comment (iii), they disagreed with our statement that
time-lag effects do not allow one to perform an accurate
determination of the steady-state nucleation rates. As stated
in Ref. [1], we can constrain the mean first passage times
(MFPT) with a large number of simulations. However, due to
the initial lag time and the early transient nucleation phase,
the relation between MFPT and the steady-state nucleation
rate is more complex and still under debate [1,9]. In a recent
study, Makshin and Galimzyanov showed that estimates for
the steady-state nucleation rate based on MFPT disagree by
several orders of magnitude [17]. Therefore, we consider that
the time-lag effect is still open to debate.
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