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In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with
high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator
to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is
added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form
of the equilibrium density distribution function is used to simplify the source term. To validate the proposed
model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to
1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and
improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases
of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former
case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike
and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet
spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and
Reynolds number up to 500.
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I. INTRODUCTION

In recent years, the lattice Boltzmann (LB) method has
developed to be a powerful tool for simulating multiphase
and multicomponent flows [1–3]. The LB method is a meso-
scopic computational method which solves the kinetic-based
evolution equations for the distribution functions instead of
the macroscopic governing equations in conventional compu-
tational fluid dynamics (CFD) methods. Due to its kinetic
nature, the LB method is advantageous over conventional
CFD methods in modeling multiphase flows. For example, in
conventional CFD methods such as the volume of fluid [4,5]
and level-set methods [6,7], the interfacial behavior is often
obtained by solving a transport equation of the volume fraction
(level-set function) and implementing an interface reconstruc-
tion (re-initialization) process, which are complicated and
difficult to realize. However, in the LB method, the multiphase
interface can be automatically captured and the interfacial
dynamics can be easily modeled by the incorporation of
intermolecular-level interactions.

Generally, the existing multiphase LB models can be
classified into four categories: color-gradient model [8],
pseudopotential model [3,9–11], free-energy model [12], and
mean-field model [13,14]. In the present study we focus on
the color-gradient model. The color-gradient model possesses
many strengths in simulating multiphase and multicomponent
flows, including strict mass conservation for each fluid, the
flexibility in adjusting the interfacial tension, and the stability
for a broad range of viscosity ratios. In addition, it can be
implemented with much ease, and the numerical results in
the literature [15,16] show that the color-gradient model is
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of high accuracy and relatively low spurious velocities at
various viscosity ratios. A color-gradient model was proposed
by Gunstensen et al. [8] in 1991, which is based on the cellular
automata model for immiscible two-phase flows developed
by Rothmann and Keller [17]. This model introduces two
distribution functions to represent two immiscible fluids
(i.e., red and blue fluids), and uses a color-gradient-related
perturbation operator to generate the interfacial tension, and a
recoloring step to separate the two fluids. By introducing the
freedom in the rest equilibrium distribution functions, Grunau
et al. [18] modified the Gunstensen’s model to allow for a small
variation of density. Later, using the similar idea of Grunau
et al., Reis and Phillips [15] developed a two-dimensional
nine-velocity (D2Q9) version of the color-gradient model,
which could simulate the density ratio up to 18.5 in the droplet
coalescence test. Latva-Kokko and Rothman [19] replaced
Gunstensen’s maximization recoloring step with a formulaic
segregation algorithm, which removes the lattice pinning
problem and at the same time reduces spurious velocities,
but widens the interface on a certain level. Lishchuk et al. [20]
introduced the perturbation step with a direct forcing term,
which effectively reduces spurious velocities arising in the
vicinity of the interface. Liu et al. [16] proposed a three-
dimensional color-gradient model and derived a generalized
perturbation operator that can recover the correct form of the
interfacial tension in the Navier-Stokes equations (NSEs).

With the above advances, the color-gradient LB models
have been improved significantly and widely used to study
multiphase and multicomponent flows [21–23]. Recently,
however, some critical issues about the ability of the color-
gradient models in dealing with high density ratio flows have
been raised by Leclaire et al. [24] and Huang et al. [25].
By replacing the recoloring step with a formulaic segregation
algorithm, Leclaire et al. [24] improved the model of Reis
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and Phillips [15] for binary fluids with variable density and
viscosity ratios. However, when simulating the layered channel
flow with the density ratios larger than unity, they found
a large discrepancy between the numerical and analytical
solutions. This discrepancy was later identified by Huang
et al. [25] to arise from an unwanted additional term in
the momentum equations, which is not negligibly small for
nonunity density ratios. In order to eliminate the unwanted
term, Huang et al. [25] further proposed to add a source
term into the evolution equation of distribution functions.
Their model showed an apparently enhanced performance in
simulating the layered channel flow for the density ratios up
to 8, but the evaluation of the source term may lead to con-
siderable numerical errors at higher density ratios. Recently,
Leclaire et al. [26] used an enhanced equilibrium distribution
function to simulate the layered Couette flows, and found good
agreement between the numerical and analytical solutions for
the density ratios up to 1000. Lishchuk et al. [27] modeled
the high density ratio two-phase flows by introducing the
shear-dependent forces, which act in the region of the interface
and could compensate the relative fluid motion caused by
inertia. They successfully simulated the static bubble case and
the bubble rising case for the density ratios respectively up to
1000 and 10. On the other hand, the multiple-relaxation-time
(MRT) collision operator [28] has been recently adopted
in the color-gradient LB models to enhance the numerical
stability [21,29,30]. In particular, in the latest work of Leclaire
et al. [31], the MRT collision operator was combined with
the enhanced equilibrium distribution functions [26], which
enables their model to be capable of simulating high density
ratio flows for both steady and unsteady cases.

Although the aforementioned studies have improved the
performance of the color-gradient LB models for high density
ratio flows, significant efforts are still needed because most
of them only focused on the simulation of steady flows. The
model’s capability for unsteady two-phase flows with complex
interfacial behaviors and/or high Reynolds numbers have not
been considered convincingly even at the density ratios of
O(10). In contrast, the free-energy and the pseudopotential
models have gained great confidence in the simulation of
high density ratio two-phase flows. For example, Inamuro
et al. [32] successfully simulated the rise of bubbles in a
liquid with the density ratios up to 1000 by using a variant
of the free-energy model, in which a pressure correction
is applied to enforce the continuity condition after every
collision-propagation step. Similar density contrasts for the
droplet splashing were achieved by Lee and Lin [33], who
established a model based on the phase field free-energy theory
through a stable discretization of the LB equations.

In this paper we propose a color-gradient LB model for
simulating immiscible two-phase flows, which is capable of
handling flows with high density ratio and high Reynolds
number. The proposed model has several distinct features
compared with previous studies [25–27,30,31] in the following
aspects: (1) the use of a modified equilibrium density distri-
bution function that is derived from the third-order Hermite
expansion [30,34]; (2) the enhancement of the numerical
stability by means of MRT collision operator corresponding
to the modified equilibrium density distribution function; and
(3) the incorporation of a simple source term into an MRT

LB equation so as to recover the target NSEs. To validate
the proposed model, we first simulate a static droplet and the
layered channel flow for the density ratios up to 1000 and
compare the simulation results with the analytical solutions.
Then, two unsteady flow cases that involve complex interfacial
dynamics are simulated, i.e., the Rayleigh-Taylor instability
with the density ratio of 3 and the Reynolds numbers up to
2048, and a droplet splashing on a thin film with the density
ratio of 100 and the Reynolds numbers up to 500. To the best
of our knowledge, the unsteady flows with the density ratios
and Reynolds numbers considered in this work have not been
simulated satisfactorily by the previous color-gradient models.

II. NUMERICAL MODEL

In the present model, two immiscible fluids are represented
as a red fluid and a blue fluid, respectively. The distribution
function f k

i is introduced to represent the fluid k, where
k = R or B denotes the color (“red” or “blue”), and i is the
lattice velocity direction. The total distribution function is
defined as fi = f R

i + f B
i . The evolution of the distribution

function is expressed by the following LB equation:

f k
i (x + eiδt ,t + δt ) = f k

i (x,t) + �k
i

(
f k

i (x,t)
)
, (1)

where x and t are the position and time, ei is the lattice velocity
in the ith direction, δt is the time step, and �k

i is the collision
operator.

The collision operator �k
i consists of three parts:

�k
i = (

�k
i

)(3)[(
�k

i

)(1) + (
�k

i

)(2)]
, (2)

where (�k
i )(1) is the single phase collision operator, (�k

i )(2)

is the perturbation operator which generates an interfacial
tension, and (�k

i )(3) is the recoloring operator which is used
to produce the phase segregation and maintain the phase
interface.

A. Single phase collision operator

In a color-gradient LB model, the single phase collision
operator often used is the Bhatnagar-Gross-Krook (BGK)
collision operator with the rest particle equilibrium distribu-
tions relying upon the density ratio [15,16,24,29,35]. In this
subsection we will first show that the use of BGK collision
operator fails to recover the correct NSEs in dynamic problems
when the fluids have unequal densities, and then propose a
MRT scheme together with a simple correction term so that
the target NSEs can be recovered exactly.

1. BGK collision operator and unwanted term in NSEs

Using the BGK approximation, the single phase collision
operator (�k

i )(1) in color-gradient models can be written as(
�k

i

)(1) = −ωk
[
f k

i − f
k,(eq)
i

]
, (3)

in which ωk is the relaxation parameter [35] and f
k,(eq)
i is the

equilibrium distribution function [15]:

f
k,(eq)
i (ρk,u) = ρk

(
φk

i + Wi

[
3ei · u

c2
+ 9(ei · u)2

2c4
− 3(u)2

2c2

])
,

(4)
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where c is the lattice speed, Wi is the weight parameter
defined in the D2Q9 lattice model [10], φk

i is a parameter
which is related to the density ratio of the two fluids, ρk is
the density of each fluid, and u is the velocity of the fluid
mixture. The macroscopic variables are obtained by the mass
and momentum conservations:

ρk =
∑

i

f k
i =

∑
i

f
k,(eq)
i ,

(5)
ρu =

∑
i

∑
k

eif
k
i =

∑
i

∑
k

eif
k,(eq)
i ,

in which ρ = ∑
k ρk is the density of the fluid mixture. Note

that the parameter φk
i in Eq. (4) is equal to Wi in the most LB

models, while in some Shan-Chen models (e.g., the model of
Kang et al. [11]) and in color-gradient models [15,24], it is
expressed as a general form:

φk
i =

⎧⎪⎨
⎪⎩

αk, i = 0,

(1 − αk)/5, i = 1,2,3,4,

(1 − αk)/20, i = 5,6,7,8,

(6)

in which αk is a free parameter related to the speed of sound of
each fluid by (ck

s )2 = 3
5 (1 − αk), ck

s controls the hydrodynamic
pressure of each phase pk through the equation of state pk =
ρk(ck

s )2, and the hydrodynamic pressure of the fluid mixture
is calculated by p = ∑

k pk . The stable interface assumption
requires the free parameters αR and αB to satisfy the following
relation [15]:

γ = ρR0

ρB0
= 1 − αB

1 − αR
, (7)

where ρR0 and ρB0 are the densities of the pure red and blue
fluids, and γ represents the density ratio. The constraint of
0 � αk � 1 should be satisfied to avoid the unreal value of
speed of sound and negative value of fluid density.

Taking the zeroth- to third-order velocity moments of the
equilibrium distribution functions, we have∑

i

f
k,(eq)
i = ρk,

∑
i

f
k,(eq)
i eiα = ρkuα,

(8)∑
i

f
k,(eq)
i eiαeiβ = ρkuαuβ + ρk

(
ck
s

)2
δαβ,

∑
i

f
k,(eq)
i eiαeiβeiγ = 1

3
ρkc2(uγ δαβ + uβδαγ + uγ δαβ).

Note in the above equation that (ck
s )2 in the second-order

moment is usually not equal to 1
3c2 in the third-order moment

for binary fluids with unequal densities, which can lead to an
unwanted error term (argued recently by Huang et al. [25]) in
the recovered momentum equations [16]:

Uk
α =

(
1

ωk
− 1

2

)[
1

3
c2 − (

ck
s

)2
]
∂β[uβ∂α(ρk) + uα∂β(ρk)

+ ∂γ (ρkuγ )δαβ]. (9)

To reduce or eliminate the error term, a direct way is to add
a source term Ck

i into the single phase collision operator, as
previously done by Huang et al. [25]:

Ck
i = −WiU

k
αeiα

3

c2
. (10)

This source term is able to enhance the numerical accuracy
in simulating the layered channel flow for the density ratio
up to 8, but such a simple treatment cannot lead to the correct
NSEs and the evaluation of the density gradients may introduce
considerable numerical errors for higher density ratio flows.
Leclaire et al. [26] later used an enhanced equilibrium distribu-
tion function, by which one can recover the correct NSEs with
the error terms that can be neglected under some conditions.
Their model can provide accurate simulation results for two-
layered Couette flows with density ratios up to 1000.

2. MRT collision operator

In this subsection we will provide a collision operator to
deal with two-phase flows with high density ratios, which can
exactly recover the target NSEs by adding a simple correction
term.

In the LB method, the MRT model is demonstrated to have
better numerical stability than its BGK counterpart [28], and
thus it is adopted in this study. Using the MRT collision model,
the single phase collision operator can be written as

(
�k

i

)(1) =
∑

j

(M−1S)ij
(
mk

j − m
k,(eq)
j

) +
∑

j

(M−1)ijC
k

j
,

(11)

where Ck
j

is a source term and will be defined later, and S is
the diagonal matrix given by

S = diag(s0,s1,s2,s3,s4,s5,s6,s7,s8)

= diag(0,se,sς ,0,sq,0,sq,sν,sν), (12)

where the element si represents the relaxation parameter.
Considering the suggestions in Ref. [28], the relaxation
parameters are chosen as se = 1.25, sς = 1.14, sq = 1.6, and
sν is related to the dynamic viscosity of the two fluids. M
is a linear orthogonal transformation matrix that projects f k

i

in the discrete velocity space to mk
i in the moment space,

and M and its inverse matrix M−1 are given in Appendix A.
The distribution function in moment space is obtained by
mk

i = ∑
j Mij f

k
j and can be written as

mk = (
mk

0,m
k
1,m

k
2,m

k
3,m

k
4,m

k
5,m

k
6,m

k
7,m

k
8

)T

= (
ρk,ek,ςk,j k

x ,qk
x ,j

k
y ,qk

y ,p
k
xx,p

k
xy

)T
, (13)

where ek is the energy mode, ςk is related to energy square,
(jk

x ,j k
y ) are the momentum components, (qk

x ,q
k
y ) are the energy

flux, and (pk
xx,p

k
xy) are related to the diagonal and off-diagonal

components of the stress tensors [28]. In the same way, the
equilibrium distribution functions in moment space m

k,(eq)
i in

Eq. (11) is obtained by m
k,(eq)
i = ∑

j Mij f
k,(eq)
j . In our model,

an equilibrium distribution function different from Eq. (4) is
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applied

f
k,(eq)
i (ρ,u) = ρkφk

i + ρkWi

{
3ei · u

c2

[
1 + 1

2

(
3
(
ck
s

)2

c2
− 1

)(
3(ei)2

c2
− 4

)]
+ 9(ei · u)2

2c4
− 3(u)2

2c2

}
, (14)

which is derived based on the third-order Hermite expansion of the Maxwellian distribution [30,34]. It is easily demonstrated
that the zeroth- to second-order velocity moments of the equilibrium distribution function Eq. (14) are the same as those shown
in Eq. (8). Taking the third-order velocity moment of f

k,(eq)
i , however, one obtains [34]

∑
i

f
k,(eq)
i eiαeiβeiγ =

{
1
3ρkc

2(uγ δαβ + uβδαγ + uγ δαβ), if i = j = k,

ρk

(
ck
s

)2
(uγ δαβ + uβδαγ + uγ δαβ), otherswise.

(15)

It can be seen that the off-diagonal elements of the third-order velocity moment can completely cancel the error term Uk
α in

Eq. (9) [34], but the diagonal elements cannot.
Using the equilibrium distribution function f

k,(eq)
i in Eq. (14), m

k,(eq)
i can be obtained as follows:

mk,(eq) = (
m

k,(eq)
0 ,m

k,(eq)
1 , . . . ,m

k,(eq)
8

)T = (
ρk,ek,(eq),ςk,(eq),j k

x ,qk(eq)
x ,j k

y ,qk,(eq)
y ,pk,(eq)

y ,pk,(eq)
y

)T

= ρk
(
1,−3.6αk − 0.4 + 3u2,5.4αk − 1.4 − 3u2,ux,(−1.8αk − 0.2)ux,uy,(−1.8αk − 0.2)uy,u

2
x − u2

y,uxuy

)T
. (16)

Through the Chapman-Enskog multiscale analysis (see
Appendix B), the exact NSEs can be recovered if the source
term of each phase Ck in Eq. (11) is chosen as

Ck = [
0,Ck

1 ,0,0,0,0,0,Ck
7 ,0

]T
, (17)

where

Ck
1 = 3(1 − se/2)(∂xQx + ∂yQy),

Ck
7 = (1 − sν/2)(∂xQx − ∂yQy),

Qx = (1.8αk − 0.8)ρkux,

Qy = (1.8αk − 0.8)ρkuy. (18)

Compared with Eq. (10), this source term only contains the
first-order derivatives, and only two of the moment functions
need to be corrected. As shown in Appendix B, the dynamic
viscosity μ of the fluid mixture is related to sν by

μ = δt

(
1

sv

− 1

2

)
p. (19)

In our numerical simulations, the derivatives of a variable
ψ , e.g., Qx and Qy in Eq. (17), can be calculated by the
nine-point isotropic finite difference approximation, i.e.,

∂αψ(x) = 3

c2

∑
i

Wiψ(x + eiδt )eiα. (20)

The phase field function ρN is an important parameter
in the color-gradient models, and its gradient ∇ρN is used
to identify the interface and calculate the interfacial force.
Usually, ρN is defined by ρN = (ρR − ρB)/(ρR + ρB) [8,15].
This definition, however, becomes increasingly incorrect in
identifying the interface as the density ratio increases. Thus,
Leclaire et al. [36] proposed a formulation to calculate the
gradient of the phase field, i.e.,

∇ρN = ρB

ρ
∇

(
ρR

ρ

)
− ρR

ρ
∇

(
ρB

ρ

)
.

In the present model we use the following definition:

ρN =
(

ρR

ρR0
− ρB

ρB0

)/(
ρR

ρR0
+ ρB

ρB0

)
. (21)

In this way, the interface position can be well represented
by the ρN= 0 contour; and also, Eq. (21) will reduce to the
conventional definition when both fluids have equal densities.

To account for unequal viscosity of the two fluids and
ensure the smoothness of the relaxation parameter sν across
the interface, sν is calculated as

sν =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sR
ν , ρN > δ,

gR(ρN ), δ � ρN > 0,

gB(ρN ), 0 � ρN > −δ,

sB
ν , ρN < − δ,

(22)

where sk
ν is the relaxation parameter of the fluid k, which

is given by sk
v = 1/(μk/pk + 0.5); δ is a free parameter

associated with the interface thickness and is taken as 0.1 in
the present study; and gR and gB are parabolic functions of the
phase field function ρN , and they are given by Reis et al. [15].

B. Perturbation operator

The perturbation operator (�k
i )(2) is responsible for gener-

ating the interfacial tension, and can be expressed as [37]

(
�k

i

)(2) = AkWi

(
1 − ωk

2

)
[3(ei − u) + 9(ei · u)ei] · Fs ,

(23)

where Ak is the fraction of interfacial tension contributed by
the fluid k, and satisfies

∑
k Ak = 1, and Fs is the interfacial

tension. Here we follow the previous researches [20,38] and
model the interfacial using the continuum surface force (CSF)
model, which can effectively reduce spurious currents and
improve the isotropy of the interface. Using the definition of
ρN in Eq. (21), the interfacial tension can be expressed as

Fs = − 1
2σK∇ρN, (24)
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where σ is the interfacial tension coefficient, and K is the local
curvature of the interface given by

K = −∇S · n, (25)

in which ∇S = (I − nn) · ∇ is the surface gradient operator
and n = −∇ρN/|∇ρN | is the outward-pointing unit normal
vector of the interface. In 2D, the curvature of the interface
can be written as

K = nxny

(
∂

∂y
nx + ∂

∂x
ny

)
− n2

x

∂

∂y
ny − n2

y

∂

∂x
nx. (26)

In this work, to be consistent with the single phase collision
operator, the perturbation step is also implemented in the MRT
framework. In moment space, the perturbation operator is
written as

Fk
i (x,t) =

∑
j

Mij

(
�k

j

)(2)
, (27)

where

Fk(x,t) = (
Fk

0 , F k
1 , . . . , F k

8

)T

= Ak

(
1 − ωk

2

)
[0,6(uxFsx + uyFsy),

− 6(uxFsx + uyFsy),Fsx,−Fsx,Fsy,−Fsy,

× 2(uxFsx − uyFsy),(uxFsy + uyFsx)]T . (28)

From Eq. (24) it can be clearly seen that the interfacial
tension is applied only at the lattice sites where two fluids
coexist. In the presence of the interfacial tension, the velocity
should be redefined to correctly recover the NSEs [35], i.e.,

ρku =
∑

i

∑
k

eif
k
i + 1

2
Fs . (29)

C. Recoloring operator

To promote phase segregation and maintain a reasonable
interface, the segregation operator proposed by Latva-Kokko
and Rothman [19] is used, and it is given by

(
�R

i

)(3)
(f ′

i ) ≡ f R′′
i = ρR

ρ
f ′

i + βWi

ρRρB

ρ
cos(ϕi)|ei |,

(
�B

i

)(3)
(f ′

i ) ≡ f B ′′
i = ρB

ρ
f ′

i + βWi

ρRρB

ρ
cos(ϕi)|ei |,

(30)

where f ′
i is the post-perturbation value of the total distribu-

tion function; f R′′
i and f B ′′

i are post-segregation (recolored)
distribution functions of the red and blue fluids, respectively;
ϕi is the angle between the color gradient ∇ρN and the lattice
direction ei ; and β is a parameter associated with the interface
thickness and should take a value between zero and unity.

Halliday et al. [38] and Hollis et al. [39] have identified
that a combination of the segregation operator Eq. (30) and
Guo et al.’s forcing method of Eq. (23) for the interfacial
tension cannot lead to the phase field equation that satisfies
the kinematic condition accurately. Specifically, the interface
is accelerated relative to the local fluid due to the presence of
unwanted terms in the recovered phase field equation. They

also proposed a method to enforce the kinematic condition
by applying a collision parameter perturbation that increases
the local viscosity of the fluid mixture. However, the collision
parameter perturbation was derived based on a static, spherical
droplet suspended in an infinite domain, and its extension to
complex interfacial dynamics remains unknown. Moreover,
the collision parameter perturbation contains some numerical
parameters to be determined, and it is still an open question
on how to choose these numerical parameters. Thus, the
segregation operator Eq. (30) with a combination with Guo
et al.’s forcing method is still used in the present work
for the sake of simplicity. Finally, it is worth noting that
most of the existing color-gradient models used the present
segregation operator without the enforcement of kinematic
condition, but they have been extensively demonstrated to
be accurate in predicting multicomponent flows such as
bubble coalescence [24], droplet formation [23], and droplet
deformation under a shear flow [16].

III. MODEL VERIFICATION

In this section we perform a series of numerical tests to
assess the capability of the developed MRT color-gradient
LB model, including the tests with theoretical solutions such
as a static droplet and layered channel flow, as well as
dynamic flows with complex interface evolution such as
Rayleigh-Taylor instability and droplet splashing on a thin
liquid layer. The layered channel flow and Rayleigh-Taylor
instability are simulated using both the original color-gradient
model proposed in our previous works [35] and our modified
MRT model with a source term to show the differences
between these two models. In order to keep consistency with
our modified model, the original color-gradient model is also
implemented in a MRT framework.

A. A static droplet test

First, a static droplet immersed in another fluid is simulated
for different density ratios and interfacial tensions. Since the
unwanted error term in Eq. (9) does not influence the results
of static flows, we only use the modified MRT model in this
test. According to the Laplace law, the droplet radius R and
the pressure difference �p inside and outside the droplet, in
the steady state, satisfy the following equation:

σ = R�p = R(pin − pout), (31)

where pin and pout are the pressure inside and outside the
droplet calculated by

pin = 0.6ρR
in(1 − αR) + 0.6ρB

in (1 − αB),
(32)

pout = 0.6ρR
out(1 − αR) + 0.6ρB

out(1 − αB),

in which ρk
in and ρk

out denote the mean densities of the fluid k

inside and outside the droplet.
A red circular droplet with the radius R = 25 is initially

placed at the center of the computational domain with size
100 × 100 lattice cells. The density of the blue fluid is taken
as ρB = 1, and the density of the red fluid is varied from
1 to 1000. The kinematic viscosities are set as νR = νB =
0.1667. Other parameters are chosen as αB = 0.2 and β = 0.7.
This β corresponds to an interface thickness of 4–5 lattice
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FIG. 1. Equilibrium droplet shape and velocity field for ρR = 10
and ρB = 1 at σ = 0.1.

grids. Periodic boundary conditions are imposed at all of the
boundaries.

Figure 1 shows the equilibrium droplet shape and velocity
field for ρR = 10 and ρB = 1 at σ = 0.1. Note that the
interface is represented by three contours of ρN , i.e., ρN =
−0.9, ρN = 0 and ρN = 0.9. In equilibrium state, spurious
velocities are clearly visible in the entire computational
domain, especially around the droplet interface. Table I shows
the comparison between the calculated interfacial tension and
the theoretical value, as well as the magnitude of the maximum
spurious velocities for various density ratios and interfacial
tensions. It is seen that the calculated interfacial tension σcal

agrees well with the theoretical value σth for each of the
simulations, and the relative error of interfacial tension, defined
by E = |σth − σcal|/σth × 100%, changes insignificantly with
the density ratio and increases slightly with the interfacial
tension. It can also be observed that the maximum value of the
spurious velocities |u|max increases with increasing density
ratio or interfacial tension. For all the cases considered, |u|max

keeps at a low level, much smaller than those obtained in
previous studies [16,40].

TABLE I. A static droplet in a domain of 100 × 100 lattices for
various density ratios and interfacial tensions.

ρR αB σth σcal E |u|max × 105

1 0.2 0.0120 0.0121 0.65% 0.716
1 0.2 0.0720 0.0726 0.84% 0.851
1 0.2 0.2400 0.2433 1.38% 2.09
2 0.2 0.1120 0.1090 0.95% 0.664
10 0.2 0.1320 0.1333 0.97% 1.29
30 0.2 0.1116 0.1125 0.83% 2.11
100 0.2 0.1000 0.1007 0.69% 6.81
1000 0.2 0.1000 0.1007 0.74% 12.5

FIG. 2. Schematic of the layered two-phase flow in a 2D channel.
The red (wetting) fluid flows in the region of |y| < a and the blue
(wetting) fluid flows in the region of a < |y| < b.

It should be noted that, to compare our model with other
existing high density LB models, the static droplet test is also
conducted using Lee’s model of Ref. [41] for different density
ratios. It is found that the spurious velocities produced by
Lee’s model are much smaller (at the level of 10−10), while the
relative errors of the surface tension remain at the same level
for both models. Meanwhile, the computational time of Lee’s
model is nearly four times more than that of our model for the
same simulation steps.

B. Layered two-phase flow in a 2D channel

Next, we simulate the layered two-phase immiscible
channel flow between two parallel walls (illustrated in
Fig. 2). Periodic boundary conditions are used at the left
and right boundaries, and halfway bounce-back boundary
conditions [42] are applied at the bottom and top walls. A
constant body force (G,0) is applied in the whole domain to
maintain the flow in the channel.

The size of the computational domain is set as 10 × 100
lattices. The nonwetting fluid (red fluid) is located in the central
region |y| < a and the wetting fluid (blue fluid) in the region
of a � |y| � b. Assuming the flow in the channel is Poiseuille
type, the analytical solution for the velocity profile can be
given as follows [21,43]:

u(y) =
{
A1y

2 + C1 (0 � |y| � a),

A2y
2 + B2y + C2 (a � |y| � b),

(33)

where the parameters are calculated by A1 = − G
2ρRνR ,

A2 = − G
2ρBνB , B2 = 2A2a + 2MA1a, C1 = (A2 − A1)a2 −

TABLE II. Relative errors of the velocity obtained by the present
model and the original color-gradient model at various density ratios.

Relative error (Eu)

Present Original color-
Cases αB ρR ρB M model gradient model

a 0.6 0.8 0.4 1 0.1646% 30.58%
b 0.2 0.4 0.8 1 0.1093% 49.25%
c 0.9 0.8 0.1 1 1.640% 195.3%
d 0.2 0.1 0.8 1 0.4633% 58.77%
e 0.9992 0.008 8 25 4.601%
f 0.2 8 0.008 0.04 0.8673%
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FIG. 3. Velocity profiles obtained by the present model and original color-gradient model for cases (a)–(f) in Table II. The analytical
velocity profile is also plotted for comparison.

B2(b − a) − A2b
2, C2 = −A2b

2 − B2b, and M = νR/νB is
the kinematic viscosity ratio of the two fluids. The relative error
of the velocity between the simulation results and analytical
solutions is defined as [25]

Eu =
∑b

y=−b |ux(x,y) − ux0(x,y)|∑b
y=−b |ux0(x,y)| × 100%, (34)

in which the summation runs over all y at an arbitrary x, and
ux0 is the analytical solution of the horizontal velocity.

Six different cases are simulated by both the present model
and the original color-gradient model with the case-dependent
simulation parameters described in Table II. Other simulation
parameters are taken as G = 1.5 × 10−8 and β = 0.7. Figure 3
shows the comparison between simulated velocity profiles and
the analytical solution for all of the cases considered. It can be
clearly observed that the present model greatly improves the
accuracy of the simulation results. Specifically, the velocity
profile can be well predicted by the present model in all
cases; but for the original color-gradient model, the predicted
velocity profiles significantly deviate from the analytical ones
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FIG. 4. Snapshots of the interface shape (ρN = 0) at different
times for At = 0.5 and Re = 256, which are obtained by (a) the
original color-gradient model and (b) the present model.

in the cases (a)–(d), which is attributed to the fact that the
error term in Eq. (9) cannot be neglected due to the abrupt
change of the momentum across the interface. In addition, the
original color-gradient model is found to suffer from numerical
instability at higher density ratios [see the cases (e) and (f)].
To quantify the simulated results, the relative error of the
velocity Eu is presented in Table II. It can be seen that the
relative error obtained by the original color-gradient model
is too large to be acceptable, and it increases significantly
with the density ratio. In contrast, the relative error obtained
by the present model is generally very small except for case
(e) (γ = 0.001), in which the relative error is as high as
Eu = 4.601%. We also note that the relative error can be
reduced by grid refinement. For example, the relative error
of the velocity will decrease to 2.317% for case (e) when the
grid resolution is increased to 10 × 200 lattices. Based on the
above results, we can conclude that the present model is more
accurate than the original color-gradient model and can pro-
vide satisfactory prediction of the high-density-ratio two-phase
flows.

C. Rayleigh-Taylor instability

When a heavy fluid is placed over a light one subjected
to a slightly disturbed interface in a gravitational field, the
interface will become unstable. This phenomenon is known
as the Rayleigh-Taylor instability, which has been extensively
studied both numerically and experimentally [33,44–47]. In
our simulations, a fluid with density of ρR is placed above
a fluid with density of ρB , and the Atwood number At =
(ρR − ρB)/(ρR + ρB ) is set to 0.5 in order to compare our
results with the those reported in previous studies [44,48].
The size of the computational domain is L × 4L, where
L = 256 lattices in order to obtain grid-independent numerical
results. The dimensionless time is defined as t∗ = t/

√
L/g,

and the Reynolds number Re = L
√

Lg/ν, in which g is the
gravitational acceleration and ν is the kinematic viscosity of
both fluids. The characteristic velocity of the system is set to
U = √

Lg = 0.04. Periodic boundary conditions are applied
on the left and right boundaries, and the halfway bounce-back
boundary conditions are used on the top and bottoms walls. The
initial interface shape is given by y = 2L + 0.1L cos(2πx/L).

Figure 4 shows the time evolution of the interface shape
for Re = 256, in which our simulation results are compared
with those obtained by the original color-gradient model. At
the initial stage (t∗ � 2), the heavy fluid moves downward,

FIG. 5. Interface shapes (ρN = 0) and contours of the y compo-
nent of the velocity at t∗ = 2.5, which are obtained by (a) the original
color-gradient model and (b) the present model.
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FIG. 6. Snapshots of the interface shape (ρN = 0) at different
times for At = 0.5 and Re = 2048, obtained by (a) the original color-
gradient model and (b) the present model.

forming a spike in the middle, and the light fluid forms bubbles
on left and right sides. During this time, the simulation results
of different models show the same interface shapes. As the
spike rolls up and two side-spikes gradually grow (t∗ > 2),
the shapes of the bubble and spike fronts obtained by the
original color-gradient model and our model become quite
different, and the details of the interface obtained by our model
are observed to be closer to the results of Figs. 8(a)–8(e) in
Chiappini et al. [48]. Particularly, by looking at the contours of
the y component of the velocity at t∗ = 2.5 (which are plotted
in Fig. 5), we find that there exist some obvious discontinuous
velocities in the light fluid near the spike when the original
color-gradient model is used. This may be caused by the
error term in the original color-gradient model, which cannot
be ignored since the downward velocity at the point A [see
Fig. 5(b)] is as high as 0.027 under the effect of gravity.

Figure 6 shows the time evolution of the interface shape
for Re = 2048 obtained by the original color-gradient model
and the present model. Compared with the results in Fig. 4,
the movements of the spike and bubble are similar and two
side-spikes also appear in the initial stage. But at this Reynolds
number, the interface suffers from the Kelvin-Helmholtz
instability [41,44], and many secondary vortices appear near
the two side-spikes. In addition, it is noticed in Fig. 6(a) that the
original color-gradient model is not able to maintain a smooth
interface in the late stage of the simulation due to the error
term, i.e., Eq. (9). In contrast, smooth interfaces are obtained
by our model [see Fig. 6(b)], and the interface shapes overall
match with those of Figs. 8(f) and 8(g) in Chiappini et al. [48]
at different times.

Figure 7 shows the positions of the spike bottom and the
bubble top obtained by the original color-gradient model and
our model, and the obtained results are compared with the
data in previous studies [44,48]. For the position of the bubble
top, the predicted results from both models agree well with
the data in Refs. [44,48] since the velocity at this position
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FIG. 7. Positions of the spike bottom and bubble top obtained by the present model and the original color-gradient model at At = 0.5 for
(a) Re = 256 and (b) Re = 2048. The previous numerical results of He et al. [44] and Chiappini et al. [48] are also presented for comparison.
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FIG. 8. Snapshots of the interface shape (ρN = 0) and the
velocity field at (a) t∗ = 0.5, (b) t∗= 1.5, and (c) t∗= 2.5 for Re = 40.

always keeps at a small value during the simulations. For the
position of the spike bottom, the predicted results from the
present model agree perfectly with those in Refs. [44,48], but
the predicted results from the original color-gradient model
gradually deviate from the available literature data with time,
especially at Re = 256.

D. Droplet splashing on a thin liquid film

In this subsection, droplet splashing on a thin liquid
film [49–53] with an initial velocity U is simulated. Droplet
splashing is encountered in a variety of natural processes and
engineering applications ranging from raindrop falling on the
ground, ink-jet printing, to spray cooling in a combustion
chamber. In the present simulations, the size of the compu-
tational domain is set as 2L × L, in which L = 500 lattice
cells. A liquid layer of thickness h = 0.1L is located over the
bottom wall, and a circular droplet with the radius R = 0.2L

is initially located at (L, 0.3L). The entire computational
domain is initialized as the gas (blue fluid) except the
droplet and the liquid film (red fluid). Periodic boundary
conditions are applied at the left and right boundaries, and
the halfway bounce-back boundary conditions are used at the

FIG. 9. Snapshots of the interface shape (ρN = 0) and the
velocity field at (a) t∗ = 0.5, (b) t∗= 1.5, and (c) t∗= 2.5 for
Re = 100.

top and bottom walls. The Reynolds number is defined as
Re = UL/νR , Weber number is We = ρRU 2L/σ , and the
dimensionless time is t∗ = tU/(2R). The parameter αB is
taken as 0.2, and β is set to 0.2 to keep the interface stable
at high density ratios. This β corresponds to an interface
thickness of 6–8 lattice grids, which is acceptable in the present
simulation since the computational domain is sufficiently
large. The initial droplet velocity is set to 0.005, and the Weber
number in all cases is fixed at 160.

In this study the density ratio of 100 is considered, because
if the density ratio is further increased, the simulation becomes
unstable at high Reynolds numbers. Based on the previous
studies of Mukherjee et al. [50] and Josserand et al. [51], the
influence of the surrounding gas density on the evolution of the
crown radius is insignificant for the density ratio larger than 50.
This fact will allow us to quantitatively compare the simulation
results with the previously developed scaling laws [49,51–53].
Reynolds numbers ranging from 40 to 500 are considered,
and different Reynolds numbers are achieved by changing the
dynamic viscosity of the droplet μR from 2.5 to 0.2 while
keeping μB at 0.1. The simulation results obtained by the
present model are shown only since the simulation becomes
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FIG. 10. Snapshots of the interface shape (ρN = 0) and the velocity field at (a) t∗ = 0.25, (b) t∗ = 1, (c) t∗= 1.75, and (d) t∗= 2.5 for
Re = 500.

unstable after a few time steps for the original color-gradient
model.

Figures 8–10 show the snapshots of the interface shape
and the velocity filed at several typical times for Re = 40,
Re = 100, and Re = 500, respectively. It can be observed that
the droplet spreads on the liquid film gently without splashing
for Re = 40, whereas for larger Re a thin liquid sheet is
emitted after the droplet impacts and then grows into a crown.
For all Reynolds numbers considered, the velocity magnitude
decreases with time due to the viscous force from the gas
phase, and a vortex is observed between the liquid sheet and
the central droplet, which is formed due to the falling down of
the droplet and the rising up of the liquid sheet. This vortex
causes the sheet to move inward and eventually to become
nearly normal to the substrate in the duration of the simulation.
In addition, with increasing Re, the liquid sheet gets thinner
and becomes more perpendicular to the substrate because the
overall velocity magnitude inside the vortex grows with Re.

In the droplet splashing process, the spreading factor
r/(2R) was found to exhibit a power law dependence on the
dimensionless time t∗, i.e., r/(2R) = C

√
t∗, in which r is

the spreading radius, and C is a constant. Also, a number
of studies have shown that C is usually in the range of
1.1–1.3 [49,51–53]. In Fig. 11 we plot the crown radius as

11.010.0
0.1

1

2

r/(
2R

)

t*=Ut/(2R)

 Re = 100
 Re = 480
 Re =(1.2t*)1/2

FIG. 11. Dimensionless spreading radius as a function of the
dimensionless time at Re = 100 and 500. The spreading radius is
normalized by 2R.
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a function of t∗ for both Re = 100 and 500. It is seen that our
data can be well fitted by a power law with the spreading factor
C = 1.2, which is consistent with the previous findings.

Finally, it should be noted that the present MRT collision
operator is compatible with its BGK counterpart. However,
according to our tests, the BGK operator has poorer numerical
stability in general. With the BGK collision operator, for
example, stable numerical results can be achieved for the static
droplet and layered channel flows up to the density ratio of 100,
the Rayleigh Taylor instability test for the density ratio of 3 up
to the Reynolds number of 800, and the droplet splashing test
for the density of 10 up to Re = 400.

IV. CONCLUSIONS

The simulation of two-component flows with high density
ratio and high Reynolds number still remains a challenge
for many multiphase LB models. In this paper we develop
a color-gradient LB model for simulating two-phase flows
with high density ratio. The model applies a MRT collision
operator to enhance the stability of the simulation. In order
to recover the correct NSEs, we propose to add a simple
source term into the single phase collision operator and use
an equilibrium density distribution function that is derived
from the third-order Hermite expansion of the Maxwellian
distribution [30,34]. In addition, we introduce a phase field
function to identify different fluids and use a MRT version
of perturbation operator to realize the interfacial tension
effect. We also follow the previous work of Latva Kokko and
Rothman [19] and adopt their recoloring operator to ensure
the immiscibility of both fluids.

To validate the model, we first simulate the steady flows
with theoretical solutions, i.e., a static droplet and the layered

channel flow. In the static droplet test, we find that the predicted
interfacial tension agrees well with the analytical solution, and
the maximum value of spurious velocities is on the order of
10−5 for γ < 100 and on the order of 10−4 for γ = 1000. In the
layered channel flow, we use the original color-gradient model
and the present model to predict the velocity profiles, and find
that the present model can provide satisfactory predictions
of the velocity profiles for the density ratios up to 1000 but
the original color-gradient model produces large deviation
from the analytical solution due to unwanted error term in
the recovered NSEs. Then, two cases of unsteady flows,
namely Rayleigh-Taylor instability and a droplet splashing
on a thin film, are simulated. In the former test, the density
ratio of 3 with the Reynolds numbers of 256 and 2048 are
considered. In comparison with the original color-gradient
model, the interface shapes obtained by the present model
match better with those obtained by Chiappini et al. [48]. Also,
the interface positions of the spike and bubble predicted by the
present model are in quantitative agreement with the previous
numerical results [44,48]. In the latter test, the density of 100
and Reynolds numbers up to 500 are considered. Consistent
with the previous studies [51,53], the spreading radius is found
to exhibit a power law dependence on the time for different
Reynolds numbers.
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APPENDIX A: THE TRANSFORMATION MATRIX AND ITS INVERSE MATRIX

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A1)

M−1 = 1

36

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −4 4 0 0 0 0 0 0
4 −1 −2 6 −6 0 0 9 0
4 −1 −2 0 0 6 −6 −9 0
4 −1 −2 −6 6 0 0 9 0
4 −1 −2 0 0 −6 6 −9 0
4 2 1 6 3 6 3 0 9
4 2 1 −6 −3 6 3 0 −9
4 2 1 −6 −3 −6 −3 0 9
4 2 1 6 3 −6 −3 0 −9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A2)
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APPENDIX B: DEVIATION OF THE SINGLE PHASE COLLISION OPERATOR USING
THE CHAPMAN-ENSKOG EXPANSION

In this Appendix we present the Chapman-Enskog analysis to demonstrate that the source term Ck proposed in Eq. (17) can
correctly recover the NSEs [54].

In absence of the perturbation and segregation operators, the collision operator �k
i in can be simplified as (�k

i )(1) expressed
by Eq. (11). Thus, the evolution equation without the perturbation and segregation operators can be written as

f k
i (x + eiδt ,t + δt ) = f k

i (x,t) −
∑

j

(M−1Sk)ij
[
mk

j (x,t) − m
k,(eq)
j (x,t)

] +
∑

j

(M−1)ijC
k

j
(x,t). (B1)

Taking the sum of Eq. (B1) over k, we get

fi(x + eiδt ,t + δt ) = fi(x,t) −
∑

j

(M−1S)ij
[
mj (x,t) − m

(eq)
j (x,t)

] +
∑

j

(M−1)ijCj (x,t), (B2)

in which m
(eq)
j (x,t) = ∑

k m
k,(eq)
j (x,t), and Cj (x,t) = ∑

k Ck
j (x,t). In the moment space, Eq. (B2) can be expressed as

m(x + eiδt ,t + δt ) = m(x,t) − S[m(x,t) − m(eq)(x,t)] + C(x,t), (B3)

where the equilibrium moment functions are listed in Eq. (16). Then we expand the moment function, the derivatives of time and
space, and the source term in consecutive scales of ε,

m = m(0) + εm(1) + ε2m(2) + · · · , ∂t = ε∂t0 + ε2∂t1, ∂α = ε∂0α, C = εC(0), (B4)

where ε is a small parameter. Applying Taylor expansion to Eq. (B4) and using Eq. (B5), one can obtain the zero-, first-, and
second-order equations in ε,

ε0 : m(0) = m(eq), (B5a)

ε1 :
�

D0m(0) = −S′m(1) + C(0), (B5b)

ε2 : ∂t1m(0) +
�

D0m(1) + δt

2

�

D
2

0m(0) = −S′m(2), (B5c)

where S′ = S/δt ,
�

D0 = MD0M−1, and D0 = ∂t0 + ∂α0diag(e0α,e1α, . . . ,e8α). Combining Eq. (B5b) with Eq. (B5c), one easily
obtains

ε2 : ∂t1m(0) +
�

D0

(
I − S

2

)
m(1) + δt

2

�

D0C(0) = −S′m(2). (B5d)

Since the conservative moments m0, m4, and m6 satisfy the following equations:

ρ(n) = j (n)
x = j (n)

y = 0, n > 0, (B6)

Eq. (B5b) can be written explicitly as

∂t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∑
k ρk(−3.6αk − 0.4 + 3u2)∑
k ρk(5.4αk − 1.4 − 3u2)

ρux∑
k (−0.2 − 1.8αk)ρkux

ρuy∑
k (−0.2 − 1.8αk)ρkuy

ρ
(
u2

x − u2
y

)
ρuxuy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ∂0x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρux∑
k (0.8 − 1.8αk)ρkux∑

k (−0.2 − 1.8αk)ρkux

p + ρu2
x

−p − ρ
(
u2

x − u2
y

)
ρuxuy

ρuxuy∑
k (0.4 + 0.6αk)ρkux

puy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ∂0y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρuy∑
k (0.8 − 1.8αk)ρkuy∑

k (−0.2 − 1.8αk)ρkuy

ρuxuy

ρuxuy

p + ρu2
y

−p + ρ
(
u2

x − u2
y

)
−∑

k (0.4 + 0.6αk)ρkuy

pux

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−s ′
ee

(1)

−s ′
εε

(1)

0

−s ′
qq

(1)
x

0

−s ′
qq

(1)
y

−s ′
νp

(1)
xx

−s ′
νp

(1)
xy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
(0)
0

C
(0)
1

C
(0)
2

C
(0)
3

C
(0)
4

C
(0)
5

C
(0)
6

C
(0)
7

C
(0)
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B7)

and Eq. (B5d) as

∂t1ρ + C
(0)
0 = 0, (B8a)

∂t1(ρux) + 1

6

(
1 − se

2

)
∂0x[e(1)] +

(
1 − sν

2

)[
1

2
∂0xp

(1)
xx + ∂0yp

(1)
xy

]

+ δt

2

(
∂t0C

(0)
3 + 2

3
∂0xC

(0)
0 + 1

6
∂0xC

(0)
1 + 1

2
∂0xC

(0)
7 + ∂0yC

(0)
8

)
= 0, (B8b)
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∂t1(ρuy) + 1

6

(
1 − se

2

)
∂0y[e(1)] +

(
1 − sν

2

)[
−1

2
∂0yp

(1)
xx + ∂0xp

(1)
xy

]

+ δt

2

(
∂t0C

(0)
3 + 2

3
∂0yC

(0)
0 + 1

6
∂0yC

(0)
1 − 1

2
∂0yC

(0)
7 + ∂0xC

(0)
8

)
= 0, (B8c)

in which the source term C(0) = ∑
k C(0),k = ∑

k Ck is calculated by Eq. (17). In what follows we will prove that this source
term can recover the exact NSEs.

The macroscopic governing equations at t0 scale can be directly obtained from the first, fourth, and sixth equations in Eq. (B7)
with C

(0)
0 = C

(0)
3 = C

(0)
5 = 0 as

∂t0ρ + ∂0x(ρux) + ∂0y(ρuy) = 0, (B9a)

∂t0(ρux) + ∂0x(ρuxux) + ∂0y(ρuxuy) = −∂0xp, (B9b)

∂t0(ρuy) + ∂0x(ρuxuy) + ∂0y(ρuyuy) = −∂0yp. (B9c)

Substituting Eq. (17) into the second, eighth, and ninth equations of Eq. (B7) leads to the following equations:

− s ′
ee

(1) = 6p(∂0xux + ∂0yuy) + 3se

2

∑
k

(0.8 − 1.8αk)[∂0x(ρkux) + ∂0y(ρkuy)], (B10a)

−s ′
νp

(1)
xx = 2p(∂0xux − ∂0yuy) + sν

2

∑
k

(0.8 − 1.8αk)[∂0x(ρkux) + ∂0y(ρkuy)], (B10b)

−s ′
νp

(1)
xy = p(∂0xuy + ∂0yux). (B10c)

Then, substituting Eqs. (B10a)–(B10c) and (17) into Eqs. (B8a)–(B8c), one can obtain

∂t1ρ = 0, (B11a)

∂t1(ρux) + δt

(
1

se

− 1

2

)
∂0x[p(∂0xux + ∂0yuy)] + δt

(
1

sν

− 1

2

)
∂0x[p(∂0xux − ∂0yuy)]

+ δt

(
1

sν

− 1

2

)
∂0y[p(∂0xuy + ∂0yux)] = 0, (B11b)

∂t1(ρuy) + δt

(
1

se

− 1

2

)
∂0y[p(∂0xux + ∂0yuy)] + δt

(
1

sν

− 1

2

)
∂0y[p(∂0xux − ∂0yuy)]

+ δt

(
1

sν

− 1

2

)
∂0x[p(∂0xuy + ∂0yux)] = 0. (B11c)

In this way we can obtain the following momentum equations at t1 scale:

∂t1(ρux) = ∂0xτ
(0)
xx + ∂0yτ

(0)
xy , (B12a)

∂t1(ρuy) = ∂0xτ
(0)
xy + ∂0yτ

(0)
yy , (B12b)

where

τ (0)
xx = δt

(
1

se

− 1

2

)
(∂0xux + ∂0yuy)p + δt

(
1

sν

− 1

2

)
(∂0xux − ∂0yuy)p, (B13a)

τ (0)
xy = δt

(
1

sν

− 1

2

)
(∂0xuy + ∂0yux)p, (B13b)

τ (0)
yy = δt

(
1

se

− 1

2

)
(∂0xux + ∂0yuy)p − δt

(
1

sν

− 1

2

)
(∂0xux − ∂0yuy)p. (B13c)

Combining the equations at t0 and t1 scales, the following macroscopic equations can be recovered, i.e.,

∂t (ρ) + ∇ · (ρu) = 0, (B14a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · τ , (B14b)

where τ = 2μS + (ξ − μ)(∇ · u)I, ς = δt ( 1
se

− 1
2 )p is the bulk viscosity, μ = δt ( 1

sv
− 1

2 )p is the dynamic viscosity, and S =
1
2 [∇u + (∇u)T ] is the strain rate tensor.

From Eqs. (B14a) and (B14b), it is clearly seen that the target NSEs is exactly recovered with the proposed source term Ck

given in Eq. (17).
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