
PHYSICAL REVIEW E 94, 023317 (2016)

Comparison of different coupling schemes between counterions and charged nanoparticles in
multiparticle collision dynamics

Vincent Dahirel,* Xudong Zhao, and Marie Jardat
Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8234, PHENIX, F-75005 Paris, France

(Received 6 June 2016; published 30 August 2016)

We applied the multiparticle collision dynamics (MPC) simulation technique to highly asymmetric electrolytes
in solution, i.e., charged nanoparticles and their counterions in a solvent. These systems belong to a domain of
solute size which ranges between the electrolyte and the colloidal domains, where most analytical theories are
expected to fail, and efficient simulation techniques are still missing. MPC is a mesoscopic simulation method
which mimics hydrodynamics properties of a fluid, includes thermal fluctuations, and can be coupled to a
molecular dynamics of solutes. We took advantage of the size asymmetry between nanoparticles and counterions
to treat the coupling between solutes and the solvent bath within the MPC method. Counterions were coupled
to the solvent bath during the collision step and nanoparticles either through a direct interaction force or with
stochastic rotation rules which mimic stick boundary conditions. Moreover, we adapted the simulation procedure
to address the issue of the strong electrostatic interactions between solutes of opposite charges. We show that the
short-ranged repulsion between counterions and nanoparticles can be modeled by stochastic reflection rules. This
simulation scheme is very efficient from a computational point of view. We have also computed the transport

coefficients for various densities. The diffusion of counterions was found in one case to increase slightly with
the volume fraction of nanoparticles. The deviation of the electric conductivity from the ideal behavior (solutes
at infinite dilution without any direct interactions) is found to be strong.
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I. INTRODUCTION

Charged nanoparticles are ubiquitous in lots of fluids of
biological, ecological, or industrial interest. Some of the
properties of these fluids are governed by the transport prop-
erties of the nanoparticles. Moreover, the characteristics of the
nanoparticles themselves like their size or their charge is often
deduced from an interpretation of their transport coefficients.
For instance, widely used analytical tools in labs are zetametry
[1,2], which gives the zeta potential of nanoparticles from
their electrical mobility, or dynamic light scattering [3], which
allows to measure a diffusion coefficient from which the
approximate radius of the nanoparticle can be deduced. Even
in dark dense media, there are ways to characterize the size of
the particles by measuring other transport coefficients, such as
the electroacoustic potential [4,5].

Despite the interest of transport coefficients in these fluids,
their theoretical prediction still remains a challenge, even in the
case where interactions within the system are well understood.
For example, a solution of charged globular proteins, with
a radius of the protein of about one nanometer, neutralized
by its counterions, can be considered as a colloidal system.
But, as colloidal particles are here very small, usual colloidal
theories are expected to fail [6]. Alternatively, this system can
be handled as a highly asymmetric electrolyte, but with such
an asymmetry in charge and in size between ions of opposite
charge, this system is much more difficult to describe than
simple electrolytes such as NaCl or CaCl2 in water. Usual
electrolyte theories are therefore also expected to fail [7].

For these kinds of systems where typical colloidal or
electrolyte theories should be used with much caution,
investigations through numerical simulations are important.
Molecular dynamics (MD) at the atomistic level is a possibility,
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but computing for instance the electrical conductivity of a
protein solution using such a detailed modeling requires a
very substantial use of computational capabilities. There are
two main reasons for that. First, the electrical conductivity is
a collective transport coefficient, which can be defined from
the integral over time of the autocorrelation function of the
total electric current within a given volume of the liquid,
such as a simulation box [8,9]. This quantity is much more
difficult to compute with a good precision than individual
transport coefficients, such as the self-diffusion coefficient.
Indeed, the latter can be deduced from the integral over time
of the autocorrelation function of individual velocities, which
can be averaged out over the number of solute particles.
Second, the time scale at which the integral of autocorrelation
functions converges is of the order of a few nanoseconds
for such systems: getting precise values of these long time
properties requires very long computed trajectories. Therefore,
using alternative coarse-grained simulations is still necessary,
despite the progress of computational facilities. At least the
description of the solvent must be simplified, with all the care
required if one wants to reduce the number of degrees of
freedom explicitly described in a system.

Dynamic properties of charged species in solution are
influenced by thermal fluctuations, by direct electrostatic
interactions, and by hydrodynamic interactions mediated by
the solvent. The numerical simulation of fluids containing
nanoparticles thus requires the correct modeling of all these
direct and indirect interactions mediated by the solvent.
When the case of charged nanoparticles is investigated, the
presence of a possibly large amount of small counterions
and coions makes the simulation harder. For some method-
ologies, this difficulty lies not only in their abundance,
but also in their small size (compared to nanoparticles). In
particular, describing solutes of different sizes requires to
correctly describe hydrodynamics at different length scales.
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Hydrodynamic interactions are long range, compared to the
size of the solute particles. Therefore, in asymmetric systems,
the size of the simulation box must be much larger than that
of the biggest solute particle in order to resolve hydrodynamic
interactions far from these particles. Aside from this constraint,
the fluid velocity field at the surface of the solute particles
must also be carefully resolved, and therefore the description
of hydrodynamics around smaller ions has to be carefully
handled.

Moreover, another difficulty emerges due to the intensity
of electrostatic interactions, for instance, in situations where
electrostatic condensation is expected to happen [10]. In most
coarse-grained simulation techniques, dealing with strong
interactions is avoided if possible, especially because one
objective of coarse-grained simulations is to increase the
time step compared to atomistic ones [11]. Coarse-grained
simulation algorithms such as dissipative particle dynamics
[12] or Brownian dynamics [13–16] often include a stochastic
component, which is a consequence of the implicit description
of the solvent. Therefore, electrostatically condensed ions are
more likely to explore unstable regions of phase space with
stochastic algorithms than with MD: the random component of
their dynamics can lead them there. This problem disappears
when the time step decreases, but otherwise it can lead to
unphysical trajectories. This problem is particularly important
when the stochastic component directly impacts the positions
of the solutes, like in Brownian dynamics [17–19], but it is
less consequential when the stochastic component impacts
the velocities, like in multiparticle collision dynamics, the
mesoscopic methodology chosen in this study [20–22].

One possibility to go beyond the simplification of the
sole solvent and to overcome the problem due to the strong
interactions between the nanoparticles and their counterions is
to use an effective interaction potential between nanoparticles
[6,23,24] and to get rid of the explicit description of small
ions. Nevertheless, it is well known that small ions play
in some cases an important dynamical role. One can define
effective dynamical quantities, such as an effective diffusion
coefficient [25], accounting for the effect of the removed
degrees of freedom, but still for some applications the explicit
description of counterions is mandatory. For instance, an
effective diffusion coefficient would not account properly for
the effects of counterions in nonequilibrium simulations, e.g.,
under the presence of an electric field [26,27]. Moreover,
the computation of some collective transport coefficients,
such as the electrical conductivity, or even the mutual
diffusion coefficient which is measured by dynamic light
scattering, requires an explicit description of the counterions
[28,29].

In this context, our purpose in this work is to adapt the
multiparticle collision dynamics simulation (MPC) method to
systems which contain charged nanoparticles and their coun-
terions. MPC is an efficient mesoscopic simulation method to
describe the dynamic properties of fluids in various regimes
[20–22]. In this algorithm, the fluid is represented by pointlike
particles that evolve in two steps. Ballistic displacements of
solvent particles are followed by collision steps where solvent
particles interact through a momentum exchange. As this
algorithm conserves momentum and energy, it generates the
correct Navier-Stokes hydrodynamics. This bath of solvent

particles can be coupled to a molecular dynamics simulation
of the trajectories of solute particles [21,22].

Several variants of the coupling scheme between solutes
and solvent exist. This part of the methodology is particularly
important because, as we proceed to show, this is where the
asymmetry between the nanoparticle and its counterions can
be exploited to decrease the computation time. The simplest
way to couple solutes with the solvent is to assume that
solutes interact with the solvent only during the collision step,
exchanging momentum with solvent particles [20,22]. In this
case, no excluded volume exists for the solvent. We refer to
this scheme as CC (collisional coupling) in what follows. The
excluded volume between solutes and solvent can be taken
into account via explicit repulsive forces, deriving for example
from a Weeks-Chandler-Andersen interaction potential [30].
We refer to this scheme as CFC (central force coupling) in
what follows. The CFC coupling leads to a slip boundary
condition of the solvent at the surface of the solute [21].
Stick boundary conditions between solutes and solvent can
be mimicked thanks to stochastic reflections of the solvent at
the surface of the solute [31–34]. We refer to this scheme
as SRR (stochastic reflections rules) in what follows. We
have shown recently that, for neutral solutes and symmetric
electrolytes, the CFC MPC scheme compares very well with
Brownian dynamics simulations accounting for hydrodynamic
interactions through the Rotne Prager hydrodynamic tensor
[35,36]. The latter methodology is known to predict well the
effect of the volume fraction of charged solutes on the transport
coefficients [16,37,38]. The CC scheme is less effective in
taking into account the effect of the size of solutes and therefore
the influence of volume fraction on transport. However, the CC
algorithm is more efficient from a computational point of view,
and is a good compromise for systems for which a precise
description of the hydrodynamic size is not mandatory. This
is the case for small ions in water: the size difference between
ions and solvent molecules is small, and the hydrodynamic
size of the ion is not well defined from structural data, such as
the crystallographic size or from the size of the fully hydrated
ion. The description of continuous hydrodynamics around an
ion is deduced from an empirical top-down strategy [39]. The
hydrodynamic boundaries of small ions are not well defined
microscopically, and the use of the collisional coupling seems
justified in this case. On the other hand, this is not the case for
colloidal particles with clear hydrodynamic boundaries [40].

We propose here an efficient scheme based on MPC
simulations to compute the dynamic properties of charged
nanoparticles in solution in the presence of small counterions.
We suggest to use the CC coupling scheme between the
solvent and the small counterions, and either CFC or SRR
coupling schemes between nanoparticles and the solvent bath.
Moreover, to avoid the time consuming computation of short-
range interactions between counterions and nanoparticles, and
to increase the stability of the algorithm when the MD time step
is increased, we propose to use SRR conditions for counterions
in the vicinity of nanoparticles, using the same procedure as
for the solvent. It allows us to bypass the problem of the
exploration of the potential energy surface for highly attracted
charged solutes. Indeed, within this algorithm, the short-range
repulsive interaction is replaced by an exclusion scheme
resulting in effective hard-core interactions. The discretization
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of the trajectory using finite time steps is no longer a source
of instability. However, it is important to check whether
this approximate scheme, which affects the dynamics of the
counterions at the surface of the nanoparticle, leads to transport
coefficients that are quantitatively similar to the reference
scheme, where explicit interactions between counterions and
nanoparticles would be used.

In what follows, we study three different systems which
differ by the intensity of the electrostatic attraction between
nanoparticles and counterions, with three different variants
of the MPC algorithm. In every case, small ions are coupled
to the solvent bath through a CC scheme. We show that the
dynamic properties computed with SRR for small ions in
the vicinity of nanoparticles are very close to those obtained
with explicit repulsive forces, even for strong electrostatic
attractions between them. Moreover, this procedure demands a
computation time about 20 times shorter than the usual one for
the systems investigated here. We also investigate the dynamic
properties of nanoparticles and small ions with slip boundary
conditions of the solvent on nanoparticles (CFC scheme), and
we show that the nanoparticle-solvent boundary condition also
influences the dynamics of counterions.

Section II of this paper details the simulation methods,
and Sec. III describes the systems under study and contains
the parameters of simulations. In Sec. IV we compare the
results obtained with the different schemes, and Sec. V presents
the application of the simulation scheme to the study of the
influence of the volume fraction on dynamic properties of
solutes.

II. SIMULATION METHODS

A. MPC algorithm: Pure fluid

The MPC algorithm for a pure fluid is already described
elsewhere [20–22], and we only recall here the main lines.
The fluid is described by pointlike particles (the MPC fluid),
whose positions and velocities evolve in two steps. First, in the
streaming step, the particles evolve like in molecular dynamics,
through the integration of Newton’s equations of motion. There
is no force between the fluid particles, thus, the only forces
acting on the MPC fluid are due to external fields, solutes,
or walls. Therefore, the computation time associated with this
step scales as the number N of fluid particles. This is the major
advantage of the methodology. The exchange of momentum
between the fluid particles occurs in a second step, the collision
step. The simulation box is divided into cubic collision cells.
For each collision cell, a randomly oriented axis is chosen.
The velocity of each fluid particle relative to the velocity of
the center of mass of the cell is rotated by an angle α around
this axis:

vi(t + δtc) = vcell
c.m.(t) + Rα

[
vi(t) − vcell

c.m.(t)
]
, (1)

where vi is the velocity of particle i, Rα is the rotation matrix,
vcell

c.m. the velocity of the center of mass of the cell, and δtc
is the time between two collision steps. This second step
locally mimics interactions between the fluid particles. The
hydrodynamic properties of the fluid depend on the choice of
the angle α, of the mean number of fluid particles per unit cell
γ , and on the duration λ of the streaming step, i.e., the period
between two collisions.

B. Coupling the fluid and the solutes

There are several ways to couple the MPC fluid to explicit
particles embedded in this fluid. In the following, we refer to
the MPC fluid as the solvent, and to the embedded particles as
the solutes.

The simplest coupling scheme is to couple the solvent
and solutes particles during the collision step. In this paper,
we will refer to this scheme as collisional coupling (CC).
See a description in, e.g., [22,41]. Within this scheme, the
solvent particles can enter the solute particles, and therefore
the effect of the size of the solute particles on the long-range
hydrodynamics is not quantitatively reproduced. Nevertheless,
it has been used for instance for polymers [42–44], and
it was shown to be successful in describing the effect of
hydrodynamics on the polymer dynamics.

A second possibility is to add a central repulsive force
between the solvent and the solute particles. In this case, the
coupling occurs during the streaming step. In this paper, we
will refer to this scheme as central force coupling (CFC). In
this case, the solvent is excluded from the solute, and it slips
at the surface of the solute. The solute has then an explicit
hydrodynamic size, which is however different from the
typical hydrodynamic radius in colloidal dynamics, due to the
presence of a nonhydrodynamic source of friction, the Enskog
friction (for more details, see [21]). Beyond that difficulty, this
scheme requires quite small integration time steps to resolve
the solvent dynamics around the solute, therefore, it increases
substantially the computational cost. In this paper, when this
coupling mode is chosen, we use a Weeks-Chandler-Andersen
(WCA) interaction potential between the solvent and solute:

UWCA(r)

=
⎧⎨
⎩ 4εWCA

[(σ

r

)12
−

(σ

r

)6
]

+ εWCA, if r < 21/6σ

0, otherwise

(2)

where εWCA controls the intensity of the repulsion, σ is a
size parameter, which is larger than the hydrodynamic size
of the solute to avoid spurious depletion effects [21]. As the
interaction potential is rather steep, the streaming step must be
divided into smaller MD time steps, denoted by �t , in order
to ensure the stability of the algorithm.

A third family of methods intends to reproduce no-slip
boundary conditions at the surface of the solute (or of a
wall). This condition is a better representation of solutes as
colloidal particles since attractive short-ranged interactions
with the solvent are expected to stick solvent molecules at
the surface of the particles [31,32]. In this study, we used
the stochastic reflection rules algorithm (SRR). The SRR for
solvent particles around nanoparticles was first proposed by
Inoue et al. [45]. Within this scheme, when a solvent particle
enters a solute particle, the time and position of the impact is
computed, the solvent particle is restored to this impact point
and is given a random velocity obtained through a half-plane
Maxwell-Boltzmann distribution. For the remainder of the
step, the solvent particle streams from the point of contact
using this random velocity. The following modification of the
algorithm has been proposed in Ref. [31]. Instead of computing
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the exact impact time when a solvent particle enters the solute,
the dynamics is reversed so that both solvent and solutes go
half a step back. Then, the position of the solvent particle is
replaced by the closest point at the surface of the solute. After
that, a random velocity is generated, which is used to propagate
the solvent particles for the remaining half time step.

We use here the implementation of the algorithm proposed
by Padding et al. and described in Ref. [31]. The assigned
position of the solvent particle at the surface of the solute
particle is denoted by r∗. In order to implement the momentum
exchange between the solvent particle i and the solute or
nanoparticle NP, the solvent particle is assigned random
normal and tangential velocities v∗

n and v∗
t , respectively

(relative to the velocity of the nanoparticle). The probability
distribution for the scattered velocity is given by

P (v∗
n) = mβv∗

nexp(−mβv∗2
n /2), (3)

P (v∗
t ) =

√
mβ/(2π )exp(−mβv∗2

t /2), (4)

where β = (kBT )−1 with kB the Boltzmann constant, T the
temperature, and m the mass of a solvent particle.

After the impact of a solvent particle i with a solute particle
j , the velocity of solvent particle i, denoted by vi , becomes

vi(t + �t) = VNP
j (t) + �NP

j × [r∗ − Rj (t)] + v∗
n ên + v∗

t êt ,

(5)

where ên and êt are the unit vectors in normal and tangential
directions, Rj is the position vector of the solute particle j ,
�NP

j is the angular velocity of the solute particle j , Vj
NP is the

velocity of the solute particle j . The final velocity of the solute
particle j encountered by a solvent particle i becomes

VNP
j (t + �t) = VNP

j (t) + m

M
[vi(t) − vi(t + �t)], (6)

where M is the mass of the nanoparticle j . The angular velocity
of the nanoparticle is modified as well:

�NP
j (t + �t) = �NP

j (t) + m

I
[r∗ − Rj (t)]

× [vi(t) − vi(t + �t)] (7)

with the moment of inertia of the nanoparticle I = Md2/10
with d the diameter of the nanoparticle.

Within this methodology, the question of the discretization
of the equation of motion in the presence of a steep interaction
potential vanishes. It is not necessary to divide the streaming
step into smaller MD steps, except if the density of solutes
is important. In this case, multiple reflections on the solute
surface are expected to become more likely, and a good way
to avoid them is to divide the streaming step.

C. Stochastic reflection rules for counterions

In the case of charged colloidal systems, the issue of the
discretization of the equations of motion for counterions close
to the surface of the nanoparticle is even more problematic than
in the case of solvent particles. As counterions are attracted
by the nanoparticle, they are concentrated close to the surface.
Using a short-ranged repulsive interaction potential to mimic

the excluded volume of the nanoparticle renders thus the
description of the dynamics of electrostatically condensed ions
challenging.

In order to address this issue, we propose to apply the
stochastic reflection rules mentioned above to counterions in
the vicinity of nanoparticles. The same algorithm is used
for counterions and solvent particles when they encounter
a nanoparticle. The translational and angular velocities are
modified as well, following Eqs. (5)–(7). The finite size of
the counterions in the real solution is taken into account by
replacing the radius of the nanoparticle in Eqs. (5)–(7) by the
sum of the nanoparticle radius and that of the counterions.

In the framework of this scheme, the only forces to be
explicitly computed in the system are actually Coulomb forces.
In particular, short-range repulsive forces between counterions
which would account for their finite size are not taken into
account. This does not lead to unphysical situations because
Coulomb interactions between counterions are repulsive. It
would be more tricky to handle the case of added salt, with
Coulomb attraction between ions of opposite size. We are
working on this issue which will be dealt with in a forthcoming
article. Finally, this method is computationally lighter than the
usual one where all interactions between charged species are
taken into account. Moreover, larger time steps can be used.

D. Summary of the different coupling schemes used

In this study, our main effort is focused on the comparison
of three algorithms adapted to the simulation of the dynamic
properties of charged nanoparticles and their counterions in
suspension in the framework of MPC. In all cases, nanoparti-
cles interact with each other through Coulomb interactions and
a WCA potential with parameters εNP and σNP. Nanoparticles
and their counterions interact through Coulomb interactions.
Direct interactions between counterions consist in Coulomb
interactions and in short-ranged repulsions with parameters
εc and σc in two cases over three. In every case, long-ranged
Coulomb interactions are computed using the usual Ewald
summation technique [46].

In all three cases, counterions are coupled to the solvent
within the collision steps, i.e., we use the CC coupling scheme
for these small solutes. The nanoparticles are coupled to the
solvent bath either through WCA interactions (CFC algorithm)
with parameters εNP/f and σNP/f , or by using the stochastic
reflection rules mimicking no-slip boundary conditions (SRR
algorithm). With SRR, the minimal distance of approach
between the solvent and the nanoparticle is called σNP/f .

When nanoparticles are treated within the CFC algorithm,
counterions also interact with nanoparticles through a central
WCA potential, with parameters εNP/c and σNP/c, and they
interact with each other through a WCA potential with
parameters εc and σc. We therefore call this method F-CFC,
for full central force coupling.

When SRR conditions are used for the solvent in the
vicinity of nanoparticles, interactions between counterions and
nanoparticles are treated in two different ways. In the first case,
counterions interact with nanoparticles through a WCA poten-
tial with parameters εNP/c and σNP/c in addition to Coulomb
interactions. Counterions interact with each other through
Coulomb interactions and short-ranged WCA repulsions

023317-4



COMPARISON OF DIFFERENT COUPLING SCHEMES . . . PHYSICAL REVIEW E 94, 023317 (2016)

TABLE I. Different coupling schemes.

Acronym Solvent- Counterion-
of the nanoparticle nanoparticle
method interactions interactions

F-CFC Central force Central force
SRR-CFC Stochastic reflection Central force
F-SRR Stochastic reflection Stochastic reflection

with parameters εc and σc. This method is called SRR-CFC,
as it combines SRR for solvent-nanoparticle and CFC for
counterion-nanoparticle), and differs from the F-CFC variant
in the treatment of solvent-nanoparticle interactions only.
In the second case, counterions interact with nanoparticles
through the SRR scheme in addition to Coulomb interactions,
and interactions between counterions only consist in Coulomb
interactions (no WCA potential between counterions in this
case). We call this method F-SRR, for full stochastic reflection
rules. Within the F-SRR variant, the minimal distance of
approach between a counterion and a nanoparticle is called
σNP/c = (σNP + σc)/2.

The main characteristics of the three methods are summa-
rized in Table I.

E. Computation of the transport coefficients of solutes

In order to understand the ability of the different MPC
simulation techniques to be quantitatively predictive in terms
of transport coefficients, we compute the self-diffusion coef-
ficient and the electrical conductivity of the solution. These
quantities can be obtained from the computation of the
integrals over time of adequate correlation functions.

The self-diffusion coefficient of solutes is computed from
the autocorrelation function of the velocity:

D = lim
t→∞

1

3

∫ t

0
dt ′ 〈vi(t0) · vi(t

′ + t0)〉t0 (8)

or using the mean square displacements

D = lim
t→∞

〈[ri(t0 + t) − ri(t0)]2〉t0
6t

. (9)

We also define a time-dependent diffusion coefficient

D(t) = 〈[ri(t0 + t) − ri(t0)]2〉t0
6t

. (10)

The electrical conductivity, which is a collective transport
coefficient, is computed from the autocorrelation function of
the electric current in the simulation box:

χ = lim
t→∞

e2

3kBT V

∫ t

0

〈
N∑

i=1

zivi(t0 + t ′)
N∑

i=1

zivi(t0)

〉
t0

dt ′,

(11)

where kB is the Boltzmann constant and T the temperature,
V is the volume of the simulation box, zi the valency of ion
i, e the elementary charge, and N the total number of solute
particles in the simulation box.

In what follows, these transport coefficients are divided by
their value at infinite dilution, denoted by D0 and χ0, where
χ0 depends on D0 through χ0 = β

V

∑N
i=1 z2

i e
2D0

i .

III. SYSTEMS UNDER STUDY AND PARAMETERS OF
THE SIMULATIONS

In order to examine the precision and the numerical
efficiency of the three algorithms mentioned above, we study
several systems which differ from their asymmetry in terms of
size and charge. The types of systems for which the explicit
description of counterions is important from a physical point
of view and stays moderate from a computational point of view
include solutions of proteins, small micelles, small inorganic
particles such as polyoxometallates. With these systems in
mind, we chose to constrain ourselves to the study of three
systems.

The diameter σNP of nanoparticles, which is involved in
the direct interaction potential between them, and allows us
to define the volume excluded to solvent particles and to
counterions, takes two different values: either 1 nm or 4 nm.
The nanoparticles are surrounded by neutralizing monovalent
counterions with a diameter σc equal to 0.35 nm.

When the diameter of the nanoparticle is 1 nm, its charge
ZNP is either −4e or −8e, with e the elementary charge.
These characteristics are close to those of a system used
as a standard in electrokinetic measurements, especially in
electroacoustic experiments [47], namely, the silicotungstate
polyoxoanion (SiW12O40)4−. We also investigate the case
where the charge is equal to −8e instead of −4e because
we expect a stronger electrostatic coupling with counterions,
whose dynamic properties are difficult to account for in
numerical simulations.

When the diameter of the nanoparticle is 4 nm, its charge
ZNP is equal to −16e. The ratio ZNP/σNP takes thus exactly the
same value as for the system with σNP = 1 nm and ZNP = −4e.
These characteristics are here typical of aqueous micellar sys-
tems, such as DTABr, dodecyltrimethylammonium bromide,
where micelles are spheres of radius 2 nm and charge −16e,
as measured by electric conductimetry [29].

The three families of systems will be referred to in the fol-
lowing using the charge of nanoparticles: ZNP = −4e, ZNP =
−8e, and ZNP = −16e. The concentration of the suspension is
evaluated through the packing fraction of nanoparticles φNP, as
it is usually done in electrokinetic theories of colloids. Theories
of electrolytes usually focus on the electrolyte concentration,
which here would be equal to the number of nanoparticles
divided by the volume of the simulation box. It must be
noticed that, at a given volume fraction φNP, the numerical
concentration of nanoparticles with ZNP = −16e is 43 smaller
than with ZNP = −4e or ZNP = −8e. In Sec. IV, the volume
fraction of nanoparticles is 1% (φNP = 0.01). In Sec. V, it
varies between 0.005 and 0.04.

For each system, the parameters used to simulate the MPC
fluid bath are α = 130, γ = 5, λ = 0.1a0, where we chose the
size of the cubic collision cells a0 as the unit length. The unit
of mass is that of solvent particles mf = 1, the unit of energy

is kBT = 1, and the unit of time is t0 =
√

mf

kBT
= 1. The box

length is the same in every case (Lbox = 32a0), the volume
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fraction of solutes being varied by changing the number of
solutes in the simulation box. The mass of nanoparticles is
M = 150mf with mf the mass of solvent particles, and the
mass of counterions is mc = 10mf . The repulsion parameter
of the WCA interaction potential is the same in every case:
εWCA = 1kBT . σNP/f , which is the size parameter of the
nanoparticle and solvent WCA interaction potential in F-CFC
and the radius of the nanoparticle in other schemes is equal
to σNP/f = 2.31a0 in F-CFC and σNP/f = 1.81a0 in F-SRR
and SRR-CFC. The WCA size parameter for the nanoparticle-
nanoparticle interaction is either σNP = 4.95a0 in F-CFC or
σNP = 3.88a0 for the other schemes. The WCA size parameter
σc for the counterion-counterion interaction is 3 times smaller
than σNP for ZNP = −4e and ZNP = −8e. σc is 12 times
smaller than σNP for ZNP = −16e.

The computed diffusion coefficients of solutes are in
principle affected by the finite size of the simulation box. It
was shown previously (see, e.g., [21]) that for Lbox = 32a0 and
the parameters we use here, this finite size effect is negligible.
As for the nanoparticles, the diffusion coefficient at infinite
dilution D0 was extrapolated at zero volume fraction from
the values of the diffusion coefficients D of neutral solutes
at low concentration. We have obtained D0 = 0.0109a2

0/t0 in
every case. As for the counterions, we have taken the value
of the diffusion coefficient at infinite dilution computed in
our previous paper [36] in the same conditions as in this
work: D0 = 0.0418a2

0/t0. The results presented in following
sections were obtained by averaging over seven independent
trajectories of duration between 5 × 105 t0 (F-CFC and SRR-
CFC schemes) to 107 t0 (F-SRR scheme).

IV. COMPARISON OF THE DIFFERENT SIMULATION
SCHEMES

A. Numerical efficiency

When the F-CFC algorithm is used, the time step of the
simulation is �t = 0.01 t0 and the time between two collision
steps is δtc = 0.1 t0. In the SRR-CFC scheme, SRR rules
for solvent particles in the vicinity of nanoparticles are used
instead of pair interaction forces. The time step is the same as
in the F-CFC scheme: it cannot be increased because of the
combination of short-range repulsions and strong attractive
electrostatic interactions between counterions and nanoparti-
cles. If �t is too large, the discretized equation of motion
of counterions deviates too much from the exact trajectory.
Nevertheless, simulations with the SRR-CFC scheme are more
than two times faster than with the F-CFC scheme, thanks
to the SRR rules for solvent particles. The F-SRR algorithm
combines two main advantages. First, the use of the SRR rules
for solvent particles is more efficient than direct interactions
and, second, the time step �t can be increased by a factor
10. This is possible because the integration of the equations
of motions of counterions does not involve a pair interaction
potential combining a short-range repulsion and a long-range
attraction anymore. We have then with the F-SRR scheme
�t = 0.1 t0 and δtc = 1 t0. Finally, simulations with the F-SRR
scheme are found to be almost 20 times faster than with the
F-CFC scheme for the systems investigated here.
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FIG. 1. Radial distribution functions between nanoparticles and
counterions for the system ZNP = −16e at the volume fraction φNP =
0.01 obtained with the SRR algorithm for counterions (dotted red,
F-SRR algorithm), a WCA interaction potential between counterions
and nanoparticles and SRR for the solvent (dashed blue, SRR-
CFC algorithm), and full WCA interactions (plain black, F-CFC
algorithm). σNP/c stands for the sum of counterions and nanoparticles
radii: σNP/c = (σNP + σc)/2.

B. Radial distribution functions

To validate this scheme, where SRR is applied for counte-
rions in the vicinity of nanoparticles (F-SRR), the first thing
to check is that the spatial organization of the solution is well
reproduced. In Fig. 1, we give the radial distribution functions
(rdfs) between counterions and nanoparticles obtained with
the three different algorithms F-SRR, SRR-CFC, and F-CFC.
We obtain an excellent agreement between these methods. As
expected, the rdf does not depend on the solvent-nanoparticle
interaction (agreement between SRR-CFC and F-CFC). A
small difference at contact appears between results obtained
with the F-SRR scheme and other ones because the interaction
between counterions and nanoparticles is an effective hard-
core interaction when the F-SRR scheme is used. Even if
the WCA interaction potential is strongly repulsive at short
range, it is not a hard-core potential. The agreement is
also excellent for the rdf between counterions displayed in
Fig. 2. The good prediction of structural properties by the
F-SRR schemes is an argument to show that counterions are
adequately thermostated by the stochastic reflections. It also
suggests that the structure of the cloud of counterions around
nanoparticles is not affected by artifacts of the simulation
procedure, such as multiple reflections. We double-checked
this by computing the temperature using only the velocities of
counterions, which confirmed their perfect thermostating.

Moreover, the study of rdfs allows us to check that the
chosen systems are representative of qualitatively different
regimes in terms of electrostatic coupling. (i) Systems ZNP =
−4e and ZNP = −16e show no clear sign of electrostatic con-
densation, which was checked by computing the coordination
numbers for counterions as function of the distance Nc(r).
There is no clear inflexion point of the curve Nc(r), which
would be a signature of electrostatic condensation (Bjerrum
criterion [10]). The counterion-counterion rdfs also show that
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FIG. 2. Radial distribution functions between counterions for
system ZNP = −16e at the volume fraction φNP = 0.01 obtained with
the SRR algorithm for counterions (dotted red, F-SRR algorithm), a
WCA interaction potential between counterions and nanoparticles
and SRR for the solvent (dashed blue, SRR-CFC algorithm), and full
WCA interactions (plain black, F-CFC algorithm). σc stands for the
WCA diameter of counterions.

interionic correlations within the electrostatic double layer are
relatively weak (see Figs. 2 and 3). (ii) Conversely, the system
ZNP = −8e is a good model for highly charged nanoparticles
moving with electrostatically condensed counterions. First,
as expected, at a given volume fraction, the peak of the
rdf between counterions and nanoparticles is higher for
system ZNP = −4e than for system ZNP = −8e, where the
electrostatic interaction increases (see Fig. 4). Second, the
correlation between counterions is stronger in the system
ZNP = −8e than for ZNP = −4e, as it can be seen in Fig. 3.
Third, the counterion coordination number Nc(r) (not shown
here) displays an inflexion point as a function of distance,
typical of ionic condensation.
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FIG. 3. Radial distribution functions between counterions for
systems ZNP = −4e (plain black) and ZNP = −8e (dashed red) at
a volume fraction φNP = 0.01 obtained with the F-SRR algorithm.
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FIG. 4. Radial distribution functions between counterions and
nanoparticles for systems ZNP = −4e (plain black) and ZNP = −8e

(dashed red) at a volume fraction φNP = 0.01, obtained with the F-
SRR algorithm.

Finally, as the correlation between counterions increases
from ZNP = −4e to ZNP = −16e and then to ZNP = −8e

(see Figs. 2 and 3), the electrostatic coupling between the
nanoparticles and their counterions increases in the same
way. The kink in the rdfs between counterions which appears
at r/σc = 13 for ZNP = −16e (Fig. 2) and r/σc = 4 for
ZNP = −4e or ZNP = −8e (Fig. 3) corresponds to the maximal
distance between two counterions situated in the vicinity of a
given nanoparticle. This maximal distance is reached when
two counterions are diametrically opposed to each other on
a nanoparticle, i.e., at a distance equal to (σNP + σc)/σc. For
ZNP = −16e, the WCA size parameter of counterions σc is
12 times smaller than that of nanoparticles, so that the kink
appears at about r/σc = 13. For ZNP = −4e or ZNP = −8e,
the diameter of counterions σc is about three times smaller
than that of nanoparticles, so that the kink appears at about
r/σc = 4.

C. Dynamic properties of solutes

We present in Figs. 5 and 6 the diffusion coefficients of
nanoparticles and of counterions, respectively, as functions
of time. The time is rescaled by τB which is the Brownian
relaxation time, i.e., the characteristic time over which the
velocity correlations of nanoparticles decay. These quantities
were deduced from the mean square displacements divided
by time. They are presented for the three algorithms F-CFC,
SRR-CFC, and F-SRR, and for the three systems ZNP = −4e,
ZNP = −8e, and ZNP = −16e, for a unique volume fraction
(φNP = 0.01). The diffusion coefficients are divided by their
value at infinite dilution extrapolated from simulations with
only a few solutes in the simulation box.

In every case, the diffusion coefficient is smaller than its
value at infinite dilution. This is expected from electrolyte
transport theories [39,48] and was also obtained with other
simulation techniques, such as Brownian dynamics [16,49,50].
In the framework of usual theories of electrolytes, the decrease
of the diffusion coefficient as a function of concentration
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FIG. 5. Diffusion coefficient of counterions as a function of time
for the three different systems (black: ZNP = −4, red: ZNP = −8, and
blue: ZNP = −16) obtained with the F-CFC (plain line), SRR-CFC
(dashed line), and F-SRR (dotted line) algorithms at the volume
fraction φNP = 0.01.

is assumed to be mainly due the electrostatic coupling
between a solute and its ionic atmosphere, accounted for
by the so-called electrostatic relaxation force. Hydrodynamic
interactions also have an influence on this quantity as was
shown for example by BD simulations [25,29,51,52]: they
increase the diffusion coefficient compared to situations where
they are neglected because hydrodynamic couplings tend to
decrease the amplitude of the electrostatic relaxation.

As for counterions (Fig. 5), the decrease of the diffusion
coefficient due to the combined effect of electrostatic interac-
tions and hydrodynamics is moderate for systems ZNP = −4e

and ZNP = −16e, with a decrease of about 10% whatever the
method. The decrease is significantly more pronounced for
the system ZNP = −8e: this is a dynamical signature of the
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FIG. 6. Diffusion coefficient of nanoparticles as a function of time
for the three different systems (black: ZNP = −4, red: ZNP = −8, and
blue: ZNP = −16) obtained with the F-CFC (plain line), SRR-CFC
(dashed line), and F-SRR (dotted line) algorithms at the volume
fraction φNP = 0.01.

electrostatic condensation of counterions on nanoparticles in
this case. As condensed counterions move with the larger and
slower nanoparticle, they diffuse slower than free ions: on
average, counterions are slowed down.

The diffusion coefficients of counterions obtained by F-SSR
and SRR-CFC are in excellent agreement. Both schemes only
differ in the treatment of the dynamics of counterions in the
vicinity of nanoparticles: explicit WCA interactions in the
SRR-CFC algorithm, and effective hard-core interactions in
the F-SRR one. The difference between results obtained by
these methods is below the statistical noise of our calculations.
First of all, this means that the simplified description of the
dynamics of counterions in the vicinity of nanoparticles in
the F-SRR scheme is adequate. Moreover, this suggests two
things: (i) the small difference in the structure of the ionic
clouds observed in the rdfs in Fig. 1 does not influence the
dynamics of counterions; (ii) as long as counterions cannot
penetrate the core of nanoparticles, the friction induced by
the nanoparticle-counterion coupling does not depend on
the mechanism by which counterions are excluded from the
nanoparticles. Also, the CC coupling between counterions and
solvent tends to equalize the velocities of ions and solvent
molecules so that solvent velocities impose the counterion ones
at the surface of the nanoparticle. The solvent evolves through
the SRR scheme, which mimics no-slip boundary conditions:
they are transmitted to counterions in the SRR-CFC scheme.

The comparison of F-CFC and SRR-CFC schemes is
particularly interesting for counterions. These methods differ
from the treatment of the nanoparticle-solvent coupling but do
not differ from the treatment of the nanoparticle-counterion
coupling. The results show a quantitative effect of the solvent-
nanoparticle boundary condition on the friction felt by counte-
rions for both systems ZNP = −4e and ZNP = −8e. We remind
the reader that the solvent-counterion coupling (within the
collision steps) does not change in the methodologies we are
comparing here. We interpret this effect as follows: In the full
CFC algorithm (F-CFC), the solvent-nanoparticle interactions
result in effective slip boundary conditions, which means
that the trajectories of the solvent particles are less coupled
to those of the nanoparticles than in the case of the SRR
algorithm (the latter models no-slip boundary conditions). This
difference is transmitted to counterions through the solvent. As
a result, the hydrodynamic coupling between counterions and
nanoparticles is smaller within the F-CFC methodology than
within the SRR-CFC one. As hydrodynamic effects reduce
the electrostatic couplings, the electrostatic friction is more
important with the F-CFC scheme. In other words, the stronger
is the hydrodynamic coupling, the weaker is the electrostatic
friction; the less intense is the friction, the higher is the
diffusion coefficient. For the system ZNP = −8e, for instance,
this explanation may account for the increase of the diffusion
coefficient from about 0.73D◦ with F-CFC to 0.78D◦ with
SRR-CFC.

The picture is slightly less straightforward for the transport
of nanoparticles (Fig. 6). For all three systems, there are
differences for the computed values of the diffusion coefficient
D using the three methodologies, with the same sequence
D(F-CFC) >D(F-SRR) >D(SRR-CFC). The values obtained
from the F-SRR and SRR-CFC methods do not exactly
agree for a given system, contrarily to what was observed

023317-8



COMPARISON OF DIFFERENT COUPLING SCHEMES . . . PHYSICAL REVIEW E 94, 023317 (2016)

0 500 1000 1500 2000 2500 3000
t/tB

0.4

0.5

0.6

0.7

0.8

0.9

1

κ 
/ κ

0

SRR-CFC
F-SRR

FIG. 7. Electrical conductivity of the suspension for the three
different systems (black: ZNP = −4, red: ZNP = −8, and blue: ZNP =
−16) obtained with the SRR-CFC (dashed line) and F-SRR (dotted
line) algorithms at the volume fraction φNP = 0.01.

for counterions, but the difference between the diffusion
coefficients stays relatively small, around 0.02D◦, i.e., close to
the limit of statistical significance (the number of nanoparticles
in the simulation box is smaller than that of counterions, which
decreases the precision of the evaluation of D). Moreover, the
ratio of diffusion coefficients of the different systems is almost
the same for all three methods: D(ZNP = −4e)/D(ZNP =
−16e) = 0.713 for F-CFC, 0.725 for F-SRR, and 0.715 for
SRR-CFC. This comparison of relative transport coefficients
makes sense in an analytical perspective, as experimental
transport quantities are often obtained through the use of
calibration curves using referent materials.

Collective transport coefficients are more difficult to com-
pute than individual transport coefficients, as they require
longer trajectories, but they can give complementary informa-
tion. In particular, the electrical conductivity is particularly
sensitive to the coupling between the nanoparticles and
their counterions since under an electric field, these two
types of particles move in opposite direction relative to the
electric field. Hydrodynamics couplings strongly reduce the
ability of particles to move with opposing velocities, and
thus considerably decrease the conductivity of the fluid. The
integral of the autocorrelation function of the electric current
divided by the electrical conductivity at infinite dilution is
shown as a function of time in Fig. 7 for all three systems,
and for the two counterion-nanoparticle coupling schemes
(SRR-CFC and F-SRR). The long time limit of this integral is
the electric conductivity of the fluid. The agreement between
both methods is again very satisfying.

All together, the comparisons between SRR-CFC and
F-SRR methods make a strong argument for the use of the
stochastic reflection rules for counterions. It yields computed
dynamical quantities which are very close to those obtained
with the use of a central repulsive force, and it enables to
avoid instabilities due to the discretization of the trajectories
within rapidly varying energy landscapes. Finally, as already
stated before, the F-SRR scheme is more efficient from the
computational point of view.
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FIG. 8. Diffusion coefficient of the nanoparticles computed with
the F-SRR algorithm as a function of the volume fraction of the
solutes, for the three different systems (plain black: ZNP = −4,
dashed red: ZNP = −8, and dotted blue: ZNP = −16).

V. APPLICATION: INFLUENCE OF THE VOLUME
FRACTION ON THE DYNAMIC PROPERTIES

As we showed previously, the F-SRR proposed method-
ology is able to predict reliable transport coefficients for
suspensions of nanoparticles and their counterions in the
framework of multiparticle collision dynamics, and is faster
than alternative MPC coupling schemes. We present hereafter
(Figs. 8–10) series of results obtained within this methodology
as a function of the volume fraction of nanoparticles φNP.

The diffusion coefficients of nanoparticles shown in Fig. 8
decrease monotonically with the volume fraction of the solute,
as expected from an increase of the effect of repulsive
interactions that slow down the overall dynamics. Indeed, the
free space available for the diffusion of the particles decreases
when the density increases. For a given volume fraction, the
fastest nanoparticles are the smallest and less charged ones
(system ZNP = −4e). The diffusion coefficient of the most
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FIG. 9. Diffusion coefficient of the counterions computed with
the F-SRR algorithm as a function of the volume fraction of the
solutes, for the three different systems (plain black: ZNP = −4,
dashed red: ZNP = −8, and dotted blue: ZNP = −16).
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FIG. 10. Electrical conductivity of the suspension computed with
the F-SRR algorithm as a function of the volume fraction of the
solutes, for the three different systems (plain black: ZNP = −4,
dashed red: ZNP = −8, and dotted blue: ZNP = −16).

charged nanoparticles (ZNP = −16e) is the smallest one, even
if the ratio ZNP/σNP is the same for this system and for
that with ZNP = −4e. This is an effect of the electrostatic
friction of counterions: the attraction between counterions
and nanoparticles is almost the same for ZNP = −4e and
ZNP = −16e, but the number of counterions surrounding the
nanoparticles is much larger.

As for counterions, the results displayed on Fig. 9 reveal
two regimes: (i) for the less electrostatically coupled sys-
tems (ZNP = −4e, ZNP = −16e) the diffusion coefficients
of the counterions show a monotonic decrease with the
density in solutes; (ii) oppositely, for the systems containing
electrostatically condensed ions (ZNP = −8e), the diffusion
coefficients of the counterions have a monotonic increase with
the density in solutes. This counterintuitive result is due to an
electrostatic effect: the ionic condensation of counterions on
nanoparticles decreases when the global concentration of the
system increases because the electrostatic screening increases.
Counterions are thus less attracted to nanoparticles and can dif-
fuse faster. This behavior has already been observed in related
systems by using Brownian dynamics simulations [53,54].

The electrical conductivity of the fluid displayed in Fig. 10
decreases monotonically with the density in solutes. For the
systems ZNP = −8e, the fact that the diffusion coefficient
of counterions increases with increasing concentration does
not yield an increase of the conductivity with increasing
concentration. It is noteworthy that the deviation from ideality
(case without any interactions between solutes) is very high for
systems ZNP = −8e and ZNP = −16e. The analytical theories
of transport in electrolytes often rely on the calculation of
corrections relative to the ideal case [39]. By principle, they
cannot be applied for such strong deviations from ideality.

VI. CONCLUSION

In this study, we applied the MPC simulation technique
to study suspensions of highly asymmetric electrolytes, i.e.,
charged nanoparticles and their counterions in a solvent.

While the asymmetry between nanoparticles and counterions
is in principle a source of computational difficulty, we took
advantage of it, and we chose to couple the dynamics of these
two kinds of solutes to the MPC solvent with a rule adapted to
their respective size.

Counterions were coupled to the MPC solvent bath during
the collision step. This results in an effective hydrodynamic
size of counterions which is different from their real size, but
the coupling between the solvent bath and solutes is simple,
computationally efficient, and rather pertinent for small ions
whose hydrodynamic radius is not unambiguously defined.
Nanoparticles were coupled to the solvent particles either
through a direct interaction force or with stochastic rotation
rules which mimic stick boundary conditions.

Difficulties arising from the coupling between the MPC
solvent and solutes have already been addressed by other
studies, but our work combines two different coupling schemes
for two different types of solutes in the same simulation.
This mixed coupling rule seems particularly adapted for
suspensions containing solutes with different sizes. We studied
systems with a size ratio between solutes from 3 to 12, and
this mixed coupling rule can be used in principle in MPC
simulations devoted to suspensions of solutes of different sizes,
within size ratios of the same order as in our study.

Moreover, we adapted the simulation procedure to address
a second issue: the treatment of the strong electrostatic
interactions in systems where both types of solutes have
opposite charges, namely, asymmetric electrolytes or nanopar-
ticles and their counterions. We compared two different
schemes to treat nanoparticle-counterion interactions. In both
cases, the treatment of electrostatics at long range is similar,
using the Ewald summation technique. But, the short-ranged
interaction potential, which is particularly difficult to sample
as it combines a short-ranged repulsion (counterions must be
excluded from the volume of the nanoparticle) and a strong
attraction (leading to an ionic condensation in some cases).
In the first method, the short-ranged repulsion is modeled
by a central repulsive force (WCA interaction potential). In
the second method, counterions are reflected on the surface
of nanoparticles. In other words, we described the dynamics
of counterions in the vicinity of nanoparticles with two
different schemes similar to the two usual nanoparticle-solvent
coupling methodologies (central force coupling leading to slip
boundary conditions or stochastic reflection rules leading to
stick boundary conditions). We also investigated whether the
nanoparticle-solvent coupling scheme had an influence on the
dynamics of counterions.

The central result of our study is that the use of reflection
rules for counterions at the surface of nanoparticles compares
very well with the use of a central repulsive force. Moreover,
the reflection rules are much more computationally efficient
than the explicit computation of direct repulsive forces. This
is an important result because the systems under study here
belong to a domain of solute size which ranges between
the electrolyte and the colloidal domains. Most analytical
theories are expected to fail for such systems, and efficient
simulation techniques are still missing. Thus, we did not
intend here to confront our results to existing analytical or
semianalytical theories. Nevertheless, one disadvantage of the
F-SRR method is that it is unable to represent detailed short-
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ranged interactions between the surface of the nanoparticle
and the counterions.

In the last section, we also presented series of calculation
of transport coefficients in suspensions of nanoparticles and
their counterions for various densities. In every case, the
diffusion coefficient of nanoparticles is found to decrease with
the volume fraction. As for the counterions, their diffusion
coefficient is more affected when the electrostatic coupling
with the nanoparticle increases, as expected. In one case, the
diffusion coefficient of counterions is found to increase with
the volume fraction of nanoparticles, a counterintuitive result
which was already obtained in related systems by Brownian
dynamics [54]. In the case of the electrical conductivity, the
deviation from the ideal behavior (solutes at infinite dilution
without any direct interactions) is strong: the conductivity is
equal to half of its ideal value for the more electrostatically
coupled system. For such systems, analytical electrolyte
theories are meaningless, as they only make sense with
small deviations from the ideal behavior [39]. Moreover,
electrokinetic theories of colloidal systems, which usually rely
on effective quantities such as the effective charge or the zeta

potential, assume in most cases that colloidal particles do not
contribute to the electrical conductivity [1,2]. We remind the
reader that the relative contribution of each species to the ideal
electric conductivity scales as nDz2, where n is the density, D
is the diffusion coefficient, and z is the charge. For the system
ZNP = −8e, the contribution to the electrical conductivity of
nanoparticles is higher than the contribution of the counterions,
which is therefore an indication that colloidal theories are not
adapted either.

This study is a first step towards a a more quantitative
understanding of the dynamics of charged nanoparticles in
solution. A complete comparison of MPC results to available
analytical transport theories in the cases where analytical
theories are reliable, and then novel extensions of electrolyte
theories, will be discussed in subsequent papers.
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