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Accurate time propagation method for the coupled Maxwell and Kohn-Sham equations

Yonghui Li,1,2 Shenglai He,1 Arthur Russakoff,1 and Kálmán Varga1,*
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An accurate method for time propagation of the coupled Maxwell and time-dependent Kohn-Sham (TDKS)
equation is presented. The new approach uses a simultaneous fourth-order Runge-Kutta–based propagation
of the vector potential and the Kohn-Sham orbitals. The approach is compared to the conventional fourth-
order Taylor propagation and predictor-corrector methods. The calculations show several computational and
numerical advantages, including higher computational performance, greater stability, better accuracy, and faster
convergence.
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I. INTRODUCTION

An accurate description of the interaction of electro-
magnetic fields and matter is an indispensable tool for
understanding and predicting electric and optical properties
of nanostructures. Modeling and simulation of this interaction
plays a critical role in the foundation of modern electronics,
information processing, and optical communications [1–5].
Quantum electrodynamics would, in principle, provide a
complete description of these systems, but the high complexity
and prohibitively large computational expense prevents its
application to realistic systems. A viable alternative is the
combination of nonrelativistic quantum mechanics to describe
the particles and a classical treatment of the electromagnetic
fields. In this semiclassical framework the electromagnetic
fields are not quantized and their time evolution is governed by
the Maxwell equations coupled to the quantum mechanically
determined charge and current distributions of particles [6–8].
A full many-body quantum approach is not tractable for
systems containing more then a few electrons, and most
approaches are based on the time-dependent density functional
theory (TDDFT) [9,10].

Various approaches have been developed to use the coupled
Schrödinger and Maxwell systems [6,8,11–22]. In problems
where the propagation of electromagnetic waves in materials is
tackled, most approaches use a finite-difference time-domain
solution for the electromagnetic waves and time evolution of
the Schrödinger equation in real space for the electrons [19,21].
Due to the large wavelength of the electromagnetic waves
typically considered, the simulation cell has to be large
and the atomistic details are suppressed. Yabana et al. [23]
devised a multiscale approach where the Maxwell equations
are solved on the scale of the electromagnetic wavelength
and the Schrödinger equation is solved on the atomic scale
using TDDFT. This approach, however, is computationally
expensive and only works for certain geometries. At the
same time, many problems require the treatment of the
electromagnetic fields coupled to the electronic structure at
the atomic scale. In this case the electromagnetic fields and
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the Schrödinger equation is propagated on the same time and
length scale [24], which limits the applicability of this method
to small simulation cells and short timescales.

In this paper we investigate the simultaneous time propa-
gation of the vector potential of the electromagnetic fields and
the wave function describing the electrons of the system. First,
we compare the accuracy and efficiency of the conventional
approaches [25,26], then we propose a new method, based on
a dual Runge-Kutta approach to improve the time propagation
scheme. This approach allows larger time steps and lower
computational cost than previously considered propagators.
We use the formalism proposed by Bertsch et al. [24]. In this
approach, which has been successfully applied to various prob-
lems [23,25–27], the time-dependent Kohn-Sham equations
of TDDFT and Maxwell equations are solved on a real-space
grid with periodic boundary conditions. To incorporate the
electromagnetic fields, the Kohn-Sham equation is coupled to
the Maxwell equations by adding a vector potential A(t) to the
linear momentum in the Kohn-Sham equation.

The plan for this paper is as follows. In Sec. II we present the
Maxwell-TDKS formalism and the numerical approach used.
In Sec. III we review the Taylor and predictor-corrector real-
time propagation schemes. In Sec. IV we describe the proposed
simultaneous fourth-order Runge-Kutta propagation method,
and in Sec. V we compare the three propagation schemes. In
Sec. VI we summarize the results and conclude this paper.

II. MAXWELL-TDKS EQUATION WITH PERIODIC
BOUNDARY CONDITIONS

In systems with the periodic boundary conditions the Kohn-
Sham orbitals take the form of Bloch waves,

ψik(�r,t) = ei�k·�ruik(�r,t), (1)

with a lattice periodic spatial part, uik(�r,t), where i is the
orbital and k is the k-vector index, and a phase factor, ei�k · �r .
The Maxwell-TDKS equations can be written as

i
∂

∂t
uik(�r ,t) = HKS(t)uik(�r,t). (2)
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The Kohn-Sham Hamiltonian, in atomic units, is given by

HKS(t)uik(�r ,t) =
[

1

2
(−i∇ + �k + �A(�r,t))2

+VHxc[n(�r,t)](�r,t)
]
uik(�r,t)

+
∫

d3�r ′e−i(�k·�r )vpp(�r ,�r ′)ei(�k·�r ′)uik(�r ′,t),

(3)

where, n(�r,t) is the electron density, �A is the vector potential,
VHxc is the sum of the Hartree and exchange-correlation
potentials, and vpp is the sum of Troullier-Martins [28] norm-
conserving pseudopotentials for the ions. The time-dependent
density, n(�r,t), is defined as

n(�r,t) = 2
∑
ik

|uik(�r ,t)|2.

The Hartree potential is given by,

VHartree =
∫

n(�r ′,t)
|�r − �r ′|d�r ′. (4)

The exchange-correlation potential is approximated using
the adiabatic local density approximation (ALDA) with the
parametrization of Perdew and Zunger [29]. The vector
potential, �A = �Aext + �Aind, is a “macroscopic” quantity which
is the sum of the external field, �Aext , and the induced internal
field, �Aind. VHxc is a “microscopic” field within the unit
cell.

Unlike the ordinary TDKS equations, where vHxc is the
only term which depends on the time-dependent density, the
vector potential in the Maxwell-TDKS equations also couples
to the spatial average of the current density,

∂2 �A
∂t2

= −4π �J = −4π

�

∫
d�r[ �j (�r,t) + �jpp(�r,t)], (5)

where �j (�r,t) is the normal probability current in quantum
mechanics while �jpp(�r,t) is the contribution from the nonlocal
part of the pseudopotential as defined, e.g., in Ref. [26].
Equation (5) is the Maxwell-equation describing the time-

dependent macroscopic fields induced by the time-dependent
currents.

A brief description of the numerical approach is as follows.
A real-space grid representation [24,30,31] is used to solve
the TDKS equations, Eq. (2). The kinetic energy operator
is calculated using a fourth-order finite-difference formula.
Our test system is a diamond crystal, the same system as
used by Bertsch et al. [24]. There are 8 carbon atoms
in a cubic box of L3 = 6.733 Bohr3. The grid spacing is
�x = �y = �z = 0.42 Bohr. An equidistant 2 × 2 × 2 and
5 × 5 × 5 k-point meshes are used. While these meshes may be
too small for calculations that can be compared experiments,
these k-point grids are sufficient for the test of different
approaches.

At the beginning of the calculation, the ground-state Kohn-
Sham orbitals of the unperturbed system are obtained by
solving the time-independent Kohn-Sham equations of density
functional theory (DFT). Next the system is perturbed by an
instantaneous electric field, �E(t), in a form of a δ-function kick
at time, t = 0,

�E(t) = −d �Aext

dt
= −A0δ(t)�ez, (6)

where A0 = 0.01 a.u. is the strength of the perturbation and
�ez is the unit vector pointing to the z direction. This gives an
initial condition for the vector potential,

�A(t = 0) = A0�ez.

The Kohn-Sham orbitals are then propagated in real time. In
this paper we consider three propagation algorithms: fourth-
order Taylor propagation (Algorithm 1), predictor-corrector
(PC) (Algorithm 2), and simultaneous fourth-order Runge-
Kutta (SRK4) (Algorithm 3).

III. TIME PROPAGATION OF THE MAXWELL-TDKS
EQUATION

In the fourth-order Taylor propagation, the Kohn-Sham
orbitals are propagated as,

uik(�r,t + �t) =
4∑

n=0

1

n!

(
− i�t

�
HKS(t)

)n

uik(�r,t). (7)

FIG. 1. (a) Current and (b) vector potential in the z direction in a diamond crystal induced by a δ kick applied in the z direction. A 2 × 2 × 2
k-point mesh is used. The Kohn-Sham orbitals are propagated with the Taylor propagation scheme (Algorithm 1) for times up to 400 a.u.
Current plotted only up to 200 a.u. Well converged results are obtained for time steps �t � 0.002 a.u.
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This is a conditionally stable propagation scheme. It has proved
to be very accurate in many applications [32–42] provided that
the time step is sufficiently small.

If one propagates the Kohn-Sham orbitals using the Taylor
approach but without including the induced vector potential,
the largest time step one may use to obtain well converged
results is �t0 = 0.04 a.u. (0.001 fs). VHxc is a slowly changing
quantity which can be treated as a constant during each step of
the propagation. In this case the most expensive operation
of the calculation is the application of the Kohn-Sham
Hamiltonian to the Kohn-Sham orbitals. The commonly used
fourth-order Taylor propagator requires four of these sparse
matrix-vector operations per Kohn-Sham orbital.

To include the induced current and vector potential, one
must propagate the Maxwell-TDKS equations simultaneously.
We begin by investigating the simple propagation algorithm
shown in Algorithm 1. In this algorithm the Kohn-Sham

orbitals are time developed using Taylor propagation and the
vector potential is updated using a finite-difference represen-
tation of the second derivative. Since the second derivative of
the vector potential is related to the current [see Eq. (5)],
the vector potential is very sensitive to small changes in
current. This makes the simultaneous solution of the TDKS
and Maxwell-equations more challenging. The induced vector
potential changes more rapidly than VHxc. If a time step on the
same order as �t0 = 0.04 a.u. is applied to the Maxwell-TDKS
equations using Algorithm 1, the calculation diverges. For
example, a time step of �tT = 0.02 a.u. leads to a divergence
at 100 a.u. (2 fs) as shown in Fig. 1. Reducing the time step
to �tT = 0.002 a.u. gives well converged results. However,
this time step is computationally prohibitively expensive (see
Table I). Figure 1 shows that the divergence does not occur
at the beginning of the calculation. This makes it difficult to
select a proper time step for the Taylor propagator.

Algorithm 1. Taylor method for the Maxwell-TDKS equation

procedure TAYLOR1STEP(n(�r,t), {ψik(�r,t)}, �A(t), �A(t − �t)) � The initial condition
VHxc(�r) ← COMPUTEVHXC(n(�r,t))
{ψik(�r,t + �t)} ← TAYLORPROPAGATOR1STEP{ψik(�r,t)}, �A(t), VHxc(�r) � fourth-order expansion
�J ← COMPUTECURRENT{ψpred

ik (�r)}
�A(t + �t) ← 2 �A(t) − �A(t − �t) + (−4π ) �J�t2

end procedure

To alleviate this problem, the PC method was introduced and has been used in many applications [24,25,43]. The PC
algorithm is summarized in Algorithm 2. A typical PC method requires two Taylor propagations, and hence eight applications
of the Hamiltonian to each Kohn-Sham orbital.

We use the well converged result of Algorithm 1 with �tT = 0.002 a.u. as a benchmark calculation. In Fig. 2, we calculate the
current density and induced vector potential using the PC method and compare to the benchmark. We have found that a time step
of �tPC = 0.005 a.u. yields a stable propagation within 200 a.u. (5 fs). With larger time steps the results diverge more quickly.

Algorithm 2. PC method with Taylor propagator

procedure PREDICTORCORRECTOR1STEPn(�r,t), {ψik(�r,t)}, �A(t), �A(t − �t) � The initial condition
VHxc(�r) ← COMPUTEVHXC(n(�r,t)) � predict stage
{ψpred

ik (�r)} ← TAYLORPROPAGATOR1STEP({ψik(�r,t)}, �A(t), VHxc(�r))
npred (�r) ← COMPUTEDENSITY{ψpred

ik (�r)}
V

pred

Hxc (�r) ← COMPUTEVHXC(npred (�r))
�J ← COMPUTECURRENT{ψpred

ik (�r)}
�Apred ← 2 �A(t) − �A(t − �t) + (−4π ) �J�t2

V corr
Hxc (�r) ← 1

2 (V pred

Hxc + VHxc) � correct stage
�Acorr ← 1

2 ( �Apred + �A(t))
{ψik(�r,t + �t)} ← TAYLORPROPAGATOR1STEP{ψik(�r,t)}, �Acorr , V corr

Hxc (�r) � real propagation
n(�r,t + �t) ← COMPUTEDENSITY{ψik(�r,t + �t)}
�J ← COMPUTECURRENT{ψik(�r,t + �t)}
�A(t + �t) ← 2 �A(t) − �A(t − �t) + (−4π ) �J�t2

end procedure

IV. SIMULTANEOUS RUNGE-KUTTA TIME
PROPAGATION

While the PC method is a popular approach, it is neither
a standard “multistep” or a “multivalue” differential equa-
tion solver [44]. As shown in the previous section, when
the induced vector potential is included the PC method

leads to numerical instabilities unless a very small time
step is used. We propose a Runge-Kutta (RK) based ap-
proach as a new propagation method. Compared to the
PC method, the RK approach allows for stable propagation
with larger time steps and less computational cost per time
step.
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TABLE I. Comparison of three Maxwell-TDKS integrators: Taylor, PC, and SRK4 methods.

Summary of the simulations Taylor PC SRK4

Time step (a.u.) 0.002 0.02a 0.05
Hamiltonian-Orbital Multiplication (operation cost A) 4 8 4
Current evaluation (operation cost B) 1 2 5
Total operation cost (A+0.8B) 4.8 9.6 8
Operations cost per a.u. 2400 480 160

aA time step for relatively stable PC propagation in this paper.

For convenience we begin by rewriting the Maxwell-TDKS
equations as first-order differential equations in time,

∂uik(�r,t)
∂t

= −iHKS(t)uik(�r,t), (8)

d �̇A(t)

dt
= −4π �J , (9)

where �̇A(t) is the first-order time derivative of the vector
potential �A(t). With both equations in the form,

dy

dt
= f (t,y),

one may use the fourth-order Runge-Kutta method (RK4)

propagate ψik and �̇A simultaneously. The Runge-Kutta method
updates the equations as follows [44]:

y(t + �t) = y(t) + �t

6
(k1 + k2 + k3 + k4),

where

k1 = f (t,y(t)),

k2 = f

(
t + �t

2
,y(t) + k1

�t

2

)
,

k3 = f

(
t + �t

2
,y(t) + k2

�t

2

)
,

k4 = f (t + �t,y(t) + k3�t).

By substituting the density, the vector potential, and the
wave functions, one evaluates the time derivative of the wave
functions; one also evaluates the derivative of �̇A with the
averaged current calculated out of the wave functions. The
two derivatives can be used to construct the RK4 algorithm.

The simultaneous RK4 (SRK4) algorithm provides

ψik(�r,t + �t) and �̇A(t + �t), but not the vector potential
directly. The last piece of the algorithm is the calculation of the
vector potential. One possibility for evaluation of the vector
potential is a simple finite-difference formula,

�A(t + �t) ≈ 2 �A(t) − �A(t − �t) + �t2 �̈A(t), (10)

as it has been used in Algorithms 1 and 2, but this implemen-
tation uses two previous time steps. Considering that the RK4
algorithm is the algorithm depends only on the previous step,
the Euler method is a more suitable approach:

�A(t + �t) ≈ �A(t) + �t �̇A(t). (11)

To obtain the same order of accuracy as Eq. (10), one
can expand the vector potential at t + �t/2 with a Taylor
expansion in two ways as

�A
(

t + �t

2

)
= �A(t) + �t

2
�̇A(t) + �t2

8
�̈A(t) + O(�t3),

�A
(

t + �t

2

)
= �A(t + �t) − �t

2
�̇A(t + �t)

+ �t2

8
�̈A(t + �t) + O(�t3) . (12)

FIG. 2. (a) Current and (b) vector potential in the z direction in a diamond crystal induced by a δ kick applied in the z direction. A 2 × 2 × 2
k-point mesh is used. The Kohn-Sham orbitals are propagated with the predictor-corrector propagation scheme (Algorithm 2) for times up to
400 a.u. Current plotted only up to 200 a.u. The propagation only remains stable for very small time steps, �t � 0.002 a.u., with the Taylor
benchmark and PC method exactly overlapping.
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Subtracting these two equations and dropping the O(�t3) terms allows one to evaluate A(t + �t) using only one previous
time step,

�A(t + �t) ≈ �A(t) + �t

2
[ �̇A(t) + �̇A(t + �t)] + �t2

8
[ �̈A(t) − �̈A(t + �t)]. (13)

Equation (13) gives the vector potential with the desired O(�t2) accuracy. We will use this expression in the RK4 algorithm for
consistent formulation and easy implementation.

By combining the SRK4 and one of the equation for the evaluation of the vector potential, one obtains the approach summarized
in Algorithm 3.

Algorithm 3. Simultaneous Runge-Kutta method (fourth order)

procedure SIMULTANEOUSRUNGEKUTTA1STEP(n(�r,t), {ψik(�r,t)}, �A(t), �̇A(t)) � The initial condition
crk ← {1, 1

2 , 1
2 ,1}

for m ← 1,2,3,4 do � Runge-Kutta stages
if m = 1 then

{ψrk
ik (�r)} ← {ψik(�r,t)}

�̇Ark ← �̇A(t)
else

{ψrk
ik (�r)} ← {ψik(�r,t)} + �t crk

m {km−1(ψ)}
�̇Ark ← �̇A(t) + �t crk

m km−1( �̇A)
end if

�J ← COMPUTECURRENT{ψrk
ik (�r)}

km( �̇A) ← �̇A(t) + �t(−4π �J )
�Ark ← �A(t) + �t �̇A(t) � can be replaced by Eq. (10) or (13)
{km(ψ)} ← −iH [n(�r,t), �Ark]{ψrk

ik (�r)}
end for
{ψik(�r,t + �t)} ← {ψik(�r,t)} + �t

6 [{k1(ψ)} + 2{k2(ψ)} + 2{k3(ψ)} + {k4(ψ)}]
�̇A(t + �t) ← �̇A(t) + 1

6 [k1( �̇A) + 2k2( �̇A) + 2k3( �̇A) + k4( �̇A)]
�J ← COMPUTECURRENT{ψik(�r,t + �t)}
�A(t + �t) ← �A(t) + �t �̇A(t) � can be replaced by Eq. (10) or (13)
n(�r,t + �t) ← COMPUTEDENSITY{ψik(�r,t + �t)}

end procedure

Unlike the PC method, which only updates the vector
potential once, there are multiple updates of the vector
potential in the SRK4 algorithm. This results in a better
approximation of the vector potential. As for the computational
cost, the SRK4 approach requires only four applications of
the Hamiltonian to each Kohn-Sham orbital per time step.
In practice, we have found that the cost of the evaluation of
the current in SRK4 is comparably expensive to these sparse
matrix-vector multiplications, and include this cost in our
algorithm analysis. We therefore find that the cost of SRK4
is only slightly lower than that of the PC method (see Table I)
if the same time step is used. As we will show in the next
section, the real advantage of the SRK4 method is that a time
step of �tSRK4=0.05 a.u. (0.0012 fs) gives well converged
results. This time step is comparable to �t0=0.04 a.u., the
maximum allowed time step for the Taylor propagation of the
TDKS without coupling to the Maxwell equations.

V. NUMERICAL EXAMPLES USING THE SRK4 METHOD

In this section we present numerical examples to show the
computational efficiency and accuracy of the SRK4 approach.
The system investigated is a diamond crystal perturbed by a
δ kick (as described in Sec. II). There are 32 electrons per

unit cell with 16 Kohn-Sham orbital doubly occupied for the
ground state. The ground-state density is shown in Fig. 3(a) and
a typical ground-state population evolution in the excitation is
shown in Fig. 3(b).

In Fig. 4 we have compared the PC method with a time step
of �tPC = 0.02 a.u. to SRK4 with a time step of, �tSRK4 =
0.05 a.u. The Kohn-Sham orbitals are propagated for, T =
400 a.u. The PC and SRK4 calculations are compared to a well
converged benchmark Taylor propagation (Algorithm 1) with
time step, �tT = 0.002 a.u. Over the course of the simulation
errors in the PC method accumulate, leading the current, vector
potential, and energy to diverge compared to the benchmark.
The error of the energy accumulates at a very early time (about
50 a.u.). The SRK4 method remains stable and accurate for
the whole duration.

This simple benchmark on a 2 × 2 × 2 k-point mesh
provides a quick test of the SRK4 algorithm. In practice, a
more dense k-point mesh is required for comparison with
experiments. In Fig. 5 we show the current and vector potential
of a diamond crystal with a δ-kick perturbation on a 5 × 5 × 5
k-point mesh for a total propagation time of 2000 a.u. The time
steps for the Taylor benchmark and the SRK4 method are, as
before, 0.002 and 0.05 a.u., respectively. We consider PC time
steps of 0.02 and 0.05 a.u. On the denser k-point mesh the
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FIG. 3. (a) Ground state density isosurface plot and (b) number of electrons in the ground state orbitals as a function of time.

FIG. 4. (a) Current, (b) vector potential, and (c) total energy change of a diamond crystal after an applied delta kick on a 2 × 2 × 2 k-point
mesh. The system is propagated up to a time of 400 a.u. The current is only plotted up to 200 a.u. The PC and SRK4 propagation schemes
are compared. �tPC = 0.02 a.u. is used for the PC method, in agreement with the previous sections. The results of the benchmark Taylor and
PC methods, also shown in Fig. 2, are shown here for comparison. �tSRK4 = 0.05 a.u. is used since it is the maximum allowed value for this
scheme. The SRK4 method finds excellent agreement with the benchmark Taylor propagation with small time step, �tT = 0.002 a.u.
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FIG. 5. (a) Current and (b) vector potential of a diamond crystal after an applied δ kick on a 5 × 5 × 5 k-point mesh. The system is
propagated up to a time of 2000 a.u. The current is plotted up from 1700 to 2000 a.u. Inset (a) shows the current in units of 10−3 a.u. from time
1050 to 1150 a.u. Inset (b) shows the z vector potential in a.u. from time 100 to 250 a.u. The PC and SRK4 propagation schemes are compared.
Time steps of 0.02 and 0.05 a.u. are shown for the PC method. A time step of 0.05 a.u. is used for the SRK4 method. The SRK4 method finds
excellent agreement with the benchmark Taylor propagation with small time step, �tT = 0.002 a.u. for the duration of the propagation.

PC method remains relatively stable with a time step of 0.02
a.u. However, for a time step of 0.05 a.u. the vector potential
calculated with the PC method becomes increasingly divergent
[see Fig. 5(b)]. The current [Fig. 5(a)] also diverges from the
benchmark Taylor calculation. On the other hand, the SRK4
method gives a more stable propagation with larger time steps
than the PC method. The current calculated with SRK4 closely
agrees with the benchmark, and the vector potential also shows
excellent agreement.

In addition, the comparison between the simulations on 2 ×
2 × 2 k mesh and 5 × 5 × 5 k mesh using Taylor propagation
as benchmark indicates that there is almost no k-point sampling
dependency for the SRK4 method in applications, i.e., the
SRK4 method matches the Taylor results in different k-point
sampling cases. The PC method shows better accuracy by
increasing k-point sampling from 2 × 2 × 2 to 5 × 5 × 5 [see
Figs. 4(a), 4(b), 5(a), and 5(b)]. By using more k points the
disagreement (in current and vector potential) in case of PC
method is delayed from 100 to about 1000 a.u. The reason
for this is probably the sensitivity of the PC approach to the
smoothness of the density and potential, which requires more
fine k-point grid. In Ref. [24] a well-converged result has been
obtained by using 32 × 32 × 32 k-point mesh propagating
the system up to 500 a.u. with a time step of 0.05 a.u. A
comparison of the PC and SRK4 methods for such a large
k-point mesh is computationally prohibitively expensive for
the time duration needed (2000 a.u). It is, however, quite
likely (and our examples show) that the accuracy and allowable
time step of the PC approach will increase with finer k-point
sampling.

To compare the different time propagation approaches
further we calculate the dielectric function,

1

ε(ω)
= 1

A0

∫ ∞

0+
dt eiωt−ηt ∂

�Aind(t) · �ez

∂t
+ 1, (14)

where η is a small broadening constant. Figure 6 compares
the dielectric functions calculated with the SRK4 and the PC

methods, on a 5 × 5 × 5 k-point mesh. The PC propagation
with time step, �t = 0.05 a.u., produces an unphysical plas-
mon peak as shown in Figs. 6(a) and 6(b) in the low-frequency
range. This spurious plasmon peak has been observed in the
literature [24], and has been associated with the use of discrete
meshes in real and momentum spaces. The SRK4 and Taylor
propagation produces a much smaller spurious plasmon peak,
signifying the stability of the propagation.

To understand the qualitative difference observed in the
spurious peaks of the two methods, we also calculated the
dielectric constant without the broadening parameter, i.e., η =
0 a.u., as shown in Figs. 6(c) and 6(d). The dielectric function,
when calculated with the PC method and a time step of
0.05 a.u., contains a noisy tail at low energies due to the
divergence of the vector potential. The amplitude of the noise is
comparable to that of the dielectric function. The introduction
of the broadening parameter averages this noise, yielding the
small residual plasmon peak in Figs. 6(a) and 6(b). In contrast,
the SRK4 method and benchmark Taylor calculation does not
produce the unphysical noise at low energies. We note that
reducing the time step of the PC method to 0.02 a.u. reduces
the noise significantly.

Finally, to show the SRK4 method is a general solver for the
Maxwell-TDKS equations, we provide two examples: First, a
calculation for the dielectric function for graphene with an
applied external field parallel to its plane. The k-point mesh
used is 11 × 19 × 1. Cheon et al. [45] calculated the dielectric
function using linear response DFT with a fine k-point mesh.
The dielectric function computed with SRK4 (see Fig. 7)
agrees well with their results.

The second example is a simulation for an ultrafast laser
pulse applied to the diamond crystal. When the external field
is applied, the induced field cancels part of the external
field as shown in Fig. 8. The calculated current is Fourier
transformed to find the high harmonic character of the
signals [46]. After the transformation, we find the three lowest
harmonics at ω, 3ω, and 5ω. The results agrees with the
literature [46].
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FIG. 6. Inverse of the dielectric constant of a diamond crystal obtained through TDDFT simulations of the electron dynamics after a delta
kick on a 5 × 5 × 5 k-point mesh. The Kohn-Sham orbitals are propagated with the Taylor, PC, and SRK4 propagation schemes. Plots (a)
and (b) show the (a) real and (b) imaginary parts of the inverse of the dielectric constant obtained by Fourier transforming the induced vector
potential with a small broadening constant, η = 0.005 a.u. Plots (c) and (d) show the (c) real and (d) imaginary parts of the inverse of the
dielectric constant obtained without a broadening parameter.

FIG. 7. Real and imaginary components of the dielectric function
of graphene obtained with TDDFT simulations of the electron
dynamics after a δ kick on a 11 × 19 × 1 k-point mesh. The
Kohn-Sham orbitals are propagated with the SRK4 scheme with time
step, 0.05 a.u.

VI. SUMMARY

We have described an accurate method, the SRK4 approach,
for time propagation of the coupled Maxwell and time-
dependent Kohn-Sham equation. The new approach uses a
simultaneous fourth-order Runge-Kutta–based propagation of
the vector potential and the Kohn-Sham orbitals. We have
compared the approach to conventional fourth-order Taylor
propagation and predictor-corrector methods. While the PC
method was shown to have a divergence problem dependent
on the time step, the SRK4 method can be used for long
propagations without divergence. In our test case, the PC
method with a time step of 0.02 a.u. gave reasonable results
for a propagation time of 2000 a.u. However, even with this
small time step, increasing numerical inaccuracies in the vector
potential were observed. The SRK4 method, in contrast, gave
a more stable propagation with a larger time step of 0.05
a.u. The SRK4 method has shown negligible dependence on
k-point sampling. Further test on different systems may help
to explore the advantages and disadvantages of the present
approach comparing to other schemes.
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FIG. 8. (a) Electric field and current in diamond subject to a short laser pulse, calculated by the SRK4 method on a 12 × 12 × 12 k-point
mesh. The pulse is 1240 a.u. (30 fs) wide with 0.057 a.u. (1.55 eV) frequency and 0.0154 a.u. amplitude. (b) The first three harmonic generators
located at 0.057, 0.171, and 0.285 a.u., as shown in the logarithmic scaled current transformed in energy space.

The computational efficiency of the three propagation
schemes is summarized in Table I. Compared to the PC
method with a time step of 0.02 a.u., the SRK4 method
proves more computationally efficient by a factor of 3. Since
the PC method becomes more numerically unstable with
increasing propagation times, one expects that an even shorter
time step would be required. SRK4 remains very stable
even for long propagation times, and therefore the SRK4
method becomes more advantageous as the propagation time is
increased.

In energy space, the SRK4 method produced a better signal
than the PC method. Fewer numerical artifacts were observed
in the calculation of the dielectric function. One must use a
broadening parameter for the PC method to remove a spurious
plasmon peak at low energies. This artifact was much less
prevalent in the SRK4 calculations, further highlighting the
numerical stability of this method.

In the present work we have tested the coupled Maxwell
and Kohn-Sham propagation for crystalline materials. In the
future it would be interesting to explore the possibility of the

application for molecules, gases, or liquids. Another area of
interest is the investigation of the cases with weaker laser and
soft bonds [47].

Due to its greater computational efficiency, numerical
stability, and more rigorous foundation as a differential
equation solver, we recommend the SRK4 method for the
solution of the Maxwell-TDKS equations in further studies of
coupled Schrödinger-Maxwell.
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