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Lattice Boltzmann model for a steady radiative transfer equation
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A complete lattice Boltzmann model (LBM) is proposed for the steady radiative transfer equation (RTE).
The RTE can be regarded as a pure convection equation with a source term. To derive the expressions for
the equilibrium distribution function and the relaxation time, an artificial isotropic diffusion term is introduced
to form a convection-diffusion equation. When the dimensionless relaxation time has a value of 0.5, the lattice
Boltzmann equation (LBE) is exactly applicable to the original steady RTE. We also perform a multiscale analysis
based on the Chapman-Enskog expansion to recover the macroscopic RTE from the mesoscopic LBE. The D2Q9
model is used to solve the LBE, and the numerical results obtained by the LBM are comparable to the results
obtained by other methods or analytical solutions, which demonstrates that the proposed model is highly accurate
and stable in simulating multidimensional radiative transfer. In addition, we find that the convergence rate of the
LBM depends on the transport properties of RTE: for diffusion-dominated RTE with a large optical thickness,
the LBM shows a second-order convergence rate in space, while for convection-dominated RTE with a small
optical thickness, a lower convergence rate is observed.
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I. INTRODUCTION

The radiative transfer equation (RTE) describes how pho-
tons propagate through random or participating media that
scatter and absorb photons as well as emit photons. The
radiative transfer equation has broad applications in thermal
fields associated with high-temperature environments, such
as astrophysics, atmospheric science, biomedical optics, and
nuclear reactor physics, among others. Numerical simulation
is an important tool for investigating the radiative transfer
problem, and many numerical methods have been developed,
such as the Monte Carlo method (MCM) [1–3], the zonal
method [4,5], the spherical harmonics method (PN ) [6], the
discrete-ordinates method (DOM) [7–11], the finite-volume
method (FVM) [12,13], the finite-element method (FEM)
[14,15], and the meshless method [16,17]. The MCM and zonal
method are based on tracing the ray trajectory of radiation
and can be regarded as benchmark methods with high com-
putational accuracy. However, they are often time consuming
even for relatively simple problems. The DOM, FVM, FEM,
and meshless methods are based on global discretizations of
the RTE and have the advantages of ease, efficiency, and
flexibility to deal with multidimensional complex radiative
transfer problems. However, these schemes suffer greatly from
the instability caused by the convection-dominated property of
the RTE with a small optical thickness.

Differing greatly from the numerical methods mentioned
above, the lattice Boltzmann method (LBM) is a kinetic-
based numerical model that has attracted a good amount of
attention in the recent two decades or more. It has played
an active role in solving a vast range of transport problems,
including magnetohydrodynamic flow [18–20], multiphase
flows [21–24], electrokinetic flows [25,26], electro-osmotic
flows [27–29], electroconvection [30], heat transfer in a
nanofluid [31–34], and the phase change problem [35–38].
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Compared to the traditional computational fluid dynamics
method based on the macroscopic continuum equations, owing
to its mesoscopic nature, LBM offers some distinct advantages.
It allows for a simple calculation procedure, high parallelism,
and easy implementation of complex boundary conditions
including a moving boundary, and it is highly adaptable to
coupled multiphysics problems.

In recent years, some useful attempts have been made to
solve radiative transfer problems using LBM. Mishra et al.
[39,40] developed a lattice Boltzmann formulation for the
analysis of radiative heat transfer problems in a participat-
ing medium. However, the method had some assumptions:
scattering was assumed to be isotropic; the polar direction was
isotropic and the angular dependence of intensity was only
in the azimuthal direction; the particle distribution functions
streamed only in finite discrete directions; and the fictitious
speed of light was equal to the information propagating
velocity, which caused a large total error. Ma et al. [41] derived
macroscopic conservation equations of radiation energy and
radiation momentum based on radiation hydrodynamics, and
developed a lattice Boltzmann equation (LBE) framework to
solve the one-dimensional radiative transfer problem. Bindra
et al. [42] extended the method to two-dimensional radiative
or neutron transport problems, in which particle distribution
functions streamed only in a limited number of discrete direc-
tions. Zhang et al. [43] used a forward differencing scheme to
rewrite the radiative transfer equation in the form of a lattice
Boltzmann equation for solving one-dimensional transient
radiative transfer. In all these works, the results were obtained
with only a first-order convergence rate. Strictly speaking,
LBM is not only a grid discretization scheme, but also a means
of mathematical modeling. However, most of these existing
works only use it as a grid discretization scheme, and do not
build a rigorous mesoscopic lattice Boltzmann model for the
radiative transfer equation. On the other hand, in the lattice
Boltzmann model for physical problems, the determination of
the collision operator is the key, and the relaxation time and
equilibrium distribution function must be derived to determine
the collision operator. However, there is no strict derivation of

2470-0045/2016/94(2)/023312(11) 023312-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.023312


HONG-LIANG YI, FENG-JU YAO, AND HE-PING TAN PHYSICAL REVIEW E 94, 023312 (2016)

these properties. The evolution equation for LBM includes two
separate steps, i.e., collision and streaming, and in all the above
works the streaming direction is considered to be the direction
of radiative transfer. This prevents the extension of LBM
to multidimensional radiative transfer problems with high
angular resolution. Unless the optical thickness assumption is
satisfied, enough discrete directions must be ensured in most
of numerical models to mitigate the ray effect and improve the
calculation accuracy for a radiative transfer problem. Quite
recently, Mink et al. [44] developed a three-dimensional LBM
for radiative transfer based on the P1 approximation of RTE
and performed a Chapman-Enskog analysis of the proposed
algorithm. However, the P1 method approximates the RTE as a
macroscopic diffusion equation, and the corresponding LBM
is applicable only to radiative transfer in an optically thick
media. Therefore, in the strictest sense, none of these works es-
tablish a complete LB model for the radiation transfer problem.

If the direction vector of radiative transfer is regarded as the
velocity vector, the radiative transfer equation can be taken as
a convection equation without the diffusion term that may
result in a nonphysical oscillation of numerical solutions.
Recently, researchers have proposed a variety of lattice Boltz-
mann models for the convection-diffusion equations (CDEs)
[45–52]. So far no work on the lattice Boltzmann modeling of
such a convection equation as the radiative transfer equation
has been reported. However, inspiration from previous work
on the LBM for the convection-diffusion equation may offer
the possibility of establishing the complete lattice Boltzmann
model for the radiative transfer equation.

In this work, we establish a lattice Boltzmann model (LBM)
for a two-dimensional steady RTE based on the Chapman-
Enskog expansion and present an efficient algorithm for the
implementation of the model. In Sec. II, we provide the steady
RTE first, and then propose the corresponding LBM, including
the derivation of an LBE for the radiation intensity field at each
direction of radiative transfer, a Chapman-Enskog analysis of
the LBE, and the implementation of boundary conditions.
Section III describes the numerical solution procedure in
detail. In Sec. IV, we examine three two-dimensional test cases
of radiative transfer problems in participating media to verify
the numerical accuracy, and evaluate the convergence property
of the LBM in detail. In addition, in this section we investigate
the radiative transfer in a square enclosure with a Gaussian
shaped emissive field and a coupled conduction and radiation
problem. Conclusions are drawn in the last section.

II. MATHEMATIC FORMULATIONS

In this part, we first provide the governing equation for
radiative transfer. Then, we establish the corresponding lattice
Boltzmann equation for the radiation intensity field. Next, we
perform a Chapman-Enskog analysis of the LBE. Finally, we
present an implementation of boundary conditions.

A. Radiative transfer equation

The radiation intensity field is obtained by solving the radia-
tive transfer equation (RTE). The steady RTE for an absorbing,
emitting, and scattering gray medium can be written as

∂I (r,s)

∂s
= s · ∇I (r,s)= − βI (r,s) + S(r,s), (1)

where I is the radiation intensity, r is the location vector, and
s is the unit direction vector of radiation transfer. β is the
extinction coefficient, defined as β = κa + κs , where κa is the
absorption coefficient, and κs is the scattering coefficient. S
is the source function accounting for the thermal emission of
media and in-scattering radiation, given by

S = κan
2Ib(r) + κs

4π

∫
4π

I (r,s′)�(s′,s)d�′, (2)

where Ib is the blackbody radiation intensity, expressed as
Ib = σT 4/π, n is the refractive index of the medium, � is the
scattering phase function, and � is the solid angle.

Equation (1) is subject to the boundary condition

I (rw,s) = εwn2Ib(rw) + 1 − εw

π

∫
nw ·s′<0

I (rw,s′)|nw · s′|d�′,

(3)

where we have limited ourselves to an enclosure with opaque,
diffusely emitting and diffusely reflecting walls. The extension
of Eq. (3) to more complicated boundary conditions is
straightforward. εw is the wall emissivity, and nw is the unit
normal vector of the wall.

Equation (1) is solved for a set of M different directions,
si ,i = 1,2, . . . ,M , and the direction integrals in Eq. (2) and
Eq. (3) are replaced by numerical quadrature. Thus Eq. (1) is
approximated by a set of M equations,

si · ∇I (r,si) = −βI (r,si) + S(r,si), i = 1, 2, . . . ,M, (4)

subject to the boundary conditions

I (rw,si) = εwn2Ib(rw) + 1 − εw

π

∑
nw ·sj <0

I (r,sj )|nw · sj |wj,

(5)
nw · si > 0,

where

S(r,si) = κan
2Ib(r) + κs

4π

M∑
j=1

I (r,sj )�(sj ,si)wj, (6)

and wj is the quadrature weight associated with the direction
sj .

We obtain the radiative intensity field by solving Eq. (4). In
the investigation of a radiative transfer problem, the incident
radiation G and the radiative heat flux qR are two important
physical quantities. Once the distribution of radiation intensity
is obtained, the distribution of the incident radiation G can be
calculated by

G(r) =
∫

4π

I (r,s)d�, (7)

and the radiative heat flux in the x and y directions can be
calculated from

qR,x(r) =
∫

4π

I (r,s) · (s · ex)d�, (8)

qR,y(r) =
∫

4π

I (r,s) · (s · ey)d�. (9)
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B. Lattice Boltzmann model

1. Lattice Boltzmann equation

As shown in Eq. (1), if the direction vector of radiation
transfer s can be taken as a velocity vector, the radiative
transfer equation is a convection equation without the diffusion
term. From the derivation of LBEs for convection-diffusion
equations [45–52], the relaxation time of the LBM is related
to the diffusion coefficient of the CDE. Thus, to obtain an
expression of the relaxation time, we add a positive artificial
diffusion term to the right side of Eq. (1), leading to

s · ∇I (r,s)= − βI (r,s) + S(r,s) + α∇[∇I (r,s)], (10)

where α is the diffusion coefficient. Once α is set to zero,
Eq. (10) is reduced to a radiative transfer equation. For the
direction sk(k = 1,2, . . . ,M) of radiative transfer, Eq. (10) is
written as

sk · ∇I (r,sk)= − βI (r,sk) + S(r,sk) + α∇[∇I (r,sk)], (11)

where

sk = iμk + jηk + kξk, (12)

in which μk,ηk , and ξk are the direction cosines of sk .
We begin deriving the corresponding lattice Boltzmann

equation from Eq. (11). The two-dimensional problem is
considered, so let

U = [μk,ηk]T , (13)

I =
(

1,0
0,1

)
, (14)

F (r,sk) = S(r,sk) − βI (r,sk). (15)

Then we rewrite Eq. (11) as

∇ · (IU) = α∇ · [∇ · (I I)] + F. (16)

The corresponding evolution equation of the LB model is

fi(r + eit,t + t) − fi(r,t)

=− 1

τi

[
fi(r,t) − f

eq
i (r,t)

]+tFi(r,t)+ (t)2

2
∂tFi(r,t),

(17)

where {ei = cI,c = x/t, i = 0, . . . , 8} is a set of discrete
velocities for the D2Q9 lattice model shown in Fig. 1, t is the
time step, τi is the dimensionless relaxation time, and fi(r,t)
and f

eq
i (r,t) represent the local particle distribution function

and equilibrium distribution function at position r and time t .
The key point of using Eq. (17) to solve Eq. (16) is to

construct proper expressions for f
eq
i (r,t) and Fi(r,t). Based

on the work [50], the equilibrium distribution function f
eq
i (r,t)

and source term Fi(r,t) are taken as

f
eq
i =

{
(w0 − 1)I i = 0

wi

(
I + ei ·IU

cs
2

)
i = 1–8

, (18)

Fi = wiF, (19)

in which wi and wi are the weights of the equilibrium
distribution function and the source term distribution function

FIG. 1. D2Q9 lattice scheme used for a 2D geometry in a lattice
Boltzmann model.

for different directions, respectively. For the D2Q9 lattice
model, wi and wi have the following values:

wi =
⎧⎨
⎩

4/9 i = 0
1/9 i = 1−4
1/36 i = 5−8

, (20)

wi =
⎧⎨
⎩

0 i = 0
1/6 i = 1−4
1/12 i = 5−8

. (21)

For Eq. (16), following the scheme adopted in Ref. [50], we
introduce one parameter to adjust the accuracy and stability of
the present model. Thus the equilibrium distribution function
and the source term are modified by

f
eq
i =

{
(w0 − 1)I i = 0

wi

(
I + ei ·δIU

c2
s

)
i = 1−8

, (22)

Fi = wiδF, (23)

where δ is the adjustable parameter. With a judicious choice
of the value of δ, the stability and accuracy of the model can
be greatly improved.

According to the Chapman-Enskog analysis detailed below,
the dimensionless relaxation time can be obtained by

c2
s

(
τi − 1

2

)
t = αδ, (24)

where τi = 0.5 when α is set to 0.
From Eqs. (22)–(24), we see that only relaxation time

is related with the diffusion coefficient, not the equilibrium
distribution function and source term. Therefore, the lattice
Boltzmann equation, i.e., Eq. (17), with a relaxation time of 0.5
is just suitable to model the standard steady radiative transfer
equation. The relaxation time of a radiative transfer problem
is the same as that of fluid flow with zero shear viscosity [53].

The macroscopic variable I can be obtained using

I =
8∑

i=1

fi/(1 − w0). (25)
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2. Chapman-Enskog analysis

We perform a Chapman-Enskog analysis to recover the
macroscopic radiative transfer equation with an artificial
diffusion term [Eq. (16)] from the lattice Boltzmann equation
[Eq. (17)]. The details are presented below.

Expanding the distribution functions and the time and space
derivatives, we get

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i , (26)

∇ = ε∇1, (27)

∂t = ε∂t1 + ε2∂t2, (28)

Fi = εF
(1)
i , (29)

where ε is a small expansion parameter.
By applying the Taylor expansion to Eq. (17), we have

tDifi + 1

2
t2D2

i fi

= − 1

τi

[
fi − f

eq
i

] + tFi + 1

2
t2∂tFi, (30)

where Di = εD1i + ε2∂t2 with D1i = ∂t1 + ei · ∇1.
Substituting Eqs. (26)–(29) into Eq. (30) gives

(εD1i + ε2∂t2)
(
f

(0)
i + εf

(1)
i + ε2f

(2)
i

)
+ t

2
(εD1i + ε2∂t2)2

(
f

(0)
i + εf

(1)
i + ε2f

(2)
i

)
= − 1

τit

[(
f

(0)
i + εf

(1)
i + ε2f

(2)
i

) − f
eq
i

]
+ εF

(1)
i + t

2
(εD1i + ε2∂t2)εF (1)

i , (31)

and by scale analysis, we obtain the equations in ε0, ε1, and
ε2:

ε0 : f
(0)
i = f

eq
i , (32)

ε1 : D1if
(0)
i = − 1

τit
f

(1)
i + F

(1)
i , (33)

ε2 : D1if
(1)
i + ∂t2f

(0)
i + t

2
D2

1if
(0)
i

= − 1

τit
f

(2)
i + t

2
∂t1F

(1)
i . (34)

Substituting Eq. (33) into Eq. (34) leads to(
1 − 1

2τi

)
D1if

(1)
i + ∂t2f

(0)
i + t

2
D1iF

(1)
i

= − 1

τit
f

(2)
i + t

2
∂t1F

(1)
i . (35)

In Eq. (17), fi,f
eq
i [Eq. (22)] and Fi [Eq. (23)] satisfy the

following conditions:∑
i

fi =
∑

i

f
eq
i = 0, (36)

∑
i

eif
eq
i = δIU, (37)

∑
i

eieif
eq
i = cs

2I I, (38)

∑
i

Fi = δF, (39)

∑
i

eiFi = 0. (40)

Summing Eqs. (33) and (35) over i, respectively, and using
Eqs. (36)–(40), we obtain

∇1 · (δIU) = δF (1), (41)

∇1 ·
[(

1 − 1

2τi

)∑
i

eif
(1)
i

]
= 0. (42)

Using Eq. (33),∑
i

eif
(1)
i = −τit

∑
i

ei

(
D1if

(0)
i − F

(1)
i

)
= −τit∇1 · (

c2
s I I

)
. (43)

Substituting Eq. (43) into Eq. (42) leads to

0 = ∇1 · [
c2
s

(
τi − 1

2

)
t∇1 · (II )

]
. (44)

Combining Eqs. (41) and (44) and taking

cs2
(
τi − 1

2

)
t = αδ, (45)

we can obtain

δ∇ · (IU) = δα∇ · [∇ · (I I)] + δF. (46)

Finally, Eq. (46) is divided by δ, and the macroscopic
radiative transfer equation with an artificial diffusion term
[Eq. (16)] can be recovered. By setting the diffusion coefficient
to zero, Eq. (16) is transformed into the standard steady RTE.
With τi = 0.5, the lattice Boltzmann equation, i.e., Eq. (17),
combined with the boundary condition given below, can be
used to model two-dimensional steady radiative transfer.

3. Boundary conditions

Corresponding to the radiative boundary condition [Eq. (5)]
for steady RTE [Eq. (4)], the nonequilibrium extrapolation
scheme discussed in Ref. [54] is applied for the LBE [Eq. (17)].
The distribution function on the boundary is composed of two
parts, an equilibrium distribution function and a nonequilib-
rium distribution function,

fα(O,t) = f eq
α (O,t) + f neq

α (O,t), (47)

where the equilibrium distribution function can be obtained by
computing macroscopic physical quantities such as radiation
intensity on the boundary from Eq. (22), and the nonequilib-
rium distribution function is replaced by the corresponding
quantities on the neighboring position. Thus we have

fα(O,t) = f eq
α (O,t) + [

fα(B,t) − f eq
α (B,t)

]
, (48)

where O is the point at the boundary and B is its adjacent point
in the domain, as shown in Fig. 1.
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III. NUMERICAL SOLUTION PROCEDURE

The numerical solution procedure for calculating a macro-
scopic quantity, such as radiation intensity, is given as follows.

(1) Discretize the calculation domain using uniform grids.
Set the input parameters, such as temperature distribution,
extinction coefficient, wall emissivity, scattering albedo, and
phase function, for the simulations.

(2) Initialize the radiation intensity field and set the
dimensionless relaxation time of Eq. (17) to 0.5 for simulating
a radiative transfer problem.

(3) Discretize the angular space into M = N (N + 2)
transfer directions using the SN quadrature scheme [55] and
calculate the corresponding direction cosines and quadrature
weights for the different radiation transfer directions.

(4) Loop each angular direction for m = 1, . . . ,M .
(a) Calculate the equilibrium distribution function using

Eq. (22) and the source term using Eq. (23).
(b) Solve the LBE for a radiative transfer equation using

Eq. (17).
(c) Modify the particle distribution functions to satisfy the

boundary conditions from Eq. (48).
(d) Obtain the radiative intensity at each discrete node.
(5) Obtain the radiative heat flux and incident radiation.
(6) Repeat steps (4) and (5) until the convergence criterion

is satisfied.
Convergence is declared if the following criterion is

satisfied:

max

(∣∣∣∣Gn+1 − Gn

Gn+1

∣∣∣∣
)

< 10−6. (49)

IV. RESULTS AND DISCUSSIONS

To evaluate the numerical performance of the present LBM,
we compare the results produced by the LBM with numerical
solutions generated by other methods and investigate the
convergence property of the LBM in space. We examine three
test cases for two-dimensional (2D) radiative transfer problems
for comparison. Next, we investigate a test case to illustrate the
method’s stability for radiative transfer, and finally we present
an application of the proposed LBM to coupled radiation
and conduction. Square media with side length L = 1 and
refractive index n = 1 are considered. The quadrature scheme
S6 is used to discretize the angular space for all the cases.

A. Purely absorbing medium in a black enclosure

The LBM is applied to simulate radiative transfer in
a black square enclosure with a purely absorbing-emitting
medium. We consider the extinction coefficients β = 0.1,
1, and 10. The medium is kept hot with a dimensionless
temperature of 1, and all boundary walls are kept cold. In
Fig. 2, the dimensionless radiative heat fluxes ψR = qw/σT 4

max
are plotted for comparison. Uniform meshes of 40 × 40,
60 × 60, and 200 × 200 are required for spatial discretization
of the media with β = 0.1, 1, and 10, respectively. In
participating media with a larger extinction coefficient, the
radiation energy is more strongly attenuated, which results in
a greater change in intensity within a certain distance. In other
words, media with larger extinction coefficients have a greater

FIG. 2. Radiative heat flux along the x direction in a purely
absorbing medium with extinction coefficients β = 0.1, 1, and 10.
(a) Comparison with the FEM, and (b) comparison with the zone
method.

radiation intensity gradient due to more intense extinction
of the radiation. Therefore, in order to achieve an accurate
simulation, a relatively fine spatial discretization is needed for
media with large extinction coefficients.

After a large number of numerical tests, we find that the
adjustable parameter δ in Eqs. (22) and (23) is dependent on
optical thickness (τ = βL), time step (t), and lattice sound
speed (cs), and that δ = (aτ + b)c2

s t where a = 0.75 and
b = 1.65. The adjustable parameter function is universal and
can be applied to the radiative transfer problems in this work.
In addition, it is also adequate for other classes of 2D radiative
transfer problems, such as the radiative equilibrium problem
and the coupled radiation and conduction problem discussed
in Sec. IV F.

From the comparison in Fig. 2, we can see that the
dimensionless radiative heat fluxes found by the LBM are
in good agreement with the results obtained by an FEM [56]
with 10 × 10 elements and a four-node S8 approximation
for β = 0.1, 1 m−1 and an eight-node S8 approximation for
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FIG. 3. The centerline incident radiation along the y direction
in an isotropically scattering medium with emissivities ε = 0.1, 0.5,
and 1.

β = 10 m−1 based on the even parity form of the RTE and
zone method [57] with 225 volume elements and 60 surface
segments, respectively. The maximum relative error is less
than 2%.

B. Purely scattering media in a gray enclosure

Radiative transfer in isotropically scattering media is
simulated by LBM, and the incident radiation and radiative
flux are predicted for wall emissivities of εw = 0.1, 0.5, and
1. In this case, a scattering albedo ω = 1, and an extinction
coefficient β = 1. The bottom wall of the considered medium
is kept hot and its dimensionless temperature is set to 1, while
the other three walls and the medium bounded by the square
enclosure are kept cold.

Figure 3 plots the centerline dimensionless incident ra-
diation G∗ = G/(σT 4) and Fig. 4 plots the dimensionless
radiative heat flux ψR = qw/σT 4

max. The results obtained by
the LBM and the zone method [58] with 225 volume elements

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8
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  LBM (120×120)

R
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R

Distance x/L

ε = 1

FIG. 4. Radiative heat flux along the x direction in an isotropi-
cally scattering medium with emissivities ε = 0.1, 0.5, and 1.

and 60 surface segments are comparable, and the maximum
relative errors are 1.85% and 1.05% for the centerline incident
radiation and the radiative heat flux, respectively. It is worth
noting that the maximum relative errors for incident radiation
and radiative flux occur at the region adjacent to the wall and
the corner of the medium with εw = 1, respectively. This is to
be expected, since the larger the emissivity, the more intense
the radiative energy absorbed at the walls, and the greater the
gradient of radiation intensity at the regions adjacent to the
walls or corners of the medium. Therefore, denser meshes
are required to obtain more accurate results for the spatial
discretization of the medium with greater emissivity. As shown
in Fig. 4, for a 60 × 60 spatial grid, the maximum relative error
of radiative flux at the region adjacent to the corner is 3.3%,
while for the 120 × 120 spatial discretization, the maximum
relative error is reduced to 1.05%.

C. Anisotropically scattering medium in a black enclosure

The LBM is applied to solve radiative transfer in a
black square enclosure with an absorbing, emitting, and
anisotropically scattering medium. The extinction coefficient
of the medium is β = 1. The F2 phase function is considered,
given by Eq. (50) with an asymmetry factor of 0.669 72:

�(s,s′) =
8∑

j=0

CjPj (s · s′). (50)

Here, Pj is the j th Legendre polynomial, and Cj is
the corresponding expansion coefficient: C0 = 1.0, C1 =
2.009 17, C2 = 1.563 39, C3 = 0.674 07, C4 = 0.222 15,

C5 = 0.047 25, C6 = 0.006 71, C7 = 0.000 68, and C8 =
0.000051 7.

Figure 5 illustrates the radiative flux ψR = qw/σT 4
max

obtained by LBM and DOM [59] with 26 × 26 control volumes
and an S14 approximation along the bottom surface for three
different values of the albedo ω, specifically 0.0, 0.5, and 0.9.
Figure 5 shows good agreement between the results from the
two numerical methods, with a maximum relative error less
than 2%.

FIG. 5. Radiative heat flux along the x direction in an anisotrop-
ically scattering medium with scattering albedos ω = 0, 0.5, and 0.9.

023312-6



LATTICE BOLTZMANN MODEL FOR A STEADY . . . PHYSICAL REVIEW E 94, 023312 (2016)

FIG. 6. Grid independence test for results from the LBM.

D. Analysis of the convergence rate in space

From the above comparisons between the LBM and other
numerical methods, we can see that the proposed LBM has
good accuracy and excellent stability in the simulation of 2D
steady radiative transfer under various working conditions. In
this section, the spatial convergence property of the LBM is
examined.

The order of convergence rate of the present LBM is
evaluated using the equation [60]

order = log10(Lh1/Lh2 )/log10(h1/h2), (51)

where h1 and h2 denote two different grid sizes and L denotes
numerical error. In our simulations, the global relative error
Lgre is used to test the accuracy of the present lattice Boltzmann
model, which is defined as

Lgre =
∑

N |ϕn − ϕr |∑
N |ϕr | , (52)

where ϕn and ϕr correspond to the numerical and reference
solutions, respectively, for a basic scalar [here it is the
dimensionless incident radiation G∗ = G/(σT 4)], and N is
the total number of lattice points in the whole domain. For this
case, ϕr takes the solutions under the refined lattices.

We first perform the grid independence test of results by
the LBM, and the working condition is set to be ε = 1,

ω = 0, and β = 1. As shown in Fig. 6, when the grid is sparse,
the results converge quickly with the grid. The finer the grid,
the more slowly the results converge. The maximum relative
error between x = 1/40 and x = 1/60 is 0.314%. The
maximum relative error between x = 1/60 and x = 1/100
is 0.156%. We choose the grid numbers to be Nx × Ny =
8080,120 × 120,200 × 200, and 320 × 320 for the reference
solutions with β = 1, 2, 5, and 10, respectively.

To test the convergence rate of the present LBM, we
carry out simulations at different lattice steps (x = 1/10 to
1/40). The global relative errors (Lgre) between the numerical
results and the reference results are plotted in Fig. 7 with
extinction coefficients β = 1, 2, 5, and 10 m−1. The orders
of the convergence rate estimated based on the relative errors
Lgre are 1.683, 1.713, 1.786, and 1.92 for β = 1, 2, 5, and

FIG. 7. Global relative errors of the lattice Boltzmann model with
different lattice steps.

10 m−1, respectively. The radiative transfer equation is a
convection-dominated equation when the optical thickness
(βL) is not large, for instance, βL = 1. The convection-
dominated equation suffers from severe numerical instability,
and the corresponding numerical solutions converge slowly
with grid refinement. When the optical thickness is large, for
instance, βL = 10, the radiation energy emitted from walls
or media decays very rapidly over a short transfer distance,
and the radiative transfer behavior shows significant diffusion
characteristics. For the radiative transfer equation with strong
diffusion characteristics, the numerical solutions converge
rapidly with grid refinement. According to the above analysis,
the spatial convergence rate of results increases with increasing
optical thickness, as shown in Fig. 7, and it is expected that
for the radiative transfer in media with an optical thickness
greater than 10, the present LBM may have an approximate
second-order convergence rate in space. In addition, we also
notice that the global relative errors Lgre for a larger extinction
coefficient are higher than those for a smaller extinction
coefficient with the same grid density. This is easily explained:
since a sharper gradient of radiation intensity exists in the
medium with a larger extinction coefficient, greater calculation
errors will result than for simulations on the same grid density
with smaller extinction coefficients.

E. Gaussian shaped emissive field in a square enclosure

In this section, we pay special attention to the numerical
stability of the LBM for radiative transfer. The radiative
transfer in a square enclosure with an absorbing-emitting
medium is considered. The emissive field of the medium has
a Gaussian profile. This problem is described by the RTE [61]
as

μ
dI

dx
+ η

dI

dy
+ κaI = e−[s(x,y)−c]2/α2

, x,y ∈ [0,1], (53)

where the incident direction is selected to be μ = η =√
2/2,s(x,y) = (x + y)/

√
2 is a distance parameter in the

incident direction, and the emission profile parameters are
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FIG. 8. Radiative intensity distributions obtained by the Galerkin FEM, an analytical solution, and the LBM (from left to right) for various
absorbing coefficients. (a) κa = 0.1 m−1, (b) κa = 1 m−1, and (c) κa = 10 m−1.

set as c = √
2/2 and α = 0.02. The boundary condition is

prescribed on the inflow boundaries with null emission. An
analytical solution can be obtained along the characteristic
lines, written as

I (x,y) = α
√

π

2
exp{−κa[s(x,y) − cs(x,y) − α2κa/4]}

×
{

erf

[
ακa

2
+ cs(x,y)

α

]

− erf

[
ακa

2
+ cs(x,y) − s(x,y)

α

]}
, (54)

where s(x,y) = |x+y|−|x−y|√
2

and cs(x,y) = 1−|x−y|√
2

.

The radiative transfer problem is characterized by a large
intensity distribution gradient in the enclosure. We solve
the problem by using an analytic method and numerical
techniques, and plot the radiation intensity distributions in
the enclosure that result from Galerkin FEM, the analytical
solution, and the LBM for different absorption coefficients
(κa = 0.1, 1, 10m−1) in Fig. 8. The spatial resolutions used in
the FEM and LBM are taken to be 41 × 41. As shown in Fig. 8,
for small absorption coefficients, the spurious oscillations
dominate the results and the intensity distribution obtained
using the Galerkin FEM is almost totally spoiled in the
left-lower triangular region of the enclosure where the intensity
should be zero. The nonphysical oscillations are induced by an
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intensity distribution with a large gradient, and with a higher
absorption coefficient, they tend to become weaker. The results
obtained by the LBM have no such spurious oscillations and
maintain numerical stability. Due to the inherently transient
nature of LBM simulations with a very small time interval,
they primarily solve the distribution function of the particles
by evolution (including collision and streaming steps) to
obtain solutions for physical problems. Thus the LBM is more
robust than the direct iterative solution of partial differential
equations. To obtain stable solutions, the FEM requires
special stabilization techniques, such as upwinding schemes to
discretize the original RTE, or transforming the original RTE
into a second-order equation [62].

F. Coupled conduction and radiation problem

In this section we present an application of the proposed
LBM to coupled radiative and conductive heat transfer to
demonstrate that the LBM is highly adaptable to a multiphysics
coupling problem. The problem of radiation coupled with
conduction is of great interest in many fields of science and
engineering, including the radiative cooling of a space droplet
radiator, infrared heating and drying, the growth of optical

crystals, the high-temperature use of ceramic components,
highly backscattering protective insulation systems for reentry
into atmosphere, and porous burners and insulation systems,
as well as selected high-temperature components in advanced
aircraft engines.

The energy equation for the problem can be expressed as
follows:

∂(ρCpT )

∂t
= ∇ · (k∇T ) − ∇ · qR, (55)

where ρ, Cp, T, k, and q R are the density, specific heat,
temperature, thermal conductivity, and radiative heat flux
density, respectively.

The LB evolution equation for the temperature field can be
expressed as

gi(r + eit,t + t) − gi(r,t)

= − 1

τT

[
gi(r,t) − g

eq
i (r,t)

] − twi

ρCp

∇ · qR, (56)

where gi is the temperature distribution function in the i

direction, g
eq
i is the equilibrium distribution function, and

∇ · qR = β(1 − ω)(4σT 4 − G) is the radiative source term.
The variable τT is the relaxation time for the temperature field,
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FIG. 9. Temperature distributions for various conduction-radiation parameters. (a) P l = 0, (b) P l = 0.01, (c) P l = 0.1, and (d) P l = 1.
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represented by

τT = χ

c2
s t

+ 1

2
, (57)

where χ = k/(ρCp) is the thermal diffusivity. The equilibrium
distribution function is expressed by

g
eq
i = T wi, (58)

and the macroscopic temperature can be computed from

T =
∑

i

gi . (59)

The LBM is used to simulate coupled conduction and
radiation in a black square enclosure with a purely absorbing
medium. The boundary temperatures are kept constant, and
the absorption coefficient is κa = 1 m−1. Initially, the entire
system is at a constant temperature, and for t > 0 the
temperatures of the south and north boundaries are raised to
twice the initial temperature value. We apply the D2Q9 lattice
model and uniform meshes of 60 × 60 in the LB models
for both conduction and radiation. The solution procedure
can be briefly described as follows. Firstly, we calculate
the radiative intensity field using Eq. (17) combined with
Eq. (25) and obtain the incident radiation from Eq. (7).
Secondly, we calculate the temperature field using Eq. (56)
combined with Eq. (59) and obtain a new blackbody radiative
intensity distribution. Finally, the steps are repeated until the
convergence criterion is satisfied. In the solution procedure,
the boundary conditions for both the temperature field and the
radiative intensity field are evaluated using Eq. (48).

The steady-state temperature distributions are plotted in
Fig. 9 for various conduction-radiation parameters Pl [P l =
kκa/(4σT 3

ref), where Tref is the average of the highest wall
temperature and the lowest wall temperature]. Figure 9(a)
shows temperature glides at the walls of the enclosure with
P l = 0. In the case where P l = 0, no conduction contributes
to the heat transfer, and the medium is at radiative equilibrium.
The temperature glide is a characteristic phenomenon of heat
transfer at radiative equilibrium and disappears in coupled
radiation and conduction. With the increase of Pl, as shown
in Figs. 9(b)–9(d), the contribution of thermal radiation
decreases, and the temperature level consequently falls. The
temperature distribution also tends to be nonuniform.

The simulations are carried out within a unified computa-
tional framework based on the LBM. In the unified computa-
tional framework, the lattice Boltzmann evolution equations
for temperature fields and radiative intensity fields are similar,
and for finding the fields, the same boundary condition
implementation, lattice spacing, and discrete velocity model
(D2Q9 scheme) are applied.

V. CONCLUSIONS

A lattice Boltzmann model is proposed for a two-
dimensional steady radiative transfer equation. To build a

complete LB model, an artificial diffusion term is introduced to
the radiative transfer equation. Based on the Chapman-Enskog
expansion, the correct equilibrium distribution function and re-
laxation time expression are constructed for the corresponding
lattice Boltzmann equation. From the expression of relaxation
time, we see that the derived lattice Boltzmann equation with a
relaxation time of 0.5 is exactly suitable for a standard steady
radiative transfer equation.

Three test cases of radiative transfer are used as examples
to validate the LBM. These test cases include a purely ab-
sorbing medium in a black enclosure with different extinction
coefficients, a purely scattering medium in a gray enclosure
with different wall emissivity, and an anisotropically scattering
medium in a black enclosure with different scattering albedos.
The radiative flux and incident radiation obtained by the
LBM are comparable to those obtained by other numerical
methods. The comparisons show that the lattice Boltzmann
method proposed in this article achieves a high accuracy
in solving two-dimensional radiative transfer problems. The
spatial convergence property of the present LBM is thoroughly
explored, and we find that the convergence rate of the LBM is
dependent on the transport properties of the radiative transfer
equation. With a large optical thickness, the radiative transfer
equation can be regarded as a diffusion-dominated equation,
and the LBM has a second-order convergence rate in space.
With a decrease of optical thickness, convection characteristics
of the radiative transfer equation become more significant,
and the order of convergence rate for the LBM decreases
accordingly. For an optical thickness of βL = 1, the order
is approximately 1.7; for βL = 10, the order is 1.92; and if
the optical thickness is further increased from 10, the order is
increased to 2. The radiative transfer inside a square enclosure
with a Gaussian shaped emissive field is also investigated, and
the results obtained by the FEM and LBM are compared in
detail. From the comparison, we see that the LBM has excellent
numerical stability while the FEM solutions suffer from
nonphysical oscillations. Finally, we present an application
of the proposed LBM to coupled radiative and conductive heat
transfer.

From the multiscale analysis based on the Chapman-
Enskog expansion, we can see that the extension of the LB
model to a three-dimensional radiative transfer equation is
straightforward. In future works, we will extend the proposed
LB model to radiative transfer in an irregular enclosure with
participating media and multidimensional vector radiative
transfer. We will also attempt to establish a unified frame-
work based on the LBM to solve the coupling problem of
multiphysics fields with the consideration of radiation.
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[44] A. Mink, G. Thäter, H. Nirschl, and M. J. Krause, J. Comput.

Sci. (in press).
[45] B. C. Shi and Z. L. Guo, Phys. Rev. E 79, 016701 (2009).
[46] C. Huber, B. Chopard, and M. Manga, J. Comput. Phys. 229,

7956 (2010).
[47] H. L. Lai and C. F. Ma, Phys. Rev. E 84, 046708 (2011).
[48] F. F. Wu, W. P. Shi, and F. Liu, Commun. Nonlinear Sci. Numer.

Simul. 17, 2776 (2012).
[49] Z. H. Chai and T. S. Zhao, Phys. Rev. E 87, 063309 (2013).
[50] Q. H. Li, Z. H. Chai, and B. C. Shi, J. Sci. Comput. 61, 308

(2014).
[51] Q. H. Li, Z. H. Chai, and B. C. Shi, Comput. Math. Appl. 70,

548 (2015).
[52] R. Z. Huang and H. Y. Wu, Phys. Rev. E 91, 033302 (2015).
[53] J. D. Sterling and S. Y. Chen, J. Comput. Phys. 123, 196 (1996).
[54] Z. L. Guo, C. G. Zheng, and B. C. Shi, Chin. Phys. 11, 366

(2002).
[55] R. Koch and R. Becker, J. Quant. Spectrosc. Radiat. Transfer

84, 423 (2004).
[56] W. A. Fiveland and J. P. Jessee, J. Thermophys. Heat Transfer

8, 426 (1994).
[57] A. C. Ratzel and J. R. Howell, J. Heat Transfer 105, 333 (1983).
[58] W. A. Fiveland, J. Heat Transfer 106, 699 (1984).
[59] T. K. Kim and H. Lee, Int. J. Heat Mass Transfer 31, 1711

(1988).
[60] J. H. Ferziger and M. Peric, Computational Methods for Fluid

Dynamics (Springer Science & Business Media, Berlin, 2012).
[61] J. M. Zhao, J. Y. Tan, and L. H. Liu, J. Comput. Phys. 232, 431

(2013).
[62] J. M. Zhao and L. H. Liu, Numer. Heat Transfer, Part B 51, 391

(2007).

023312-11

http://dx.doi.org/10.1002/aic.690040103
http://dx.doi.org/10.1002/aic.690040103
http://dx.doi.org/10.1002/aic.690040103
http://dx.doi.org/10.1002/aic.690040103
http://dx.doi.org/10.1115/1.1481359
http://dx.doi.org/10.1115/1.1481359
http://dx.doi.org/10.1115/1.1481359
http://dx.doi.org/10.1115/1.1481359
http://dx.doi.org/10.1016/j.jqsrt.2006.07.017
http://dx.doi.org/10.1016/j.jqsrt.2006.07.017
http://dx.doi.org/10.1016/j.jqsrt.2006.07.017
http://dx.doi.org/10.1016/j.jqsrt.2006.07.017
http://dx.doi.org/10.1016/0022-4073(95)00145-X
http://dx.doi.org/10.1016/0022-4073(95)00145-X
http://dx.doi.org/10.1016/0022-4073(95)00145-X
http://dx.doi.org/10.1016/0022-4073(95)00145-X
http://dx.doi.org/10.1016/S0022-4073(01)00202-3
http://dx.doi.org/10.1016/S0022-4073(01)00202-3
http://dx.doi.org/10.1016/S0022-4073(01)00202-3
http://dx.doi.org/10.1016/S0022-4073(01)00202-3
http://dx.doi.org/10.1016/j.ijthermalsci.2009.08.003
http://dx.doi.org/10.1016/j.ijthermalsci.2009.08.003
http://dx.doi.org/10.1016/j.ijthermalsci.2009.08.003
http://dx.doi.org/10.1016/j.ijthermalsci.2009.08.003
http://dx.doi.org/10.1108/09615531211255752
http://dx.doi.org/10.1108/09615531211255752
http://dx.doi.org/10.1108/09615531211255752
http://dx.doi.org/10.1108/09615531211255752
http://dx.doi.org/10.1080/10407790.2013.777644
http://dx.doi.org/10.1080/10407790.2013.777644
http://dx.doi.org/10.1080/10407790.2013.777644
http://dx.doi.org/10.1080/10407790.2013.777644
http://dx.doi.org/10.2514/3.559
http://dx.doi.org/10.2514/3.559
http://dx.doi.org/10.2514/3.559
http://dx.doi.org/10.2514/3.559
http://dx.doi.org/10.1080/15374416.2015.1052709
http://dx.doi.org/10.1080/15374416.2015.1052709
http://dx.doi.org/10.1080/15374416.2015.1052709
http://dx.doi.org/10.1080/15374416.2015.1052709
http://dx.doi.org/10.1108/eb017497
http://dx.doi.org/10.1108/eb017497
http://dx.doi.org/10.1108/eb017497
http://dx.doi.org/10.1108/eb017497
http://dx.doi.org/10.1016/j.jqsrt.2005.05.067
http://dx.doi.org/10.1016/j.jqsrt.2005.05.067
http://dx.doi.org/10.1016/j.jqsrt.2005.05.067
http://dx.doi.org/10.1016/j.jqsrt.2005.05.067
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.07.013
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.07.013
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.07.013
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.07.013
http://dx.doi.org/10.1016/j.ijthermalsci.2010.06.024
http://dx.doi.org/10.1016/j.ijthermalsci.2010.06.024
http://dx.doi.org/10.1016/j.ijthermalsci.2010.06.024
http://dx.doi.org/10.1016/j.ijthermalsci.2010.06.024
http://dx.doi.org/10.1103/PhysRevA.43.4521
http://dx.doi.org/10.1103/PhysRevA.43.4521
http://dx.doi.org/10.1103/PhysRevA.43.4521
http://dx.doi.org/10.1103/PhysRevA.43.4521
http://dx.doi.org/10.1103/PhysRevLett.67.3776
http://dx.doi.org/10.1103/PhysRevLett.67.3776
http://dx.doi.org/10.1103/PhysRevLett.67.3776
http://dx.doi.org/10.1103/PhysRevLett.67.3776
http://dx.doi.org/10.1016/j.fusengdes.2007.10.005
http://dx.doi.org/10.1016/j.fusengdes.2007.10.005
http://dx.doi.org/10.1016/j.fusengdes.2007.10.005
http://dx.doi.org/10.1016/j.fusengdes.2007.10.005
http://dx.doi.org/10.1016/S0010-4655(00)00090-4
http://dx.doi.org/10.1016/S0010-4655(00)00090-4
http://dx.doi.org/10.1016/S0010-4655(00)00090-4
http://dx.doi.org/10.1016/S0010-4655(00)00090-4
http://dx.doi.org/10.1016/j.physb.2003.08.009
http://dx.doi.org/10.1016/j.physb.2003.08.009
http://dx.doi.org/10.1016/j.physb.2003.08.009
http://dx.doi.org/10.1016/j.physb.2003.08.009
http://dx.doi.org/10.1103/PhysRevE.77.026710
http://dx.doi.org/10.1103/PhysRevE.77.026710
http://dx.doi.org/10.1103/PhysRevE.77.026710
http://dx.doi.org/10.1103/PhysRevE.77.026710
http://dx.doi.org/10.1103/PhysRevE.82.046708
http://dx.doi.org/10.1103/PhysRevE.82.046708
http://dx.doi.org/10.1103/PhysRevE.82.046708
http://dx.doi.org/10.1103/PhysRevE.82.046708
http://dx.doi.org/10.1063/1.1631439
http://dx.doi.org/10.1063/1.1631439
http://dx.doi.org/10.1063/1.1631439
http://dx.doi.org/10.1063/1.1631439
http://dx.doi.org/10.1016/j.jcp.2009.10.006
http://dx.doi.org/10.1016/j.jcp.2009.10.006
http://dx.doi.org/10.1016/j.jcp.2009.10.006
http://dx.doi.org/10.1016/j.jcp.2009.10.006
http://dx.doi.org/10.1063/1.2735403
http://dx.doi.org/10.1063/1.2735403
http://dx.doi.org/10.1063/1.2735403
http://dx.doi.org/10.1063/1.2735403
http://dx.doi.org/10.1016/j.jcp.2007.05.001
http://dx.doi.org/10.1016/j.jcp.2007.05.001
http://dx.doi.org/10.1016/j.jcp.2007.05.001
http://dx.doi.org/10.1016/j.jcp.2007.05.001
http://dx.doi.org/10.1007/s10915-014-9820-6
http://dx.doi.org/10.1007/s10915-014-9820-6
http://dx.doi.org/10.1007/s10915-014-9820-6
http://dx.doi.org/10.1007/s10915-014-9820-6
http://dx.doi.org/10.1103/PhysRevE.93.023309
http://dx.doi.org/10.1103/PhysRevE.93.023309
http://dx.doi.org/10.1103/PhysRevE.93.023309
http://dx.doi.org/10.1103/PhysRevE.93.023309
http://dx.doi.org/10.1007/s10483-013-1711-9
http://dx.doi.org/10.1007/s10483-013-1711-9
http://dx.doi.org/10.1007/s10483-013-1711-9
http://dx.doi.org/10.1007/s10483-013-1711-9
http://dx.doi.org/10.1016/j.physa.2014.01.057
http://dx.doi.org/10.1016/j.physa.2014.01.057
http://dx.doi.org/10.1016/j.physa.2014.01.057
http://dx.doi.org/10.1016/j.physa.2014.01.057
http://dx.doi.org/10.1016/j.euromechflu.2014.08.004
http://dx.doi.org/10.1016/j.euromechflu.2014.08.004
http://dx.doi.org/10.1016/j.euromechflu.2014.08.004
http://dx.doi.org/10.1016/j.euromechflu.2014.08.004
http://dx.doi.org/10.1016/j.molliq.2015.11.052
http://dx.doi.org/10.1016/j.molliq.2015.11.052
http://dx.doi.org/10.1016/j.molliq.2015.11.052
http://dx.doi.org/10.1016/j.molliq.2015.11.052
http://dx.doi.org/10.1016/j.physleta.2005.04.080
http://dx.doi.org/10.1016/j.physleta.2005.04.080
http://dx.doi.org/10.1016/j.physleta.2005.04.080
http://dx.doi.org/10.1016/j.physleta.2005.04.080
http://dx.doi.org/10.1016/j.jqsrt.2012.10.019
http://dx.doi.org/10.1016/j.jqsrt.2012.10.019
http://dx.doi.org/10.1016/j.jqsrt.2012.10.019
http://dx.doi.org/10.1016/j.jqsrt.2012.10.019
http://dx.doi.org/10.1016/j.physleta.2013.11.042
http://dx.doi.org/10.1016/j.physleta.2013.11.042
http://dx.doi.org/10.1016/j.physleta.2013.11.042
http://dx.doi.org/10.1016/j.physleta.2013.11.042
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.03.006
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.03.006
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.03.006
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.03.006
http://dx.doi.org/10.1080/10407791003613769
http://dx.doi.org/10.1080/10407791003613769
http://dx.doi.org/10.1080/10407791003613769
http://dx.doi.org/10.1080/10407791003613769
http://dx.doi.org/10.1080/01457632.2013.876806
http://dx.doi.org/10.1080/01457632.2013.876806
http://dx.doi.org/10.1080/01457632.2013.876806
http://dx.doi.org/10.1080/01457632.2013.876806
http://dx.doi.org/10.1103/PhysRevE.84.016704
http://dx.doi.org/10.1103/PhysRevE.84.016704
http://dx.doi.org/10.1103/PhysRevE.84.016704
http://dx.doi.org/10.1103/PhysRevE.84.016704
http://dx.doi.org/10.1103/PhysRevE.86.016706
http://dx.doi.org/10.1103/PhysRevE.86.016706
http://dx.doi.org/10.1103/PhysRevE.86.016706
http://dx.doi.org/10.1103/PhysRevE.86.016706
http://dx.doi.org/10.1364/OE.21.024532
http://dx.doi.org/10.1364/OE.21.024532
http://dx.doi.org/10.1364/OE.21.024532
http://dx.doi.org/10.1364/OE.21.024532
http://dx.doi.org/10.1103/PhysRevE.79.016701
http://dx.doi.org/10.1103/PhysRevE.79.016701
http://dx.doi.org/10.1103/PhysRevE.79.016701
http://dx.doi.org/10.1103/PhysRevE.79.016701
http://dx.doi.org/10.1016/j.jcp.2010.07.002
http://dx.doi.org/10.1016/j.jcp.2010.07.002
http://dx.doi.org/10.1016/j.jcp.2010.07.002
http://dx.doi.org/10.1016/j.jcp.2010.07.002
http://dx.doi.org/10.1103/PhysRevE.84.046708
http://dx.doi.org/10.1103/PhysRevE.84.046708
http://dx.doi.org/10.1103/PhysRevE.84.046708
http://dx.doi.org/10.1103/PhysRevE.84.046708
http://dx.doi.org/10.1016/j.cnsns.2011.11.032
http://dx.doi.org/10.1016/j.cnsns.2011.11.032
http://dx.doi.org/10.1016/j.cnsns.2011.11.032
http://dx.doi.org/10.1016/j.cnsns.2011.11.032
http://dx.doi.org/10.1103/PhysRevE.87.063309
http://dx.doi.org/10.1103/PhysRevE.87.063309
http://dx.doi.org/10.1103/PhysRevE.87.063309
http://dx.doi.org/10.1103/PhysRevE.87.063309
http://dx.doi.org/10.1007/s10915-014-9827-z
http://dx.doi.org/10.1007/s10915-014-9827-z
http://dx.doi.org/10.1007/s10915-014-9827-z
http://dx.doi.org/10.1007/s10915-014-9827-z
http://dx.doi.org/10.1016/j.camwa.2015.05.008
http://dx.doi.org/10.1016/j.camwa.2015.05.008
http://dx.doi.org/10.1016/j.camwa.2015.05.008
http://dx.doi.org/10.1016/j.camwa.2015.05.008
http://dx.doi.org/10.1103/PhysRevE.91.033302
http://dx.doi.org/10.1103/PhysRevE.91.033302
http://dx.doi.org/10.1103/PhysRevE.91.033302
http://dx.doi.org/10.1103/PhysRevE.91.033302
http://dx.doi.org/10.1006/jcph.1996.0016
http://dx.doi.org/10.1006/jcph.1996.0016
http://dx.doi.org/10.1006/jcph.1996.0016
http://dx.doi.org/10.1006/jcph.1996.0016
http://dx.doi.org/10.1088/1009-1963/11/4/310
http://dx.doi.org/10.1088/1009-1963/11/4/310
http://dx.doi.org/10.1088/1009-1963/11/4/310
http://dx.doi.org/10.1088/1009-1963/11/4/310
http://dx.doi.org/10.1016/S0022-4073(03)00260-7
http://dx.doi.org/10.1016/S0022-4073(03)00260-7
http://dx.doi.org/10.1016/S0022-4073(03)00260-7
http://dx.doi.org/10.1016/S0022-4073(03)00260-7
http://dx.doi.org/10.2514/3.560
http://dx.doi.org/10.2514/3.560
http://dx.doi.org/10.2514/3.560
http://dx.doi.org/10.2514/3.560
http://dx.doi.org/10.1115/1.3245583
http://dx.doi.org/10.1115/1.3245583
http://dx.doi.org/10.1115/1.3245583
http://dx.doi.org/10.1115/1.3245583
http://dx.doi.org/10.1115/1.3246741
http://dx.doi.org/10.1115/1.3246741
http://dx.doi.org/10.1115/1.3246741
http://dx.doi.org/10.1115/1.3246741
http://dx.doi.org/10.1016/0017-9310(88)90283-9
http://dx.doi.org/10.1016/0017-9310(88)90283-9
http://dx.doi.org/10.1016/0017-9310(88)90283-9
http://dx.doi.org/10.1016/0017-9310(88)90283-9
http://dx.doi.org/10.1016/j.jcp.2012.08.020
http://dx.doi.org/10.1016/j.jcp.2012.08.020
http://dx.doi.org/10.1016/j.jcp.2012.08.020
http://dx.doi.org/10.1016/j.jcp.2012.08.020
http://dx.doi.org/10.1080/10407790600964583
http://dx.doi.org/10.1080/10407790600964583
http://dx.doi.org/10.1080/10407790600964583
http://dx.doi.org/10.1080/10407790600964583



