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Computation of the lattice Green function for a dislocation
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Modeling isolated dislocations is challenging due to their long-ranged strain fields. Flexible boundary condition
methods capture the correct long-range strain field of a defect by coupling the defect core to an infinite harmonic
bulk through the lattice Green function (LGF). To improve the accuracy and efficiency of flexible boundary
condition methods, we develop a numerical method to compute the LGF specifically for a dislocation geometry;
in contrast to previous methods, where the LGF was computed for the perfect bulk as an approximation for
the dislocation. Our approach directly accounts for the topology of a dislocation, and the errors in the LGF
computation converge rapidly for edge dislocations in a simple cubic model system as well as in BCC Fe with
an empirical potential. When used within the flexible boundary condition approach, the dislocation LGF relaxes
dislocation core geometries in fewer iterations than when the perfect bulk LGF is used as an approximation for
the dislocation, making a flexible boundary condition approach more efficient.
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I. INTRODUCTION

Defects such as point defects, dislocations, interfaces,
and grain boundaries play key roles in determining material
properties [1], and knowledge of their geometries is important
to model them accurately. The far-field geometry of many
defects can be well described by anisotropic continuum
elasticity theory [2,3], but atomistic methods such as density
functional theory (DFT) are needed to accurately determine
the geometry within the defect core, where the elastic solution
diverges. Modeling defects such as isolated dislocations is
challenging because their long-range strain fields are incom-
patible with periodic or fixed boundary conditions. Some
DFT-based methods that have been used to model dislocation
core structures are reviewed in [4]. One way to circumvent
the issues associated with modeling isolated dislocations is
to compute periodic arrays of dislocation dipoles [5,6] or
quadrupoles [7,8]. Alternatively, isolated dislocations can be
directly simulated using multiscale methods that capture the
long-range strain field of the defect by coupling the quantum
mechanical core to a continuum.

Many different coupling approaches have been developed,
for example, using finite elements [9,10], classical poten-
tials [11,12], or flexible boundary conditions (FBCs), which
displace atoms outside the defect core according to the lattice
Green function (LGF) [13]. These approaches are all based
on the same concept of using a different Hamiltonian for
atoms in the dislocation core than for those outside the core.
A more accurate but computationally demanding method
like DFT is used in the highly distorted dislocation core
region, while a faster but less accurate method which captures
the far-field response of the dislocation is used outside the
core. However, there are a few key differences between the
various coupling approaches. The FBC and finite element
approaches ensure that the surrounding region has the same
elastic properties as the core by deriving the force constants
required to compute the LGF and the finite element constitutive
equations from DFT [9,14]. Coupling DFT to a classical
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potential is trickier: available potentials may not have been
fit to reproduce the relevant DFT quantities (force constant
matrix, lattice and elastic constants, and higher derivatives),
leading to an unphysical mismatch in material behavior across
the coupling interface which can introduce substantial errors
in the simulation [12]. Another difference is that in the
classical potential and finite element approaches, the region
described by the classical potential or finite elements is finite
and appropriate boundary conditions must be applied at the
outer boundary of the simulation. In contrast, the LGF used
in the FBC method smoothly transitions into the continuum
elastic Green function at large distances [15,16], effectively
embedding the defect within an infinite bulk. In this work, we
focus on the FBC method, which has been applied with DFT
to relax isolated screw and edge dislocations [17–20].

The accuracy and efficiency of the FBC method depends
on the accuracy of the LGF. Analytic results for LGF of
simple systems such as cubic lattices with nearest-neighbor
interactions are known [21,22]. Recently, computation of the
LGF for a perfect bulk crystal by inversion of the force-
constant matrix was demonstrated for Bravais lattices [23],
and later extended to crystals with multiple-atom basis [24] or
even a planar interface [25]. However, difficulties may arise
when applying the LGF for the bulk as an approximation to
a lattice containing a line defect. The LGF for the perfect
bulk crystal gives the response between atoms connected in
the perfect lattice topology; however, the topology of atoms
in a distorted lattice can deviate significantly from that of the
perfect lattice. In such cases, the bulk LGF may not capture
the response between atoms in the distorted lattice accurately,
which could lead to slower convergence.

We develop a method to compute the LGF specifically
for a dislocation geometry. Section II reviews the harmonic
lattice response functions, the force-constant matrix and LGF,
and the FBC method. We develop a numerical method to
compute the LGF for a dislocation geometry in Sec. III. In
Secs. IV and V we apply our new method for computing the
LGF to edge dislocations in a simple cubic model system
and BCC Fe, respectively. We show that the dislocation LGF
captures the response of atoms in the dislocation geometry
more accurately than the perfect bulk LGF, and when used
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within the FBC approach, relaxes dislocation core geometries
in fewer iterations than when the bulk LGF is used.

II. HARMONIC LATTICE RESPONSE

Atoms in a crystal displace in response to external or inter-
nal forces; conversely, displacing atoms from their equilibrium
positions generates forces. For small forces and displacements,
the atoms behave harmonically and the two quantities are
linearly related. The infinite harmonic crystal has been well
studied in both classical and quantum theory [26,27]. For
a crystal containing N atoms, the 3N × 3N force-constant
matrix Dαβ( �Ri, �Rj ) relates the α component of the force on
atom i located at position �Ri , fα( �Ri), to the β components of
the displacements on atoms j at positions �Rj , uβ( �Rj ), as

fα( �Ri) = −
∑
j,β

Dαβ( �Ri, �Rj )uβ( �Rj ), (1)

where α and β are Cartesian directions, and Dαβ( �Ri, �Rj ) is
given by the second derivative of the total potential energy
U total:

Dαβ( �Ri, �Rj ) = ∂2U total

∂uα( �Ri) ∂uβ( �Rj )
. (2)

A perfect crystal has translational symmetry, so the force-
constant matrix depends only on the difference of positions
�Rij between atoms i and j : Dαβ( �Ri, �Rj ) = Dαβ( �Ri − �Rj ) =

Dαβ( �Rij ). In addition, Dαβ( �Rij ) = Dβα( �Rji) = Dβα( �Rij ) due
to independence of differentiation order and inversion symme-
try of Bravais lattices. The lattice Green function Gαβ( �Ri, �Rj )
relates the displacement uα( �Ri) on atom i located at position
�Ri to the forces fβ( �Rj ) on atoms j at positions �Rj as

uα( �Ri) = −
∑
j,β

Gαβ( �Ri, �Rj )fβ( �Rj ). (3)

The LGF obeys the same symmetries as the force-constant ma-
trix: Gαβ( �Ri, �Rj ) = Gαβ( �Rij ) = Gβα( �Rji) = Gβα( �Rij ), with
the last equality only being valid for Bravais lattices. As
|Rij | → ∞, the LGF approaches the elastic Green function
(EGF) from continuum elasticity [21–24]. The LGF and
force-constant matrix are inverses of each other,∑

k,γ

Gαγ ( �Ri, �Rk)Dγβ( �Rk, �Rj ) = δij δαβ, (4)

where δ is the Kronecker delta. By Newton’s third law,
no forces are generated under a uniform translation of the
entire system, so the force-constant matrix obeys the sum rule∑

j D( �Ri, �Rj ) = 0 and is a singular matrix. Hence, the LGF
and force-constant matrix are pseudoinverses of each other.

The FBC method couples atomistic relaxation within the
dislocation core with LGF relaxation outside the core in order
to efficiently relax isolated defect geometries. Figure 1 shows
the division of the area around a dislocation into the different
regions required for applying FBC (regions 1, 2, and 3 only)
as well as for computing the LGF (all regions shown). Region
1 contains atoms very close to the dislocation core whose
interactions are nonlinear due to large lattice distortions, which
we relax atomistically. Region 2 includes all atoms on which
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FIG. 1. Schematic showing the system setup used in the flexible
boundary condition (FBC) approach (regions 1–3 only), as well as to
calculate the lattice Green function (LGF) (all regions shown). Region
1 (white) contains the highly distorted dislocation core (indicated by
the ⊥), which will be relaxed by atomistic methods. Region 2 (blue)
contains atoms which will have forces due to the displacements in
region 1. Regions 1, 2, and 3 (red) contain the atoms which will be dis-
placed according to the LGF in the FBC approach. The buffer region
(yellow) and the far-field boundary region (green) are not required for
the implementation of FBC, but are used in our computation of the
LGF. Atoms within the far-field boundary region are far away from
the core and are displaced according to the elastic Green function
(EGF). The buffer region of radius R allows for the LGF to approach
the EGF in the far field. The regions are defined in the dislocation
coordinate system, where �t is the dislocation threading direction,
and �m and �n are perpendicular vectors in the plane normal to �t .

a force may be exerted by any atom in region 1. Region 3 con-
tains atoms which might experience a force from atoms in re-
gion 2. Therefore, the thickness of regions 2 and 3 should each
be at least equal to the range of the interactions between atoms
in the system. The FBC approach consists of two steps: in the
first step, we relax atoms in the defect core (region 1) using
conjugate gradient with an atomistic method such as classical
potentials or density functional theory, while holding the atoms
in regions 2 and 3 fixed. Since later steps will disturb the atoms
in region 1, we do not fully relax region 1. Instead, only a small
number of conjugate gradient step are performed during each
core relaxation, which makes early iterations of this step more
efficient while still ensuring accuracy in the final iteration since
the final relaxation should only require small adjustments. Dis-
placing atoms in region 1 generates forces on atoms in region 2,
which we relax in the LGF update step by displacing atoms in
regions 1, 2, and 3 according to the LGF. This in turn builds up
forces in region 1, so we alternate between these two steps until
all forces in regions 1 and 2 are smaller than a defined tolerance.

In addition to the three regions discussed above, our method
for computing the LGF requires defining two additional
regions around the dislocation: the buffer region and the
far-field boundary. The far-field boundary contains atoms far
away from the core whose displacements we approximate
using the bulk EGF. Strictly speaking, this assumption is valid
only for perfect bulk crystals; when defects are present, the
long-range behavior of the defect LGF is not necessarily given
by the bulk EGF [28,29]. However, for the systems that we have
considered, we find that the errors due to this approximation are
sufficiently small to consider this approximation reasonable
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(cf. Figs. 5 and 9). Like regions 2 and 3, the thickness of the far-
field boundary is determined by the range of the interactions
between atoms, so that all atoms whose displacements could
generate forces in the buffer region are fully contained within
our system setup. The buffer region contains the remaining
atoms between region 3 and the far-field boundary and its
size R can be varied; increasing R pushes the far-field
boundary further away from the dislocation core, making the
approximation of the far-field displacements more accurate.

III. METHODS FOR COMPUTING THE LATTICE
GREEN FUNCTION

A. Computing the LGF for the dislocation geometry
including region 1

The FBC approach described in the previous section
requires the computation of the LGF for displacements in
regions 1, 2, and 3 due to forces in region 2. We start by
partitioning the force-constant matrix and LGF as follows:

D =
(

Dii Dio

Doi Doo

)
, G =

(
Gii Gio

Goi Goo

)
, (5)

where the superscripts i and o refer to atoms on the “inside,”
i.e., regions 1, 2, 3 and buffer, and atoms on the “outside,” i.e.,
far-field boundary region, respectively. For example, Dio is the
block of the force-constant matrix that gives forces on “inside”
atoms due to displacements on “outside” atoms. Since D and
G are the pseudoinverse of each other, we have

DiiGii + DioGoi = 1. (6)

We approximate Dii and Dio for the dislocation geometry
using a few different approaches which we discuss in the next
paragraph. We use the EGF (GE) to approximate Goi between
atoms in the far field and region 2. We then solve for Gii

according to

Gii = (Dii)−1(1 − DioGE). (7)

We compute each column of Gii numerically by first applying
a unit force f on an atom in region 2 and determining the
far-field displacements ufar-field = −GEf due to that force.
We then evaluate the forces on atoms in the buffer region
f buffer = −Dioufar-field = DioGEf generated by the far-field
displacements and use conjugate gradient to solve for the
displacement field corresponding to the effective forces in the
system, f eff = (1 − DioGE)f . This gives us the LGF due to
the initial applied force. By systematically looping through
every atom in region 2 in this way, we can compute the portion
of the Gii matrix that gives displacements in regions 1, 2,
and 3 due to forces in region 2. As we treat all interactions
harmonically, this approach is computationally efficient and
the only approximations are the harmonic interaction, and the
use of the elastic Green function for the far field.

We consider three different approaches to estimate D for
the dislocation geometry. Unlike the LGF, the force constants
are short-range, and so each atom interacts only with its
local environment, which can be bulklike even close to a
dislocation. Therefore, we can make a simple approximation
for the force constants between a pair of atoms i and j in the
dislocation geometry by using the force constants from the

closest equivalent pair of atoms i ′ and j ′ in the bulk:

Ddisl,bulklike( �Ri, �Rj ) = Dbulk( �Ri ′, �Rj ′ ). (8)

We can improve on this approximation by considering the
effects of local strains in the dislocation geometry:

Ddisl,str( �Ri, �Rj ) = Ddisl,bulklike( �Ri, �Rj )

+
∑
α,β

ε̄αβ( �Ri, �Rj ) · ∂D( �Ri, �Rj )

∂εαβ

, (9)

where α and β are Cartesian directions, ε̄( �Ri, �Rj ) is the average
of the local strains at atoms i and j , and ∂D/∂εαβ is the
appropriate strain derivative of the force constants. We can
also account for local rotations in the dislocation geometry by
rotating D between the pair of atoms,

Ddisl,str+rot( �Ri, �Rj ) = θ̄ ( �Ri, �Rj ) · Ddisl,str( �Ri, �Rj ) · θ̄T( �Ri, �Rj ),

(10)

where θ̄ ( �Ri, �Rj ) is the average of the local rotation around
atoms i and j .

Figure 2 compares the accuracy of the different approxima-
tions for force constants around a 〈100〉{011} edge dislocation
in BCC iron. In order to quantify the errors in each of
the approximations described above, we compute the full
dislocation force constants by displacing each atom in the
dislocation geometry one at a time and evaluating the resulting
forces atomistically. The force-constant matrix obtained from
this direct calculation accounts for all geometry effects and
therefore gives the most accurate harmonic lattice response of
atoms around the dislocation. However, computing the full dis-
location force constants is computationally expensive, and we
evaluate them here only in order to benchmark the accuracy of
the various approximate force-constant matrices. The leftmost
plot in Fig. 2 shows that the error in the bulklike force constants
has a long-range component that decays like 1/R. The center
and rightmost plots in the figure show that this component of
the error is eliminated when local strains and rotations, which
also have 1/R behavior around a dislocation, are included. The
errors in the strained and strained and rotated approximations
are similar, indicating that the effect of local rotations on the
force constants is small. Even after accounting for strain and
rotation effects, there are still relatively large errors on atoms
close to the core, due to higher-order terms such as anhar-
monicity that are not included in our simple approximations.

B. Computing the LGF for the dislocation geometry
after disconnecting region 1

We also compute the LGF for the case where region 1
is disconnected from the rest of the system, which we use
within a modified FBC approach. Similar to the FBC approach
described previously, this involves alternating between two
steps: first, we relax atoms in the defect core (region 1) using
an atomistic method, which generates forces on atoms in region
2. In the LGF update step, we relax these forces by displacing
only atoms in regions 2 and 3 according to the LGF, in contrast
to the previous case in which we displace all atoms in region
1, 2, and 3. As before, we alternate between these two steps
until all forces in regions 1 and 2 are reduced below a chosen
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FIG. 2. Errors in the on-site force constants around a 〈100〉{011} edge dislocation in BCC iron, with respect to the directly computed
dislocation force constants, computed using the different approximations. The shading on each atom indicates the root-mean-square error in
that atom’s on-site force constants. We evaluate these errors for atoms in region 2 and region 3 but not for region 1, since we do not expect
the harmonic approximation to be valid that close to the dislocation core. Instead, the region 1 atoms are filled in with gray. The error in the
bulklike force constants (left) has a long-range component that decays as 1/R. This component of the error is eliminated when we account for
the local strains and rotations. The strained (center) and strained and rotated (right) approximations give very similar force constants.

tolerance. This approach requires the LGF for displacements
in regions 2 and 3 due to forces in region 2, while constraining
atoms in region 1 to have no displacements in response to
forces in region 2. Therefore, the system of interest becomes
one in which region 1 is disconnected from region 2 but not
entirely removed. The force constants between atoms in region
1 and atoms in region 2 in the disconnected system are zero,
while the on-site terms are the same as before, resulting in the
sum rule being broken:

∑
j D( �Ri, �Rj ) 	= 0.

We compute the LGF for the disconnected geometry in
a similar manner as was previously used to compute the
correction to the LGF due to the introduction of point
defects [21,30]. The LGF for the disconnected system is related
to the LGF of the system including region 1 according to

G = G0 + δG = (D0 + δD)−1 = D−1, (11)

where G0 and D0 are the LGF and force-constant matrix for
the full system (computed using the method discussed in the
previous section), and δG and δD are the corrections to the
LGF and force-constant matrix due to disconnecting region 1.
The quantity to be computed is δG, while δD is known and is
related to the breaking of bonds between atoms in region 1 and
region 2. Rewriting Eq. (11) in the form of a Dyson equation,

G = G0(1 − δDG), (12)

and making use of the fact that δD is nonzero only for a
small and localized group of atoms near the boundary between
regions 1 and 2, we compute δG as

δG = −(1 + G0δD)−1G0δDG0. (13)

IV. APPLICATION: SIMPLE CUBIC (SC) MODEL SYSTEM

In this section, we test our methods for computing the
LGF by applying them to a simple cubic (SC) model
system containing an edge dislocation. We verify that the

LGF computed using our method specifically for the edge
dislocation geometry captures the response of atoms around
the dislocation accurately. We show that using this dislocation
LGF leads to faster relaxation when used within the FBC
approach, compared to using the bulk LGF. We also study how
the errors in the LGF computation converge with system size.

We set up a SC system with unit lattice spacing and atoms
connected by first- and second-nearest-neighbor radial springs,
both with spring constant of 1. The system is elastically
isotropic, with elastic constants C11 = 3,C12 = 1 and 2C44 =
C11 − C12 = 1, or Poisson ratio of 0.25 and shear modulus of
1. For this simple model system, we model the interactions
in region 1 using a version of the harmonic potential which
modifies the spring constants based on the orientation and
length of the springs. To account for the spring orientation, we
rotate the force-constant matrix between each pair of first- and
second-nearest-neighbor atoms based on their orientation in
the dislocation geometry relative to what they would be in the
ideal bulk. We introduce a scaling factor to modify the strength
of the spring constants based on the distance between each pair
of atoms. We construct the scaling factor such that the strength
of the first-nearest-neighbor springs decay gradually for
distances greater than the equilibrium first-nearest-neighbor
distance, 1.0, becoming zero for distances greater than

√
2,

the equilibrium second-nearest-neighbor distance. Similarly,
we scale the strength of the second-nearest-neighbor springs
so that they decay gradually for distances either less than or
greater than

√
2, becoming zero for distances less than 1.0

or greater than 2.0. We generate the initial edge dislocation
geometry using the elastic displacement field for an edge
dislocation in an isotropic medium [3]. The system setup
contains 14 atoms in region 1, 66 atoms in region 2, and
121 atoms in region 3. For this system, we approximate
the edge dislocation force-constant matrix using the bulklike
approximation described in Eq. (8).
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FIG. 3. Error in the displacements generated by the bulk LGF
(top) and the edge LGF (bottom) for atoms in an SC edge dislocation
geometry. We compute the displacements due to the set of forces
that are generated by applying a small displacement in the [100]
direction on the atom indicated by the cross. Both the bulk LGF and
the edge LGF used to compute the displacements were calculated
using system size R = 60. The figures show the error in the [100]
and [010] directions; this SC edge dislocation has threading vector
�t = [001], so the system is effectively two-dimensional. In the top
figure (using the bulk LGF), 19 atoms which are localized at the
opposite side of the edge dislocation from the forces have large errors
>5.0×10−3, while the rest of the atoms have errors <10−5. The errors
in the bottom figure (using the edge LGF) are all <1.5×10−5. While
the figure plots the errors for a specific test case, we have applied test
displacements on other atoms as well and the errors are of similar
magnitude to those shown here.

Figure 3 shows that the errors in displacements due to apply-
ing the bulk LGF to a SC system containing an edge dislocation
are greatly reduced by using the LGF computed specifically
for the appropriate dislocation geometry. To test the accuracy
of the displacements generated by each LGF, we construct a
test case for which we know the correct displacements. We
apply a unit displacement on an atom in region 2, evaluate the
forces due to this displacement, then use the LGF computed
for the bulk (bulk LGF) and the LGF computed for the edge
dislocation (edge LGF) to generate displacements from these
forces. As the forces are generated from a displacement, we
expect them to generate the same displacement in response.
Therefore, the deviation between the initial displacement and
the displacements computed by each LGF is a measure of the

FIG. 4. Comparison of the relaxation of the SC edge disloca-
tion geometry using different LGF. All the LGF used during the
relaxations were calculated using system size R = 60. Relaxing
the edge dislocation with the bulk LGF (red) and the edge LGF
(blue), the forces in region 1 and 2 decrease and the geometries
converge to the relaxed geometry, with the edge LGF converging
faster. Including region 1 in the LGF update step (solid lines) leads
to faster convergence than when region 1 is fixed (dotted lines).
When relaxing with the disconnected edge LGF (brown), the forces
in regions 1 and 2 increase and the geometry does not converge due
to the incompatibility in applying the far-field bulk elastic response
to the disconnected system.

accuracy of each LGF when applied to the edge dislocation
geometry. As discussed briefly in the introduction, we expect
the bulk LGF to be a particularly poor approximation between
atoms on opposite sides of an edge dislocation where the
topology deviates the most from bulk. We observe this in
the top figure of Fig. 3, where the largest errors are located
on the opposite side (right side) of the dislocation from the
forces due to the initial displacement (left side). Using the
LGF computed specifically for the edge dislocation geometry
eliminates this issue, leading to a more even distribution of
errors and reducing the largest errors by more than three orders
of magnitude compared to when the bulk LGF is used. The
remaining errors are due to using the EGF to approximate the
far-field displacements when computing the edge LGF, and
they scale with system size R as 1/R2. The magnitude and
convergence behavior of these errors are in agreement with
what we observe in Fig. 5. The far-field errors in the computed
edge LGF are an order of magnitude larger than that for the
bulk LGF because the presence of the edge dislocation causes
heterogeneity in the elastic constants that is not accounted for
by the EGF used to evaluate the far-field response in both cases.

Figure 4 compares the FBC relaxation of the SC edge
dislocation using different LGF and shows that the edge LGF
leads to the fastest convergence to the relaxed geometry. When
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FIG. 5. Convergence behavior of the errors in the computed G

(top) and the relaxed edge dislocation geometry (bottom) for the SC
model system, with respect to system size R. In each figure, the
solid line is the best-fit line through the data points (filled circles).
Top: The vertical axis is the deviation of G(R = 20,25,30,40,50,60)
from G(R → ∞). The figure plots the convergence of one specific
entry of G; we found that other entries of G show similar convergence
behavior as well. Bottom: The vertical axis is the maximum difference
between the geometries obtained from relaxation using G(R =
20,25,30,40,50) compared to that obtained from using G(R = 60).
Both the errors in the computed G and the relaxed edge dislocation
geometry are small and converge as 1/R2.

we displace atoms in regions 1, 2, and 3 during the LGF update
step, the edge LGF results in faster convergence to the relaxed
geometry as it is able to capture the response of atoms in
the dislocation geometry more accurately than the bulk LGF.
When we displace only regions 2 and 3 during the LGF update
step, the geometries converge slower than when we displace all
3 regions. By fixing the atoms in region 1 and not displacing
them during this step, the reduction of forces in region 2 is
less effective, leading to the slower overall force convergence.
While the relaxations carried out using the bulk and edge LGF
converge, the relaxation using the LGF for the edge dislocation
geometry with region 1 disconnected (“disconnected edge
LGF”) does not. We believe that the disconnected edge LGF
does not work well because the far-field response of bulk is
not compatible with the disconnected system, which breaks the
sum rule. Our approach for determining the correction to the
LGF accounts only for the local changes in the force constants
without considering the changes in the far-field response due
to disconnecting region 1, resulting in the disconnected edge
LGF not being computed accurately.

Figure 5 shows that the errors in both the computed LGF and
the relaxed SC edge dislocation geometries converge as 1/R2,
where R is the radius of the system up to the buffer region.
Our method for computing the LGF involves approximating
the displacements of atoms at the far field using the EGF,
an approximation that gets better for large R. We compute
the LGF using different system sizes R, while keeping the
size of regions 1, 2, and 3 fixed, and extrapolate the data to
estimate the LGF as R → ∞. The errors in the LGF due to
the far-field approximation are small (on the order of 10−5)
and controllable and converge rapidly as 1/R2, which suggests
that the approximation we used in the far field is appropriate
for this system. We also investigate the effect of these errors
on the accuracy of the relaxed geometries by comparing the
geometries relaxed with FBC using LGFs computed with R =
20,25,30,40,50 to that obtained from FBC relaxation using
the LGF computed with R = 60. We quantify the difference
in the geometry around each atom by computing the root-
mean-square difference between the vectors from each atom
to its neighbors in the different geometries, and we plot the
maximum value of these local geometry differences as measure
of the overall difference in geometry. The differences in the
relaxed geometries are also small (on the order of 10−6) and
converge rapidly as 1/R2.

V. APPLICATION: BCC IRON

In this section, we apply our new method for computing
the LGF to the 〈100〉{011} edge dislocation geometry in BCC
Fe. As in the SC case, we show that the LGF computed using
our method specifically for this edge dislocation geometry
captures the response of atoms around the dislocation more
accurately than the bulk LGF, leading to faster relaxation
when used within the FBC approach. We also study how using
different approaches to estimate the force constants around the
dislocation affects the computed LGF and relaxation behavior.
Finally, we verify that the errors in the LGF computation
converge rapidly with system size.

For computational efficiency during testing, we treat the
atoms in the dislocation core region using a classical potential.
We use the LAMMPS package [31] with the Mendelev embed-
ded atom method potential for Fe [32] to evaluate the forces and
perform the relaxations, and the program PHON [33] to compute
the force constants. For this potential, the lattice constant is
a0 = 2.8553 Å, and the elastic constants are C11 = 243.4 GPa,
C12 = 145.0 GPa, and C44 = 116.0 GPa. The system setup
contains 84 atoms in region 1, 312 atoms in region 2, and 466
atoms in region 3.

In order to obtain an accurate relaxed geometry using the
FBC approach, we must ensure that forces in region 3 of
the initial geometry are small. We generate the initial edge
dislocation geometry using the elastic displacement field for an
edge dislocation in an anisotropic medium [3]. If we generate
the initial geometry by simply evaluating the displacements
based on the undislocated atom coordinates (i.e., at perfect
lattice positions), this results in localized forces on the order
of 0.1 eV/Å in region 3 that decay slowly as we move away
from the dislocation core. This is undesirable because the
FBC approach relaxes forces only in regions 1 and 2, so large
forces in region 3 at the end of the relaxation would lead to an
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FIG. 6. Maximum error in the displacements generated by the bulk LGF (top) and the edge LGF (bottom) for atoms in a BCC iron
〈100〉{011} edge dislocation geometry. We only apply initial displacements on those atoms which generate no forces in region 3 or beyond
(atoms outlined in black). For each of these atoms, the intensity of the shading indicates the maximum error in the displacements computed in
response to a set of forces that were originally generated from applying a displacement u0 in the [100] direction on that atom. The errors in the
displacements are proportional to the initial displacement u0 as we carry out this test in a “harmonic approximate BCC iron” system. Both the
bulk and edge LGF were calculated using system size R = 50a0, and the edge LGF was computed using the bulklike approximation for force
constants. The atoms outlined in gray provide context for the location of the atoms of interest within the system; atoms in region 1 are filled
in with gray while the unfilled (white) atoms are other atoms in region 2. The errors in the top figure (using the bulk LGF) are ≈5.0×10−2u0,
while the errors in the bottom figure (using the edge LGF) are more than three orders of magnitude smaller, ≈2.5×10−5u0.

inaccurate final geometry. To generate a better initial geometry,
we evaluate the displacements based on the final displaced
atom coordinates. We do this by iterating the calculation of
the displacements until the displacements of each atom from
their perfect lattice positions are self-consistent with those
given by the anisotropic elastic solution evaluated at the final
displaced positions. Sinclair et al. discussed the importance
of using this approach to set up the initial geometry in their
original paper on FBC [13].

Figure 6 shows that the LGF computed specifically for the
edge dislocation geometry gives more accurate displacements
in response to forces around the dislocation than the bulk
LGF. Unless otherwise specified, we refer to the edge LGF
computed using the bulklike approximation for the force
constants [Eq. (8)]. We carry out the same tests as in the SC
case to determine the error in the displacements generated by
each LGF when it is applied to the edge dislocation geometry.
However, unlike Fig. 3, Fig. 6 summarizes the results from
applying the test displacement on every atom in region 2 that
does not generate forces in region 3 or beyond. For each of
these atoms outlined in black, the intensity of the shading
indicates the maximum error in the displacements computed

in response to a set of forces that were generated by applying
an initial test displacement on that atom. For the purpose of this
test, we evaluate all the forces and displacements, even those in
region 1 using the force-constant matrix and LGF, respectively.
Therefore, the responses in this harmonic approximate BCC
iron system are linear, and the errors in the displacements are
proportional to the initial displacement. As in the SC case, we
find that using the edge LGF instead of the bulk LGF around
the edge dislocation geometry reduces the maximum errors by
three orders of magnitude, which shows that the edge LGF is
better able to capture the response of atoms in the dislocation
geometry. Again, the small errors that remain are due to the far-
field approximation and scale with the system size R as 1/R2.

We use the bulk and edge LGF within the FBC approach to
relax a 〈100〉{011} edge dislocation geometry in BCC Fe, and
compare these relaxed geometries against that obtained from
relaxation with fixed boundaries. We use a similar procedure
as we used to relax the edge dislocation in the SC system,
except this time we perform the conjugate gradient relaxations
of region 1 using LAMMPS. We compute the fully relaxed
geometry by carrying out a fully atomistic relaxation of
the same edge dislocation geometry using fixed boundary
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FIG. 7. Comparison of the relaxation of the BCC Fe edge
dislocation geometry using different LGF. Both the bulk and edge
LGF used during the relaxations were calculated using system size
R = 50a0, and the edge LGF was computed using the bulklike
approximation for force constants. When we include region 1 in
the LGF relaxation step (solid lines), the forces in regions 1 and 2
decrease and the geometries converge to the relaxed geometry, with
the edge LGF (blue) resulting in faster convergence than the bulk
LGF (red). Excluding region 1 in the LGF update step (dotted lines)
leads to a failure to converge.

conditions, which requires a much larger simulation box
containing almost 100 000 atoms. The geometries we obtain
from the FBC relaxations using less than 1000 atoms agree
well with this fully relaxed geometry, with the difference in
atomic positions being on the order of 10−3 Å. The accuracy
of the geometries relaxed with FBC is limited by forces on the
order of 10−3 eV/Å that remain in region 3 at the end of the
relaxation, as the FBC approach does not relax forces in region
3. This effectively sets a practical limit for the relaxation of
forces in regions 1 and 2 to ≈10−3 eV/Å as well.

Figure 7 compares the FBC relaxation of the BCC Fe edge
dislocation using the bulk and edge LGF, and shows that using
the edge LGF to displace atoms in regions 1, 2, and 3 during
the LGF update step leads to fastest convergence to the relaxed
geometry. When the atoms in regions 1 are fixed during the
LGF update step, the relaxations do not converge or do so
very slowly. Therefore, even though the LGF may not give
accurate displacements for atoms close to the dislocation core,
displacing atoms in region 1 according to the LGF in response
to forces in region 2 is still more effective than not displacing
them at all during this step of the relaxation. When we use
either the bulk or the edge LGF to displace atoms in regions 1,
2, and 3 during the LGF update step, the relaxations converge.
Both relaxations initially proceed at a similar rate until the
forces in regions 1 and 2 are ≈10−5 eV/Å, after which they
start to deviate and the relaxation with the edge LGF performs
better. For practical purposes the FBC relaxation is typically

CG    LGF   CG    LGF    CG    LGF   CG    LGF    CG   LGF

FIG. 8. Comparison of the root-mean-square forces in region 1
and region 2 during the first five relaxation cycles, when we relax the
BCC Fe edge dislocation geometry using different LGF. In addition
to the bulk LGF (BCC bulk; red) and edge LGF computed using
the bulklike force constants (BCC edge, bulklike FCs; blue), we
also consider the edge LGF where we account for local strain (BCC
edge, strained FCs; cyan) and local strain and rotation (BCC edge,
strained+rotated FCs; orange), as well as the edge LGF computed
using the full dislocation force-constant matrix (BCC edge, full disl.
FCs; gray). Each relaxation cycle consists of two steps: relaxing
atoms in the region 1 by CG, followed by displacing atoms in regions
1, 2, and 3 according to the LGF. During the CG relaxation, forces
in region 1 (dashed lines) decrease while those in region 2 (solid
lines) increase. This trend is reversed during the LGF update step.
The LGF computed using more accurate force constants are slightly
more effective at relaxing the forces in region 2 after each LGF update
step. However, these differences in behavior during each LGF update
do not carry over to subsequent steps in the relaxation.

only carried out until the forces in regions 1 and 2 are ≈10−3

eV/Å, and the bulk and edge LGF both seem to perform
similarly up to this point in the relaxation. To better understand
the reason for this, we take a more detailed look at the forces
in regions 1 and 2 during the first few relaxation cycles.

Figure 8 compares the evolution of forces in regions 1
and 2 during the initial stages of relaxing the BCC Fe edge
dislocation geometry, which illustrates how the choice of
LGF affects the LGF update steps as well as the overall
relaxation behavior. In addition to the bulk LGF and the
bulklike edge LGF, we also compare the behaviors of the edge
LGF computed from the strained, strained and rotated, and full
dislocation force constants. To compare the effectiveness of the
different LGF at reducing forces during each LGF update, we
track the forces after each conjugate gradient (CG) relaxation
of the core and after every LGF update. As expected for
FBC relaxations, after each CG relaxation, forces in region
1 decrease while forces build up in region 2, and after each
LGF update, forces in region 2 decrease but those in region
1 increase slightly. The LGF computed using more accurate
force constants are more effective at relaxing the forces in
region 2 during each LGF update, but these effects do not carry
over to subsequent steps in the relaxation. After the next CG
relaxation, the forces in region 2 increase in all cases to about
the same level again, indicating that these forces are mostly
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FIG. 9. Convergence behavior of the errors in the computed G

(top) and the relaxed edge dislocation geometry (bottom) for the BCC
Fe system, with respect to system size R. In each figure, the solid line
is the best-fit line through the data points (filled circles). Top: The
vertical axis is the deviation of G(R = 15a0,20a0,30a0,40a0,50a0)
from G(R → ∞). The figure plots the convergence of one specific
entry of G; we found that other entries of G show similar convergence
behavior as well. Bottom: The vertical axis is the maximum
difference between the geometries obtained from relaxation using
G(R = 15a0,20a0,30a0,40a0) compared to that obtained from using
G(R = 50a0). Both the errors in the computed G and the relaxed
edge dislocation geometry are small and demonstrate close to 1/R2

convergence behavior.

due to the rearrangement of atoms in region 1 during the CG
relaxation rather than the previous LGF update. We find that all
the harmonic approaches are similarly limited during the first
few relaxation cycles when forces and displacements are large
enough that anharmonic effects are likely to be significant.
For this BCC Fe edge dislocation, the effect of topology
becomes evident only later in the relaxation, while the different
approximations for the force constants have an even smaller
effect on the computed LGF and overall relaxation behavior.
For more complicated geometries that deviate more greatly
from bulk, such as dislocations in multiple atom basis crystals
which have larger Burgers vector the topology effect could
become significant earlier on in the relaxation than we observe
in this particular system. If that is the case, we expect that using

the edge LGF would lead to more noticeable improvement in
the relaxation even in the first few relaxation cycles.

Figure 9 shows that the errors in both the computed LGF
and the relaxed BCC Fe edge dislocation geometries converge
as 1/R2. As we did for the SC case, we compute the LGF using
different system sizes R and extrapolate the data to estimate the
LGF as R → ∞. The figures plot the convergence of the edge
LGF computed using the bulklike approximation for the force
constants; we also find similar behavior for the edge LGF
computed using the other methods for approximating the force
constants. The errors in the LGF are small (on the order

of 10−4 Å
2
/eV), controllable, and converge rapidly as 1/R2,

which again suggests that the approximation we used in the
far field is appropriate. We also compare the edge dislocation
geometries obtained after relaxation with FBC using edge LGF
computed with different R. We calculate the differences in
the relaxed geometries obtained from relaxations using LGFs
computed with R = 15a0,20a0,30a0,40a0 compared to that
obtained from using the LGF computed with R = 50a0. The
differences in the relaxed geometries are small (on the order
of 10−5 Å) and converge rapidly as 1/R2. These results show
that the LGF can be computed accurately using small system
sizes and with low computational cost.

VI. CONCLUSION

We present a numerical method for computing the LGF
specifically for a dislocation geometry, and show that the
efficiency of FBC approaches can potentially be improved by
using the LGF computed with this method. We have applied
our method for computing the dislocation LGF to two systems,
a simple cubic model system and BCC iron, each containing an
edge dislocation. The errors in the LGF computation converge
rapidly with system size in both cases. By directly accounting
for the topology of the dislocation, the dislocation LGF is
able to capture the response of atoms in the dislocation
geometry more accurately than the perfect bulk LGF. When
used within the flexible boundary condition approach, the
dislocation LGF relaxes dislocation core geometries in fewer
iterations than when the bulk LGF is used. We expect to see
even greater improvement in the efficiency of FBC relaxations
if the dislocation LGF is used to relax more complicated
geometries, such as dislocations in multiple atom basis crystals
which have larger Burgers vector or dislocations in grain
boundaries. Reducing the number of iterations needed to relax
dislocation core geometries by using the dislocation LGF
would greatly benefit density functional theory-based FBC
approaches, which are computationally expensive.

ACKNOWLEDGMENT

This research was supported by NSF/DMR Grant
No. 1410596.

[1] P. Haasen, Physical Metallurgy, 3rd ed., edited by J. Mordike
(Cambridge University Press, Cambridge, 1996).

[2] A. Stroh, J. Math. Phys. 41, 77 (1962).

[3] D. J. Bacon, D. M. Barnett, and R. O. Scattergood, Prog. Mater.
Sci. 23, 51 (1980).

[4] C. Woodward, Mater. Sci. Eng., A 400–401, 59 (2005).

023308-9

http://dx.doi.org/10.1002/sapm196241177
http://dx.doi.org/10.1002/sapm196241177
http://dx.doi.org/10.1002/sapm196241177
http://dx.doi.org/10.1002/sapm196241177
http://dx.doi.org/10.1016/0079-6425(80)90007-9
http://dx.doi.org/10.1016/0079-6425(80)90007-9
http://dx.doi.org/10.1016/0079-6425(80)90007-9
http://dx.doi.org/10.1016/0079-6425(80)90007-9
http://dx.doi.org/10.1016/j.msea.2005.03.039
http://dx.doi.org/10.1016/j.msea.2005.03.039
http://dx.doi.org/10.1016/j.msea.2005.03.039
http://dx.doi.org/10.1016/j.msea.2005.03.039


ANNE MARIE Z. TAN AND DALLAS R. TRINKLE PHYSICAL REVIEW E 94, 023308 (2016)

[5] T. A. Arias and J. D. Joannopoulos, Phys. Rev. Lett. 73, 680
(1994).

[6] S. L. Frederiksen and K. W. Jacobsen, Philos. Mag. 83, 365
(1994).

[7] J. R. K. Bigger, D. A. McInnes, A. P. Sutton, M. C. Payne,
I. Stich, R. D. King-Smith, D. M. Bird, and L. J. Clarke,
Phys. Rev. Lett. 69, 2224 (1992).

[8] S. Ismail-Beigi and T. A. Arias, Phys. Rev. Lett. 84, 1499 (2000).
[9] E. B. Tadmor, M. Ortiz, and R. Phillips, Philos. Mag. A 73, 1529

(1996).
[10] G. Lu, E. B. Tadmor, and E. Kaxiras, Phys. Rev. B 73, 024108

(2006).
[11] N. Choly, G. Lu, W. E, and E. Kaxiras, Phys. Rev. B 71, 094101

(2005).
[12] Z. C. Y. Liu, G. Lu, and N. Kioussis, Model. Simul. Mater. Sci.

Eng. 15, 275 (2007).
[13] J. E. Sinclair, P. C. Gehlen, R. G. Hoagland, and J. P. Hirth,

J. Appl. Phys. 49, 3890 (1978).
[14] P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni,

Phys. Rev. B 43, 7231 (1991).
[15] L. Pastewka, T. A. Sharp, and M. O. Robbins, Phys. Rev. B 86,

075459 (2012).
[16] D. T. Read and V. K. Tewary, Nanotechnology 18, 105402

(2007).
[17] C. Woodward and S. I. Rao, Phys. Rev. Lett. 88, 216402

(2002).

[18] C. Woodward and S. I. Rao, Philos. Mag. A 81, 1305 (2001).
[19] C. Woodward, D. R. Trinkle, L. G. Hector, and D. L. Olmsted,

Phys. Rev. Lett. 100, 045507 (2008).
[20] J. A. Yasi, L. G. Hector, and D. R. Trinkle, Acta Mater. 59, 5652

(2011).
[21] V. K. Tewary, Adv. Phys. 22, 757 (1973).
[22] I. R. MacGillivray and C. A. Sholl, J. Phys. F 13, 23 (1983).
[23] D. R. Trinkle, Phys. Rev. B 78, 014110 (2008).
[24] J. A. Yasi and D. R. Trinkle, Phys. Rev. E 85, 066706 (2012).
[25] M. Ghazisaeidi and D. R. Trinkle, Phys. Rev. B 82, 064115

(2010).
[26] M. Born and K. Huang, Dynamical Theory of Crystal Lattices

(Oxford University Press, London, 1954).
[27] A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory

of Lattice Dynamics in the Harmonic Approximation, 2nd ed.,
Solid State Physics Suppl. 3 (Academic Press, New York, 1971).

[28] V. K. Tewary, Phys. Rev. B 69, 094109 (2004).
[29] V. Tewary, in Modeling, Characterization, and Production

of Nanomaterials, edited by V. K. Tewary and Y. Zhang,
Woodhead Publishing Series in Electronic and Optical Materials
(Woodhead Publishing, Cambridge, 2015), pp. 55–85.

[30] A. A. Maradudin, Rep. Prog. Phys. 28, 331 (1965).
[31] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[32] M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y.

Sun, and M. Asta, Philos. Mag. A 83, 3977 (2003).
[33] D. Alfe, Comput. Phys. Commun. 180, 2622 (2009).

023308-10

http://dx.doi.org/10.1103/PhysRevLett.73.680
http://dx.doi.org/10.1103/PhysRevLett.73.680
http://dx.doi.org/10.1103/PhysRevLett.73.680
http://dx.doi.org/10.1103/PhysRevLett.73.680
http://dx.doi.org/10.1080/0141861021000034568
http://dx.doi.org/10.1080/0141861021000034568
http://dx.doi.org/10.1080/0141861021000034568
http://dx.doi.org/10.1080/0141861021000034568
http://dx.doi.org/10.1103/PhysRevLett.69.2224
http://dx.doi.org/10.1103/PhysRevLett.69.2224
http://dx.doi.org/10.1103/PhysRevLett.69.2224
http://dx.doi.org/10.1103/PhysRevLett.69.2224
http://dx.doi.org/10.1103/PhysRevLett.84.1499
http://dx.doi.org/10.1103/PhysRevLett.84.1499
http://dx.doi.org/10.1103/PhysRevLett.84.1499
http://dx.doi.org/10.1103/PhysRevLett.84.1499
http://dx.doi.org/10.1080/01418619608243000
http://dx.doi.org/10.1080/01418619608243000
http://dx.doi.org/10.1080/01418619608243000
http://dx.doi.org/10.1080/01418619608243000
http://dx.doi.org/10.1103/PhysRevB.73.024108
http://dx.doi.org/10.1103/PhysRevB.73.024108
http://dx.doi.org/10.1103/PhysRevB.73.024108
http://dx.doi.org/10.1103/PhysRevB.73.024108
http://dx.doi.org/10.1103/PhysRevB.71.094101
http://dx.doi.org/10.1103/PhysRevB.71.094101
http://dx.doi.org/10.1103/PhysRevB.71.094101
http://dx.doi.org/10.1103/PhysRevB.71.094101
http://dx.doi.org/10.1088/0965-0393/15/3/006
http://dx.doi.org/10.1088/0965-0393/15/3/006
http://dx.doi.org/10.1088/0965-0393/15/3/006
http://dx.doi.org/10.1088/0965-0393/15/3/006
http://dx.doi.org/10.1063/1.325395
http://dx.doi.org/10.1063/1.325395
http://dx.doi.org/10.1063/1.325395
http://dx.doi.org/10.1063/1.325395
http://dx.doi.org/10.1103/PhysRevB.43.7231
http://dx.doi.org/10.1103/PhysRevB.43.7231
http://dx.doi.org/10.1103/PhysRevB.43.7231
http://dx.doi.org/10.1103/PhysRevB.43.7231
http://dx.doi.org/10.1103/PhysRevB.86.075459
http://dx.doi.org/10.1103/PhysRevB.86.075459
http://dx.doi.org/10.1103/PhysRevB.86.075459
http://dx.doi.org/10.1103/PhysRevB.86.075459
http://dx.doi.org/10.1088/0957-4484/18/10/105402
http://dx.doi.org/10.1088/0957-4484/18/10/105402
http://dx.doi.org/10.1088/0957-4484/18/10/105402
http://dx.doi.org/10.1088/0957-4484/18/10/105402
http://dx.doi.org/10.1103/PhysRevLett.88.216402
http://dx.doi.org/10.1103/PhysRevLett.88.216402
http://dx.doi.org/10.1103/PhysRevLett.88.216402
http://dx.doi.org/10.1103/PhysRevLett.88.216402
http://dx.doi.org/10.1080/01418610108214442
http://dx.doi.org/10.1080/01418610108214442
http://dx.doi.org/10.1080/01418610108214442
http://dx.doi.org/10.1080/01418610108214442
http://dx.doi.org/10.1103/PhysRevLett.100.045507
http://dx.doi.org/10.1103/PhysRevLett.100.045507
http://dx.doi.org/10.1103/PhysRevLett.100.045507
http://dx.doi.org/10.1103/PhysRevLett.100.045507
http://dx.doi.org/10.1016/j.actamat.2011.05.040
http://dx.doi.org/10.1016/j.actamat.2011.05.040
http://dx.doi.org/10.1016/j.actamat.2011.05.040
http://dx.doi.org/10.1016/j.actamat.2011.05.040
http://dx.doi.org/10.1080/00018737300101389
http://dx.doi.org/10.1080/00018737300101389
http://dx.doi.org/10.1080/00018737300101389
http://dx.doi.org/10.1080/00018737300101389
http://dx.doi.org/10.1088/0305-4608/13/1/005
http://dx.doi.org/10.1088/0305-4608/13/1/005
http://dx.doi.org/10.1088/0305-4608/13/1/005
http://dx.doi.org/10.1088/0305-4608/13/1/005
http://dx.doi.org/10.1103/PhysRevB.78.014110
http://dx.doi.org/10.1103/PhysRevB.78.014110
http://dx.doi.org/10.1103/PhysRevB.78.014110
http://dx.doi.org/10.1103/PhysRevB.78.014110
http://dx.doi.org/10.1103/PhysRevE.85.066706
http://dx.doi.org/10.1103/PhysRevE.85.066706
http://dx.doi.org/10.1103/PhysRevE.85.066706
http://dx.doi.org/10.1103/PhysRevE.85.066706
http://dx.doi.org/10.1103/PhysRevB.82.064115
http://dx.doi.org/10.1103/PhysRevB.82.064115
http://dx.doi.org/10.1103/PhysRevB.82.064115
http://dx.doi.org/10.1103/PhysRevB.82.064115
http://dx.doi.org/10.1103/PhysRevB.69.094109
http://dx.doi.org/10.1103/PhysRevB.69.094109
http://dx.doi.org/10.1103/PhysRevB.69.094109
http://dx.doi.org/10.1103/PhysRevB.69.094109
http://dx.doi.org/10.1088/0034-4885/28/1/310
http://dx.doi.org/10.1088/0034-4885/28/1/310
http://dx.doi.org/10.1088/0034-4885/28/1/310
http://dx.doi.org/10.1088/0034-4885/28/1/310
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1080/14786430310001613264
http://dx.doi.org/10.1080/14786430310001613264
http://dx.doi.org/10.1080/14786430310001613264
http://dx.doi.org/10.1080/14786430310001613264
http://dx.doi.org/10.1016/j.cpc.2009.03.010
http://dx.doi.org/10.1016/j.cpc.2009.03.010
http://dx.doi.org/10.1016/j.cpc.2009.03.010
http://dx.doi.org/10.1016/j.cpc.2009.03.010



