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Effects of tangential-type boundary condition discontinuities on the accuracy of the lattice
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We present a systematic study on the effects of tangential-type boundary condition discontinuities on the
accuracy of the lattice Boltzmann equation (LBE) method for Dirichlet and Neumann problems in heat and
mass transfer modeling. The second-order accurate boundary condition treatments for continuous Dirichlet and
Neumann problems are directly implemented for the corresponding discontinuous boundary conditions. Results
from three numerical tests, including both straight and curved boundaries, are presented to show the accuracy
and order of convergence of the LBE computations. Detailed error assessments are conducted for the interior
temperature or concentration (denoted as a scalar φ) and the interior derivatives of φ for both types of boundary
conditions, for the boundary flux in the Dirichlet problem and for the boundary φ values in the Neumann
problem. When the discontinuity point on the straight boundary is placed at the center of the unit lattice in the
Dirichlet problem, it yields only first-order accuracy for the interior distribution of φ, first-order accuracy for the
boundary flux, and zeroth-order accuracy for the interior derivatives compared with the second-order accuracy
of all quantities of interest for continuous boundary conditions. On the lattice scale, the LBE solution for the
interior derivatives near the singularity is largely independent of the resolution and correspondingly the local
distribution of the absolute errors is almost invariant with the changing resolution. For Neumann problems, when
the discontinuity is placed at the lattice center, second-order accuracy is preserved for the interior distribution of
φ; and a “superlinear” convergence order of 1.5 for the boundary φ values and first-order accuracy for the interior
derivatives are obtained. For straight boundaries with the discontinuity point arbitrarily placed within the lattice
and curved boundaries, the boundary flux becomes zeroth-order accurate for Dirichlet problems; and all three
quantities, including the interior and boundary φ values and the interior derivatives, are only first-order accurate
for Neumann problems.
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I. INTRODUCTION

The lattice Boltzmann equation (LBE) method has become
an effective alternative numerical method for heat and mass
transfer modeling [1–21]. With the temperature and mass
concentration considered as scalar variables, the governing
equations for thermal and mass transport become a simple
scalar convection-diffusion equation (CDE) [10–17]. For the
energy equation, the viscous heat dissipation and pressure
work terms can be conveniently incorporated as source
terms [10–21]. Thus, the LBE method for CDE inherited
the same benefits of the hydrodynamic version of the LBE:
explicit algorithms, easy implementation, compatibility with
parallelization, and ease of handling complex geometry.

Transport phenomena involving discontinuous boundary
and interface conditions are frequently encountered in a wide
range of science and engineering problems such as shock
waves in acoustics and compressible viscous flows [22],
diffusion of chemical reactants in porous catalyst pellets with
partial external or internal wetted surfaces, or with nonuniform
catalyst distribution and surface reaction (Ref. [23] and refer-
ences therein), and heat conduction between two solids that
have partial contact [24,25]. With analytical solutions available
for only a limited number of transport problems with discon-
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tinuous boundary conditions, numerical methods become the
only practical tool for most of the problems. The presence of
discontinuities along the boundary or in the internal field (such
as shock waves or hydraulic jumps) poses great challenges to
any numerical method and is known to result in degradation
of accuracy. In traditional finite-difference and finite-element
based numerical computation of singularity problems, the
singularity treatments can be categorized into three groups:
the local refinement method, the singular function method,
and the combined method (see [26–28] and references therein).
The LBE method for hydrodynamic problems does not deal
with internal shock waves since the method is only applicable
to incompressible flows with nearly constant density and
discontinuities in the velocity or pressure conditions along
the boundary are rarely encountered.

For a physical variable φ when the discontinuity in the
material properties occurs at an interface, jumps in φ and
the normal derivative (flux) ∂φ/∂n may develop across the
interface. The pressure jump due to surface tension in two-
phase flows and temperature derivative jump in conjugate
heat transfer problems [20,29,30] are just two examples. For
convenience, the type of discontinuity in φ and ∂φ/∂n across
the interface is hereinafter referred to as “normal discontinu-
ity.” Ginzburg and d’Humières [31] addressed Darcy’s flow
in anisotropic and heterogeneous stratified aquifers where
mass conservation is described by a pure diffusion anisotropic
equation. The heterogeneity of the cross-diffusion entries
results in the discontinuous boundary derivatives when the
physical (continuous) Neumann conditions are prescribed
[31]. Discontinuous Neumann conditions across the inter-
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face have been studied in [32] for both hydrodynamic and
advection-diffusion equations. An interface treatment for heat
and mass transfer with interfacial flux and/or temperature
jumps has recently been proposed by Guo et al. [33] for
conjugate heat and mass transfer problems. It was shown that
the numerical accuracy of the LBE solutions is unaffected by
the presence of the jumps in φ or ∂φ/∂n across the interface,
or the normal discontinuity.

To explore the applicability of the LBE method for heat
and mass transfer problems with discontinuous Dirichlet and
Neumann boundary conditions, we consider the effects of
another important type of discontinuity, which is hereinafter
referred as “tangential discontinuity.” As the name suggests,
the discontinuity in φ or ∂φ/∂n occurs along the boundary, as
opposed to across the interface in the normal discontinuity
case. For heat and mass transfer problems, the tangential
discontinuity occurs when φ or ∂φ/∂n suddenly changes the
value along the physical boundary. The understanding on the
effects of tangential discontinuity on the accuracy of LBE
solution will be of interest to researchers using LBE method
for solving engineering problems. The specific questions the
present paper attempts to address include: (i) How do the
tangential type boundary condition discontinuities affect the
order of accuracy of the LBE solution φLBE in the interior
field for both Dirichlet and Neumann problems with straight
walls? (ii) How do the tangential discontinuities affect the
orders of accuracy of the interior derivatives and the boundary
flux (or φw) values for the Dirichlet (or Neumann) problem?
(iii) Does the placement of the tangential discontinuity point
in the lattice affect the results in (i) and (ii)? (iv) How does
convection affect the error behavior in (i) to (iii)? (v) What are
the effects of tangential boundary condition discontinuities
along curved walls on the accuracy of LBE results?

The rest of the paper is organized as follows. Section II
briefly describes the LBE model for the general convection-
diffusion equation governing thermal and mass transport
processes. The boundary treatments for the Dirichlet and
Neumann conditions with tangential discontinuous are pre-
sented in Sec. III, where the asymptotic distribution functions
near the discontinuity are also derived. The error assessments
and detailed examination of the effects of tangential discon-
tinuities on the accuracy of the LBE solutions are presented
in Sec. IV with three numerical tests, including both straight
and curved boundaries. Section V summarizes the difference
between the two types of discontinuity in LBE modeling. And
some concluding remarks are given in Sec. VI.

II. LATTICE BOLTZMANN EQUATION FOR THERMAL
AND MASS TRANSPORT

The macroscopic governing equation for thermal and mass
transport can be written as a general convection-diffusion
equation (CDE)

∂φ

∂t
+ ∂

∂xj

(vjφ) = ∂

∂xi

(
Dij

∂φ

∂xj

)
+ G, (1)

where φ is a scalar variable such as temperature in heat transfer
or concentration in mass transfer problems, t is the time, vj is
the velocity component in the xj direction, Dij is the diffusion
coefficient, and G is the general source term.

Of the various LBE models proposed in the literature
[10–16] for the CDE (1), the multiple-relaxation-time (MRT)
based D2Q5 (DnQm denotes m discrete lattice velocities in n

dimensions) models proposed by Yoshida and Nagaoka [12]
are used in the present work to formulate the transport problem
since their second-order accuracy in space and first-order
accuracy in time have been verified via a detailed asymptotic
analysis. When presented in the moment space [17] the D2Q5
MRT-LBE model in [12] is very similar to the one used in [16].
The implementation of the D2Q5 model and the corresponding
boundary condition treatment are much simpler compared to
the D2Q9 models in [5,8,15]. It should also be noted that the
boundary treatment applied in this work for the discontinuous
boundary conditions is independent of the specific LBE models
and it is also applicable to other LBE models.

In order to recover the macroscopic CDE (1), the following
lattice Boltzmann equation for the evolution of the microscopic
distribution function g(x, ξ , t) was proposed in [12]

gα(x + eαδt,t + δt) − gα(x,t) = [Lg(x,t)]α + ωαG(x,t)δt,

(2)

where gα(x,t) ≡ g(x, ξα, t), x is the spatial vector, ξ is
the particle velocity vector in the phase space (x, ξ )
and it is discretized to a small set of discrete velocities
{ξα|α = 0, 1, . . . , m − 1}, eα is the αth discrete velocity
vector [{eα} = (0, 0), (±1, 0), and (0, ±1) for D2Q5], δt is
the time step, L is the standard collision operator in the LBE
method, and ωα is the weight coefficient.

For MRT-based LBE models, it is more natural to represent
the collision operator in the moment space as [34]

Lg(x,t) = −M−1S[m(x,t) − m(eq)(x,t)], (3a)

where M is a matrix to transform the distribution functions
g to their moments m by m = Mg, and S is a matrix
of relaxation coefficients τij . To recover the CDE (1), the
equilibrium moments of the distribution functions are defined
in [11,14,16,17] as

m(eq) = (0,uφ,vφ,aφ,0)T , (3b)

where u and v are the macroscopic velocity components in
Cartesian coordinates. For the D2Q5 model used in this work
for isotropic convection-diffusion, the matrices are [35,12]

M =

⎡
⎢⎢⎢⎣

1 1 1 1 1
0 1 −1 0 0
0 0 0 1 −1
4 −1 −1 −1 −1
0 1 1 −1 −1

⎤
⎥⎥⎥⎦,

S−1 =

⎡
⎢⎢⎢⎣

τ0 0 0 0 0
0 τ11 0 0 0
0 0 τ22 0 0
0 0 0 τ3 0
0 0 0 0 τ4

⎤
⎥⎥⎥⎦, (3c)

and ω0 = 1/3, ωα = 1/6 (α = 1, 2, 3, 4), and a =
(5ω0 − 1) = 2/3. In particular, when τ0 = 0, τ11 = τ22 =
τD, τ3 = τ4 = τp, the MRT model reduces to two-relaxation-
time (TRT) model [13,32].
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(a) (b)

FIG. 1. Illustration of the placement of (a) a straight wall and (b) a curved boundary wall in the square lattice. The imposed Dirichlet
(	d ) or Neumann (	n) boundary condition has a discontinuity along the boundary in the tangential direction (horizontal in the figures). The
location of the discontinuity point in the lattice along the horizontal direction is indicated by 
d ; the intersection link fractions in the lattice
velocity vector eᾱ direction (vertical in the figure) are 
sw = ‖xf − xsw‖/‖xf − xe‖ for the boundary node xsw on the straight wall, and

cw = ‖xf − xcw‖/‖xf − xe‖ for the boundary node xcw on the curved wall.

The asymptotic analysis in [12] showed that the leading-
order solution of the CDE (1) is obtained from the moment of
the distribution functions

φ(x,t) =
m−1∑
α=0

gα(x,t), (4)

with second-order accuracy in space and first-order accuracy
in time when the following relationship is preserved:

τij = 1

2
δij + δt

εD(δx)2 Dij , (5)

where δij is the Kronecker delta and the constant εD = 1/3 in
D2Q5.

For computation and memory efficiency, the evolution
equation (2) with the MRT collision operator in Eq. (3) is
usually solved in two steps

collision step:

ĝα(x,t) = gα(x,t) − {M−1S[m(x,t) − m(eq)(x,t)]}α
+ωαG(x,t)δt, (6)

streaming step:

gα(x + eαδt,t + δt) = ĝα(x,t), (7)

where ĝα represents the post-collision state. It is noted that an
efficient implementation of the collision step does not require
the storage of ĝα . The collision step in Eq. (6) is completely
local and the streaming step in Eq. (7) is simple and requires
little computational effort.

III. BOUNDARY TREATMENT FOR DISCONTINUOUS
BOUNDARY CONDITIONS

Accurate implementation of hydrodynamic or thermal
boundary conditions by converting the macroscopic physical
variables on the boundary into corresponding microscopic
distribution functions in the LBE methods has been of
significant interest since the LBE method has been proposed.
The boundary schemes are typically constructed in such a
way that the boundary velocity, temperature, or heat flux
obtained from the LBE computation matches the respective

physical boundary condition to a certain degree of accuracy.
A short review of the boundary treatments for hydrodynamic
and thermal and mass transport modeling involving straight
and curved boundaries was given by Li et al. [17].

The tangential-type discontinuous boundary condition on
straight and curved boundary walls and the placement of
the discontinuity points in the square lattice of unit spacing
(δx = δy = 1) are schematically depicted in Fig. 1. To avoid
the numerical involvement of double values at the exact
discontinuity point, we place the discontinuity point between
two lattice nodes along the tangential direction of the boundary
(
d �= 0 in the x direction in Fig. 1) so that the boundary
condition at the discontinuity point is not needed. In the normal
direction (see vector eᾱ in Fig. 1), the intersection link fractions
are 
sw = ‖xf − xsw‖/‖xf − xe‖ for the boundary node xsw

on the straight wall, and 
cw = ‖xf − xcw‖/‖xf − xe‖ for the
boundary node xcw on the curved wall.

In the LBE method, the evolution equation (2) governs
the behavior of the microscopic distribution functions g(x,t)
at the interior of the computational domain. To complete the
streaming step in Eq. (7), a boundary treatment is required
to convert the macroscopic boundary information, such as
a Dirichlet boundary value (	d ), a Neumann boundary flux
(	n), or their combination (the mixed boundary condition)
at the boundary node (xsw or xcw in Fig. 1), into appropriate
boundary conditions for g(x,t) at the first interior lattice node
(xf in Fig. 1) adjacent to the boundary node.

With the placement of the discontinuity point between the
lattice nodes, the regular boundary treatments can be directly
applied. The second-order accurate boundary treatment by Li
et al. [17] based on the “(anti)-bounce-back” idea and spatial
interpolation is capable of preserving the exact local geometry
and can be extended to curved boundary situations. These
boundary schemes for Dirichlet and Neumann conditions are
thus used in this work.

A. Discontinuous Dirichlet condition treatment

For the macroscopic Dirichlet condition φ = 	d at the
boundary node xw (xsw or xcw in Fig. 1), the distribution
function at the first interior lattice node xf along the lattice
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velocity direction eᾱ (see Fig. 1) at the current time t + δt , can
be expressed as [17]

gᾱ(xf ,t + δt) = cd1ĝα(xf ,t) + cd2ĝα(xff ,t)

+ cd3ĝᾱ(xf ,t) + cd4εD	d, (8)

where xff is the second interior lattice node along eᾱ

direction, i.e., xff = xf + eᾱδt , and cd1–cd4 are coefficients
related to the local link fraction 
 (
sw or 
cw in Fig. 1).

The asymptotic analysis in [17] showed that second-order
accuracy is preserved for the Dirichlet boundary condition with
treatment (8) when the following relationship is maintained,
with cd1( �= 1) an adjustable variable:

cd2 = −2
cd1 + 1

2
 + 1
,

cd3 = cd1 + 2


2
 + 1
, and cd4 = −cd1 + 1

2
 + 1
. (9)

Three particular schemes were examined in [17] and they
all reduce to the anti-bounce-back scheme at 
 = 0.5.

Scheme 1:

gᾱ(xf ,t + δt) =
{

(−2
)ĝα(xf ,t) + (2
 − 1)ĝα(xff ,t) + εD	d, (0 � 
 � 0.5),(− 1
2


)
ĝα(xf ,t) + (

1 − 1
2


)
ĝᾱ(xf ,t) + (

1
2


)
εD	d, (
 > 0.5),

(10a)

Scheme 2:

gᾱ(xf ,t + δt) = 2(
 − 1)ĝα(xf ,t) −
(

(2
 − 1)2

2
 + 1

)
ĝα(xff ,t) + 2

(
2
 − 1

2
 + 1

)
ĝᾱ(xf ,t) +

(
3 − 2


2
 + 1

)
εD	d, (10b)

Scheme 3:

gᾱ(xf ,t + δt) = −ĝα(xf ,t) +
(

2
 − 1

2
 + 1

)
ĝα(xff ,t) +

(
2
 − 1

2
 + 1

)
ĝᾱ(xf ,t) +

(
2

2
 + 1

)
εD	d. (10c)

B. Discontinuous Neumann condition treatment

For the Neumann (flux) boundary condition −Dn
∂φ

∂n
= 	n

at xw in the normal direction, the second-order accurate
boundary condition treatment proposed in [17] is

gᾱ(xf ,t + δt) = cn1ĝα(xf ,t) + cn2ĝα(xff ,t)

+ cn3ĝᾱ(xf ,t) + cn4
δt

δx
	nᾱ, (11)

where it should be noted that 	nᾱ is the boundary flux along
the lattice velocity eᾱ direction. The asymptotic analysis in
[17] showed that the coefficients cn1 − cn4 in Eq. (11) are
unique for second-order accuracy. The boundary scheme can
be written as

gᾱ(xf ,t + δt) = ĝα(xf ,t) − 2
 − 1

2
 + 1
ĝα(xff ,t)

+ 2
 − 1

2
 + 1
ĝᾱ(xf ,t) + 2

2
 + 1

δt

δx
	nᾱ. (12)

As emphasized in [17,18], when the local boundary normal
n is aligned with eᾱ [e.g., boundary node xsw in Fig. 1(a)],
	nᾱ = 	n and thus Eq. (12) can be directly applied. When
n is not in the eᾱ direction [boundary node xcw in Fig. 1(b)],
which is usually encountered on inclined or curved boundaries,
	nᾱ is not equal to 	n and also depends on the unknown
tangential flux. A Cartesian decomposition method proposed
in [17] should be used to obtain 	nᾱ based on 	n. For details
about the Neumann condition treatment for curved boundaries
and its extension to mixed boundary conditions please refer
to [17].

C. Evaluation of boundary flux and boundary value
and interior derivatives

To gain a full understanding on the effects of the tangential-
type boundary condition discontinuities on the accuracy of
LBE solutions, we also assess the accuracy of the boundary
flux (or boundary temperature and concentration values) for
given Dirichlet (or Neumann) problems. In addition, the inte-
rior derivatives for both types of problems are assessed. These
quantities can be obtained from the microscopic distribution
functions using the techniques proposed in [17,18] without any
finite-difference calculations that are based on the computed
values of the macroscopic temperature and concentration field.

Combining the boundary schemes in Eqs. (8) and (11) with
the coefficients in Eqs. (9) and (12), the boundary flux for a
Dirichlet problem can be evaluated from [17]

	nᾱ =
(

1 − cd1

2

)
δx

δt

[
−(2
 + 1)ĝα(xf ,t)

+
(

2
 − 2

1 − cd1

)
ĝα(xff ,t) +

(
2

1 − cd1
− 1

)

× ĝᾱ(xf ,t) + εD	d

]
, (13)

and the boundary temperature (concentration) for a Neumann
problem can be evaluated using [17]

	d = 1

εD

[
(2
 + 1)ĝα(xf ,t) +

(
2

1 − cd1
− 2


)
ĝα(xff ,t)

+
(

1 − 2

1 − cd1

)
ĝᾱ(xf ,t) +

(
2

1 − cd1

)
δt

δx
	nᾱ

]
.

(14)

023307-4



EFFECTS OF TANGENTIAL-TYPE BOUNDARY CONDITION . . . PHYSICAL REVIEW E 94, 023307 (2016)

For both Dirichlet and Neumann problems, the interior
derivatives can be obtained using [12,18]

−τij

∂φ

∂xj

= 1

εDδx

m−1∑
α=1

eαig
(neq)
α , (15a)

where g
(neq)
α = gα − g

(eq)
α is the nonequilibrium com-

ponent of the distribution function with g
eq
α (x,t) =

(ωα + δtvj

δxεD
eαjωα)φ(x,t) [12]. For isotropic diffusion in 2D

cases (Dxx = Dyy = D, τxx = τyy = τD), the following can
be obtained from Eq. (15a) [18]:

− D
∂φ

∂x
=

(
1 − 1

2τD

)(
δx

δt

) 4∑
α=1

eαxg
(neq)
α ,

−D
∂φ

∂y
=

(
1 − 1

2τD

)(
δx

δt

) 4∑
α=1

eαyg
(neq)
α . (15b)

The second-order accuracy of the schemes given by
Eqs. (13)–(15) has been verified in [17,18] for continuous
boundary conditions.

D. Analysis of the microscopic distribution functions
near the discontinuity

The effect of the discontinuous boundary conditions on the
accuracy of the LBE computations is more severe in the local
region near the discontinuity. To understand the causes for
the deteriorated accuracy, we also investigate the errors in the
simulated microscopic distribution functions with regard to
their asymptotic values. Following the asymptotic analysis,
e.g., in Ref. [12], the micro- and macroscopic quantities
can be expressed as gα = g(0)

α + εg(1)
α + ε2g(2)

α + · · · , and
φ = φ(0) + εφ(1) + ε2φ(2) + · · · , respectively, where ε =
δx/L is the small parameter with L the characteristic length.
With the presently implemented LB model, the follow-
ing second-order asymptotic distribution functions (gα =
gα asymptotic + ε2g(2)

α + · · · ) can be readily derived

gα asymptotic=
[
ωα

(
φ(0) + δt

δx

vj

εD

eαjφ
(0)

)
− ωατDeαj

∂φ(0)

∂xj

]
.

(16)

Thus one can examine the errors for the individual
distribution functions γα = gα LBE − gα asymptotic by replacing
φ(0) in Eq. (16) with the exact solution φex. Moreover, the
error transfer from the microscopic distribution functions to
the macroscopic φ value and its derivatives can be clearly
analyzed. For isotropic 2D diffusion problems, the following
expressions for the absolute errors can be obtained:

Eφ =
4∑

α=0

γα,

E∂φ/∂x = κ

4∑
α=1

eαxγα,

and E∂φ/∂y = κ

4∑
α=1

eαyγα, (17)

according to Eqs. (4) and (15b), respectively, with κ =
−1/(τDεD).

IV. NUMERICAL TESTS AND DISCUSSION

Three numerical tests are conducted in this study to
investigate the effects of the tangential-type discontinuous
boundary conditions on the accuracy of the LBE computations.
The first test is for heat conduction in a square block. The
second involves convection-diffusion in a channel with straight
boundaries. And the third test deals with a curved boundary
for heat conduction in a circle. All the tests are steady-state
problems, and both the Dirichlet and Neumann boundary
conditions with tangential discontinuities are considered. For
all cases, only isotropic diffusion is considered thus τij = τDδij

[see Eq. (5)] throughout the domain. It is worth noting that ac-
cording to [13,32,36], the coefficient of the convergence curves
is determined by the combination � = (τD − 0.5)(τp − 0.5).
This is also verified in this study with numerical tests including
both continuous and discontinuous boundary conditions. For
all the results shown below, a specific choice of τD = 0.75
and τp = 1.0 with � = 1/8 is thus used for most cases
unless stated otherwise. It should be noted that as shown
in Refs. [36,37], the choice of � = 1/8 is equivalent to
extending the second-order accuracy of the anti-bounce-back
scheme to the third order for straight boundaries located
halfway in the lattice (
 = 0.5). While this analysis is more
sophisticated and complex than the second-order asymptotic
analysis in [12], the numerical evidence of the superiority of
using the recommended value � = 1/8 in this work will be
demonstrated in the presence of strong discontinuity.

A. Heat conduction in a square block

The placement of the lattices on the square block (H = L)
is shown in Fig. 2. The boundary conditions on the right, top,
and bottom walls are fixed with φw = 0. On the left wall, a

φ

φ

φ

3

1−Δw

Δd

1−Δd

Δw

i 2= 1

Φ
Φ

Δd

1−Δd

FIG. 2. Schematic depiction of the computational domain and
lattice distribution for the square diffusion problem.
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tangential-type discontinuous boundary condition is imposed
and the discontinuity is fixed at y = H/2. The variations in 
d

and 
w are realized by moving the whole block in the lattice.
The exact solution to the steady conduction equation in the
block subject to the continuous boundary condition φw = 0 on
the three walls can be written as

φex(x,y) = φex(ξ,η) =
∞∑

n=1

βn sin(nπη) sinh[nπ (ξ − L/H )];

ξ = x/H ; η = y/H, (18)

where the coefficients βn are to be determined from the specific
boundary condition on the left wall.

1. Discontinuous Dirichlet boundary condition

a. Analytical solutions. When the Dirichlet condition on the
left wall is given as

φ(ξ = 0,η) = f (η), (19)

the exact solution in Eq. (16) becomes

φex(ξ,η) = 2
∞∑

n=1

bn sin(nπη)
sinh[nπ (ξ − L/H )]

sinh(−nπL/H )
, (20a)

with

bn ≡
∫ 1

0
f (η) sin (nπη)dη. (20b)

Three different types of discontinuous functions f (η) are
examined in this study,

piecewise linear : f (η) = flinear(η)

=
{
η, η < 1/2,

η − 1, η > 1/2,
(21a)

piecewise parabolic : f (η) = fparab(η)

=
{

2η(1 − η), η < 1/2,

−2η(1 − η), η > 1/2,
(21b)

piecewise sine : f (η) = fsine(η)

=
{

1
2 sin(πη), η < 1/2,

− 1
2 sin(πη), η > 1/2.

(21c)

The jump magnitudes of all three functions at η = 1/2 are
unity. It should be noted that for relatively large values of n

(say n � 10), the absolute values of both sinh[nπ (ξ − L/H )]
and sinh(−nπL/H ) in Eq. (20a) are exponentially large and
direct division of the “sinh” values yields poor numerical
accuracy that is unsuited for the present work. Thus Eq. (20a)
is rewritten as

φex(ξ,η) = 2
M∑

n=1

bn sin(nπη)
sinh[nπ (ξ − L/H )]

sinh(−nπL/H )

+ 2
N∞∑

n=M+1

bn sin(nπη)[e−nπξ − enπ(ξ−2L/H )]. (22)

In the present computations, M = 10 is used; the error in
approximating e−2Mπ (with L = H ) as zero is less than 10−27.
Large values of N∞ are used for small ξ so that the relative

error resulting from the truncation of the series such as given
by Eq. (22) is less than 10−16.

The derivatives in the field, 0 < ξ � L/H, 0 � η � 1, are
obtained from the exact solution

∂φex

∂ξ
= 2π

M∑
n=1

bnn sin (nπη)
cosh [nπ (ξ − L/H )]

sinh (−nπL/H )

− 2π

N∞∑
n=M+1

bnn sin(nπη)[e−nπξ + enπ(ξ−2L/H )],

(23a)

∂φex

∂η
= 2π

M∑
n=1

bnn cos (nπη)
sinh [nπ (ξ − L/H )]

sinh (−nπL/H )

+ 2π

N∞∑
n=M+1

bnn cos(nπη)[e−nπξ − enπ(ξ−2L/H )].

(23b)

On the left wall (ξ = 0), ∂φex(0,η)/∂η can be evaluated
directly from the Dirichlet boundary condition given by
Eq. (21) without the need of Eq. (23b). For ∂φex(0,η)/∂ξ ,
one cannot set ξ = 0 in Eq. (23a) since the series solution
does not converge at ξ = 0 in its current form. To obtain a
reliable normal derivative at ξ = 0, a fourth-order accurate
extrapolation is applied using ∂φex/∂ξ values near ξ = 0 at
ξ = ε, 2ε, 3ε, and 4ε evaluated from Eq. (23a), i.e.,

∂φex

∂ξ

∣∣∣∣
ξ=0

∼= 4
∂φex

∂ξ

∣∣∣∣
ξ=ε

− 6
∂φex

∂ξ

∣∣∣∣
ξ=2ε

+ 4
∂φex

∂ξ

∣∣∣∣
ξ=3ε

− ∂φex

∂ξ

∣∣∣∣
ξ=4ε

− ∂5φex

∂ξ 5
ε4. (24)

The O(ε4) term is not included in the actual computation;
it is shown here to illustrate the extrapolation error. For very
small ξ or ε, the series in Eq. (23a) converges very slowly.
Shanks transformation [38] is used to accelerate the conver-
gence of the series. For f = flinear(η), extremely high accuracy
is needed for ∂φex/∂ξ in assessing the LBE solution accuracy
and very small ε is desired. In this case, quadruple precision
(with at least 33 significant decimal digits) is used to further
reduce the round-off errors. To assess the truncation error in
Eq. (24) and to interpret the behavior of the LBE solution
errors, it is important to understand the behavior of the deriva-
tives near the left wall, especially near the discontinuity point.

Since φex(ξ,η) is a harmonic function, its derivatives
(∂φex/∂ξ,∂φex/∂η) are also harmonic. The local solution
may be constructed using elementary functions for the
Laplace equation. Further using the numerical values for
(∂φex/∂ξ,∂φex/∂η) computed from Eq. (23), the leading
asymptotic behavior of the derivatives near the discontinuity
(ξ = 0, η = 1/2) can be obtained for f = flinear(η), as

∂φex

∂ξ
∼ 1

π

η − 0.5

ξ 2 + (η − 0.5)2 − 1.0471(η − 0.5), (25a)

∂φex

∂η
∼ − 1

π

ξ

ξ 2 + (η − 0.5)2 + 1 − 1.0471ξ. (25b)
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FIG. 3. Contours of φLBE at H = L = 64 with the discontinuous
Dirichlet boundary condition flinear(η) [Eq. (21a)] on the left wall
(
d = 
w = 
 = 0.5 and the anti-bounce-back scheme is used).

The singular terms in the above describe the behavior of
a vertically oriented dipole for ∂φex/∂ξ and a horizontally
oriented dipole for ∂φex/∂η if the derivatives are viewed
as electric potentials. For convenience, the local solutions
given by the entire right-hand-side (RHS) of Eq. (25) are
simply referred to as “dipole models” hereinafter. The phrase
“singular term” will refer to the first term in each of Eqs. (25a)
and (25b). For f = fparab(η) and f = fsine(η), the leading
singular terms are identical to the above because the dipole
strength is dictated by the jump magnitude. The differences
among the solutions corresponding to the three forms given
by Eqs. (21a)–(21c) are in the nonsingular terms which have
only high-order effects.

From Eq. (25a),

∂5φex

∂ξ 5

∣∣∣∣
ξ=0

∼ 24

π

(
η − 1

2

)−5

.

For H = 202 in the lattice scale and 
d = 0.5, ∂5φex

∂ξ 5 ∼
8.22 × 1013 at ξ = 0, η − 0.5 = 1/(2H ). Using ε = 10−6, the
maximum extrapolation error in using Eq. (24) for H =
202 is 8.22 × 10−11. Since | ∂5φex

∂ξ 5 | and the corresponding
truncation error in Eq. (24) decrease rapidly away from
the singularity, Eq. (24) is sufficient for normal derivative
evaluation on the wall in the present work dealing with finite
jump discontinuities.

b. LBE solution contours and profiles. We first investigate
the effect of the tangential-type discontinuous boundary con-
dition on the LBE solutions by placing the discontinuity point
at the center of the unit lattice, i.e., 
d = 
w = 
 = 0.5 (see
Fig. 2) is used for all four boundary walls in the results shown in
Figs. 3–8. Thus the thermal anti-bounce-back scheme, which is
recovered by all three schemes in Eqs. (10a)–(10c), is applied.
For the LBE results in Figs. 3 and 4, H = 64 is used. For
illustration purposes, Fig. 3 shows the contours of φLBE for
f = flinear(η). Very similar distributions are noted for the
other two forms of f (η) and are thus not shown for brevity.
Figures 4(a) and 4(b) show the contours for the derivatives
∂φ

∂x
(= 1

H

∂φ

∂ξ
) and ∂φ

∂y
(= 1

H

∂φ

∂η
) from the LBE solutions. The

magnitude of the derivatives in the vicinity of the discontinuity
is much larger than that in the rest of the field due to the
presence of the singularity in the derivatives. The contours
show that �φ/�x is dominated by a vertically oriented dipole
(or doublet) and �φ/�y by a horizontally oriented dipole of
the same strength, as the leading order terms in Eq. (25)
suggest. Figure 5 compares the normal derivative �φ/�x on the
upper half of the left wall x = 0 between the exact and LBE
solutions for all three cases; the lower half is antisymmetric
with respect to y/H = 0.5. Also shown is the dipole model
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FIG. 4. Contours of interior derivatives (a) �φ/�x and (b) �φ/�y near the discontinuity point at H = L = 64 with flinear(η) on the left wall.
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FIG. 5. Comparisons of �φ/�x on the left wall for H = 64,

τD = 0.75, and D = 1/12 between exact and LBE solutions for three
discontinuous Dirichlet conditions given by Eqs. (21a)–(21c). The
result from the dipole model is for the linear case flinear(η).

given by Eq. (25a) for f = flinear(η). Excellent agreement is
observed for the wall normal derivative between the LBE and
the exact solutions, and between the dipole mode and the exact
solution for f = flinear(η). This analysis gives credence to the
dipole model for its simple and accurate description of the
singular behavior of the derivatives.

c. Invariance of the error for interior derivative with
resolution. In discussing the accuracy of the derivatives, �φ/�x
and �φ/�y are used in this study as opposed to �φ/�ξ and

�φ/�η since for a given f (η), it is observed that �φ/�x and
�φ/�y remain almost the same on the lattice scale as the
resolution H changes. Figures 6(a) and 6(b) show vertical
distributions of �φ/�x and �φ/�y of the LBE solutions for
H = 32, 48, 64, and 128 on the lattice scale for i = 2, 3, and
4 using f = flinear(η). The LBE solutions near the singular
point (x,y) = (0,H/2) with different resolution H are almost
identical for �φ/�x. The leading order behavior of �φ/�y
remains the same as H changes from 32 to 128; the spread
in �φ/�y at the same horizontal lattice position is caused by
the high-order effects other than the singularity and can be
explained by the dipole model. Denoting i ′ = i − 1.5 = x, and
j ′ = j − (H/2 + 1.5) = y − H/2, Eq. (25) can be expressed
as

∂φex

∂x
∼ 1

π

j ′

i ′2 + j ′2 − 1.0471
j ′

H 2
, (26a)

∂φex

∂y
∼ − 1

π

i ′

i ′2 + j ′2 + 1

H
− 1.0471

i

H 2
. (26b)

The first terms on the RHS of Eq. (26) are independent of H
on the lattice scale near (i ′, j ′) = (0,0). For ∂φex/∂x, the next
term is of O(H−2); hence the spread caused by the change in
H is rather small. For ∂φex/∂y, the next term is of O(H−1) and
is independent of i ′ and j ′; hence the spread caused by the
change in H is the same as shown in Fig. 6(b). Equation (26)
predicts ∂φLBE/∂x and ∂φLBE/∂y shown in Fig. 6 well except
at (i ′, j ′) = (0.5, 0.5), where the LBE results overpredict the
exact solution by about 15% in magnitude. For f = fparab(η)
and fsine(η) the same is observed on the lattice scale for the
leading order behavior; the spread is slightly different from
that for f = flinear(η) due to the difference in the details of the
smooth portion of f (η); hence they are omitted for brevity.

Figure 7(a) compares �φ/�y values from the exact solution,
the dipole model, and the LBE solution for H = 64 along

(∂φ/∂x)LBE

j′=
 y

 −
 H

/2
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FIG. 6. Comparison of LBE results for the interior derivatives of (a) �φ/�x and (b) �φ/�y for different resolutions at H = 32, 48, 64, and
128, along the vertical lines at i = 2, 3, and 4 (“i” denotes the lattice nodes along the x direction, with the left wall placed halfway between
i = 1 and i = 2, see Fig. 2), with flinear(η) on the left wall.
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FIG. 7. (a) Comparison between the exact solution, the dipole
model, and the LBE solution for �φ/�y along the vertical line at
i = 2. (b) Comparison of �φ/�y near the left wall at i = 2, 3, and 4.
(c) The absolute errors of err = (∂φ/∂y)LBE − (∂φ/∂y)ex along the
vertical lines near the left wall for different grid resolutions, with
flinear(η) on the left wall.

the entire upper half of the vertical line at i = 2 (i ′ = 0.5
or x/H = 1/128). Again, the dipole model captures the be-
havior of the singularity very nicely near η = y/H = 0.5. At
j ′ = 0.5, the LBE solution has about 15% error due to the
influence of the singularity as discussed in the preceding para-
graph; this error is more clearly seen in the inset as indicated by
the first open circle (LBE solution) away from the horizontal
axis at y/H = 0.5078. It is emphasized that errors from the
two lattice points, (x/H, y/H ) = [1/(2H ), 0.5 ± 1/(2H )] or
(i ′,j ′) = (0.5, ± 0.5) on the lattice scale, are the biggest source
of the error in the overall interior derivatives of the LBE
solutions. Figure 7(b) compares �φ/�y values between the
exact and LBE solutions at i = 2, 3, and 4, corresponding
to x/H = 1/128, 3/128, and 5/128. The agreement becomes
much better away from i = 2. Figure 7(c) shows the absolute
errors in �φ/�y, defined as err = (∂φ/∂y)LBE − (∂φ/∂y)ex, as
a function of lattice node position j ′ = y − H/2 along the
same vertical lines (i = 2, 3, and 4) near the left wall for
H = 32, 64, and 128. Clearly the largest absolute error occurs
at the lattice nodes closest to the discontinuity. Since both
the LBE and exact solutions for the derivatives behave the
same on the lattice scale, the errors of the LBE solutions
remain invariant of the resolution H near the singularity.
The implication of this behavior will be further discussed
in the error analysis in later paragraphs. To further elucidate the
behavior of the LBE errors near the discontinuity, the results
from the three types of discontinuous boundary conditions,
Eqs. (19a)–(19c), are compared. Figures 8(a) and 8(b) show
the local relative errors for ∂φ/∂x [R.E. = err/(∂φ/∂x)ex]
and the normalized errors for ∂φ/∂y (N.E. = err

|∂φ/∂y|LBE,max
)

along the vertical line at i = 2 for different resolution for
all three cases. The normalized error, instead of the relative
error, is used for ∂φ/∂y since its exact solution at i = 2 goes
through a zero between y = H/2 and y = H and is thus
inappropriate to be used in the denominator. On the other
hand, |∂φ/∂y|LBE,max is an appropriate L1 norm of the function
based on the LBE solution. Figures 8(a) and 8(b) also show
that the local errors for the interior derivatives behave the
same for three different discontinuous boundary profiles. It
is thus appropriate to conclude that the local error behavior
for the derivatives shown in Figs. 8(a) and 8(b) is universally
applicable for a unity jump in the Dirichlet boundary condition
for conduction or diffusion problems governed by the Laplace
equation.

In order to understand how the discontinuity affects the
accuracy of the macroscopic quantities in the LBE com-
putation, it is vital to examine the error behavior of the
individual microscopic distribution functions, especially near
the discontinuity. Figures 9(a)–9(e) shows the respective
profiles of gα (α = 0–4) along the vertical line at i = 2 from
both the asymptotic and LBE solutions for the linear case,
where the asymptotic values are obtained from Eq. (16) in
which φ(0) is replaced by φex. It is clear that g0 LBE matches
well with its asymptotic value throughout the domain, while
the other components all have much larger discrepancies
near the discontinuity at j ′ = 0.5. This comparison is fur-
ther illustrated by the errors γα = gα LBE − gα asymptotic, in
Fig. 10(a). Based on the results in Fig. 10(a), Fig. 10(b)
also shows the absolute errors for the macroscopic φ value
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FIG. 8. (a) Relative errors for �φ/�x and (b) normalized errors for �φ/�y along the vertical line at i = 2 at different grid resolution for the
three types of discontinuous Dirichlet conditions on the left wall.

and its derivatives following Eq. (17) [here Eφ = ∑4
α=0 γα ,

E∂φ/∂x = κ(γ1 − γ2), and E∂φ/∂y = κ(γ3 − γ4)]. Clearly the
large errors in the derivatives are attributed to the difference
between the errors of the distribution functions; while for the
macroscopic φ value, the dominating errors in γα (α = 1–4)
cancel each other out. This explains well that while the interior
derivatives have zeroth-order accuracy with resolution, the

error for the interior distribution of φ does decrease with
resolution. It should also be noted that the errors for ∂φ/∂x

and ∂φ/∂y in Fig. 10(b) obtained from the comparison with
the asymptotic microscopic distribution functions match very
well with the errors in Figs. 7(c), 8(a), and 8(b), where the
solutions are directly compared to the exact macroscopic
quantities. Furthermore, the same error behavior in Figs. 10(a)
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FIG. 9. Profiles of the microscopic distribution functions (a) g0, (b) g1, (c) g2, (d) g3, and (e) g4 along the vertical line at i = 2, for both the
asymptotic and LBE solutions for the linear case.
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in (a).

and 10(b) is observed for the other two cases with piecewise
parabolic and sine Dirichlet conditions, confirming that the
LBE solution near the discontinuity is controlled by the
local solution dominated by the jump in the boundary
condition.

Fixed relaxation time coefficients τD = 0.75 and τp = 1.0
[thus � = (τD − 0.5)(τp − 0.5) = 1/8] have been used in
the foregoing discussion. The effect of � on the accuracy of
the interior derivative is examined next. Figure 11 shows the
variation of the absolute errors for (∂φ/∂x)LBE and (∂φ/∂y)LBE

with � at the interior lattice node P (i ′ = j ′ = 0.5) next to the
singularity point. The variation of � is realized by changing
τD while keeping τp = 1. For each �, the two derivatives
computed have the same error magnitude and with opposite
signs. Both show monotonic behavior and a sign change.

This indicates that for certain � values, the maximum error
magnitude for the derivatives is not at P, the closest lattice
node near the singularity. The present computation shows that
for these cases (e.g., � = 0.0005, 0.0025, 0.25, 0.375) the
maximum error magnitudes for (∂φ/∂x)LBE and (∂φ/∂y)LBE

are found at the lattice nodes next to P on the right and at
the top, respectively. For all other � values examined, the
maximum errors are found at P. It should be noted that for all
� values tested, the overall derivative error in the interior field,
which represents the convergence orders, do not change with
grid resolution. This will be further studied in the following
section.

d. Order-of-accuracy of LBE solutions. To assess the
numerical accuracy of the LBE results, the following relative
L2-norm errors are defined following [17]:

E2 =
[ ∑

interior nodes

(φLBE − φex)2

/ ∑
interior nodes

φ2
ex

]1/2

, (27)

E2−∂φ/∂x =
[ ∑

interior nodes

(
∂φ

∂x

∣∣∣∣
LBE

− ∂φ

∂x

∣∣∣∣
ex

)2
/ ∑

interior nodes

(
∂φ

∂x

∣∣∣∣
ex

)2
]1/2

, (28a)

E2−∂φ/∂y =
[ ∑

interior nodes

(
∂φ

∂y

∣∣∣∣
LBE

− ∂φ

∂y

∣∣∣∣
ex

)2
/ ∑

interior nodes

(
∂φ

∂y

∣∣∣∣
ex

)2
]1/2

, (28b)

E2−qw =
⎡
⎣ ∑

boundarynodes

(
D

∂φ

∂x

∣∣∣∣
LBE

− D
∂φ

∂x

∣∣∣∣
ex

)2
/ ∑

boundarynodes

(
D

∂φ

∂x

∣∣∣∣
ex

)2
⎤
⎦

1/2

, (29)

where the “interior nodes” denote the lattice nodes inside
the block but not on the boundary walls, and the “boundary
nodes” in Eq. (29) refer to those on each straight section of the
boundary walls.

We first computed the L2-norm errors in Eqs. (27)–(29)
by choosing different τD and τp values while maintaining
the same value of � = (τD − 0.5)(τp − 0.5). It is verified
that for each � value, the different τD and τp combinations
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Λ = (τD − 0.5)(τp − 0.5)
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P

x

FIG. 11. Variation of the absolute errors for (∂φ/∂x)LBE and
(∂φ/∂y)LBE with � = (τD − 0.5)(τp − 0.5) at the interior lattice node
P next to the singularity point.

result in almost exactly the same L2-norm errors for this pure
diffusion problem (as shown later in Fig. 30, the errors are
determined by � also for convection-diffusion problems with
both continuous and discontinuous boundary conditions). The
variations of the L2-norm errors with � is thus examined and
the results for the case with flinear(η) are shown in Fig. 12 with
τp = 1. The comparison between Figs. 12(a) and 12(b) clearly
shows that the errors are much less when the discontinuity
point is placed at the center of the lattice with the symmetry
preserved. An optimal � value near 1/8 is seen in Fig. 12(a)
and � = 1/8 is also a good choice for 
d = 0.25 in Fig. 12(b).
Thus the choice of � = 1/8 is recommended and used in most
cases shown below. For 
 = 0.5 in Fig. 10(a), the dependence
of E2 on � can be well approximated by a power function

1/H

E
2

10-3 10-2 10-110-4

10-3

10-2

linear
parabolic
sine
slope = 1

Δ  = 0.50
τD = 0.75

FIG. 13. Relative L2-norm error E2 of the interior distribution
of φ versus the grid resolution 1/H for steady diffusion in the
square block with discontinuous Dirichlet boundary conditions and
the discontinuity point placed at the center of the unit lattice, i.e.,

d = 
w = 
 = 0.5 (see Fig. 2).

E2 ∼ {−0.093
√

�+0.038, ��1/8,

0.095
√

�+0.034, ��1/8.
This leading-order power in

√
�

is consistent with that reported in [36].
Figures 13 and 14 show the respective relative errors defined

in Eqs. (27)–(28) versus the grid resolution 1/H at 
d = 
w =

 = 0.5 and τD = 0.75. Due to the tangential discontinuity
of the Dirichlet boundary conditions at x = 0, the order of
accuracy of the interior field is reduced to first order, as shown
in Fig. 13, and that of the interior derivatives to zeroth order,
as shown in Fig. 14, for all three forms of f (η). For the same
H, the relative errors for all three cases are close in magnitude
because the jump magnitudes of all three cases are equal to
unity. The zeroth-order accuracy for the interior derivatives

(a)                                                                                 (b) 

FIG. 12. Relative L2-norm errors versus � = (τD − 0.5)(τp − 0.5) for steady diffusion in the square block (H = 32) with a discontinuous
boundary condition flinear(η) on the left wall at (a) 
d = 
w = 0.5 and (b) 
d = 0.25, 
w = 0.5.
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FIG. 14. Relative L2-norm errors E2 ∂φ/∂x and E2 ∂φ/∂y of
the interior derivatives versus 1/H for steady diffusion in the
square block with discontinuous Dirichlet boundary conditions
(
d = 
w = 
 = 0.5).

can be explained by the results shown in Figs. 5–8. As the
resolution increases on the lattice scale, the absolute errors on
the lattice nodes near the discontinuity point remain invariant
with H. Since the errors are much higher near the discontinuity
than those far away from the discontinuity, both the numerators
and denominators in Eqs. (28a) and (28b) change very slowly
with H, resulting in a zeroth-order accuracy.

Figure 15(a) shows the boundary flux errors at x = 0, x =
L = H , and y = H , respectively [�φ/�x is changed to �φ/�y
in Eq. (29) for y = H ], when the discontinuous f = flinear(η)
is used at x = 0 and 
d = 
w = 
 = 0.5 is maintained. The
most striking feature is the exceptionally small relative error in

the normal flux at x = 0 where the discontinuous linear profile
of φ(0, y) is imposed; and quadruple precision was used in
the evaluation of wall normal derivative mainly for this case
to ensure that the round-off error in the exact solution does
not exceed the exceptionally small numerical error for wall
normal flux. However, the relative errors on the right and top
walls, where φw = 0 are imposed, are not so small; they show
second-order convergence behavior and have magnitudes in
line with those observed in earlier studies [17–20] for wall flux.
The exceptionally small flux error at x = 0 also prompted the
use of the discontinuous parabolic and sine profiles fparab(η)
and fsine(η) for f (η) in this study as it is believed that the small
flux error may be caused by the use of the linear or zeroth-order
f (η) at x = 0. Figure 15(b) shows the relative flux errors
on two walls, x = 0 and x = L, when f (η) = fparab(η) and
fsine(η) at x = 0 are enforced. The second-order convergence
is observed and the magnitude of the flux errors is indeed in
line with previous observations [17–20]. Another test was also
conducted by setting φ(ξ = 1, η) = 0.5sin(πη) in addition to
keeping φ(0, η) = flinear(η) and φ(ξ, η = 0) = f (x, η = 1) =
0. Not surprisingly, the L2-norm error E2−qw for the wall flux at
x = 0 becomes comparable with E2−qw shown in Fig. 15(b).
This suggests that the exceptionally small magnitude of the
flux error at x = 0 for the discontinuous linear flinear(η) is
indeed an exception.

To elucidate the effect of the location of the tangential-type
boundary condition discontinuity on the accuracy of the LBE
results, Figs. 16–18 show the relative L2-norm errors defined
in Eqs. (27)–(29), respectively, versus 1/H for three cases with
(
d,
w) = (0.5, 0.25), (0.25, 0.5), and (0.25, 0.25) when
f (η) = flinear(η) is used at x = 0. Scheme 2 in Eq. (10b)
is applied for all the Dirichlet boundary conditions. Other
combinations with 
d = 0.75, 0.01, 0.99 and 
w = 0.75,
0.01, 0.99 are also examined and they show the same
convergence behavior as in Figs. 16–18 and are not shown
for brevity. When the discontinuity is placed away from
the lattice center, the accuracy of the interior φ values
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(a) (b)

FIG. 15. Relative L2-norm error E2 qw of the boundary flux versus 1/H for steady diffusion in the square block with discontinuous boundary
conditions (a) flinear(η) and (b) fparab(η) and fsine(η) on the left wall (
d = 
w = 
 = 0.5).
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FIG. 16. Relative L2-norm error E2 of the interior distribution of
φ versus 1/H for steady diffusion in the square block with flinear(η)
on the left wall and the discontinuity point off the lattice center.

remains first order; however the relative errors in Fig. 16
are substantially larger than those in Fig. 13. The loss of the
geometric symmetry of the lattices relative to the discontinuity
position results in the disappearance of the antisymmetry of
the φLBE values on the two sides of the discontinuity relative to
the averaged discontinuous value 1

2 [φ(0,η = 0.5−) + φ(0,η =
0.5+)]. Hence the error near the discontinuity is larger than the
case when (
d,
w) = (0.5, 0.5). For the interior derivatives,
the accuracy is again of zeroth order with larger magnitude,
as one can observe by comparing Fig. 17 with Fig. 14. Most

1/H

E
2_

∂φ
/∂

x,
 E

2_
∂φ

/∂
y

10-3 10-2 10-110-3

10-2

10-1

100

Δd = 0.50, Δw = 0.25, ∂φ/∂x
                                  ∂φ/∂y
Δd = 0.25, Δw = 0.50, ∂φ/∂x
                                  ∂φ/∂y
Δd = 0.25, Δw = 0.25, ∂φ/∂x
                                  ∂φ/∂y

linear case
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FIG. 17. Relative L2-norm errors E2 ∂φ/∂x and E2 ∂φ/∂y of the
interior derivatives versus 1/H for steady diffusion in the square
block with flinear(η) on the left wall and the discontinuity point off
the lattice center.
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FIG. 18. Relative L2-norm error E2 qw of the boundary flux versus
1/H for steady diffusion in the square block with flinear(η) on the left
wall and the discontinuity point off the lattice center.

strikingly, the error for the wall flux changes from second order
(Fig. 15) to zeroth order (Fig. 18) with the loss of the geometric
symmetry. Thus whenever possible the discontinuity point
should be placed at the center of the lattice in order to reduce
the LBE errors for the quantities of interest.

2. Discontinuous Neumann boundary condition

For the Neumann problem, the boundary condition on the
left wall is imposed as

	n = −D
∂φ

∂x

∣∣∣∣
x=0,y

= −D

H

∂φ

∂ξ

∣∣∣∣
ξ=0,η

= −D

H
f (η). (30)

The same discontinuous functions f (η) given in Eqs. (21a)–
(21c) are used in Eq. (30) for consistency. Similar to Eq. (22),
the exact solution φ for the Neumann problem can be expressed
as

φex(ξ,η) = 2

π

M∑
n=1

bn

n
sin(nπη)

sinh[nπ (ξ − L/H )]

cosh(−nπL/H )

+ 2

π

N∞∑
n=M+1

bn

n
sin(nπη)[enπ(ξ−2L/H ) − e−nπξ ],

(31)

where the Fourier coefficients bn are the same as given in
Eq. (20b). For the interior derivatives, the exact values can
be obtained from Eq. (31) through direct differentiation. For
Neumann problems φex(ξ = 0, η) is calculated using Eq. (31)
in order to assess the accuracy of the computed LBE boundary
value 	d using Eq. (14).

To assess the accuracy of the LBE solution for 	d , the
relative L2-norm error for 	d at x = 0 is defined in the
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FIG. 19. Contours of φLBE at H = L = 64 with a piece-
wise linear discontinuous Neumann condition on the left wall
(
d = 
w = 
 = 0.5).

following in addition to those defined in Eqs. (27) and (28):

E2−tw =
⎡
⎣ ∑

boundary nodes

(	d,LBE − φex)2

/ ∑
boundary nodes

φ2
ex

⎤
⎦

1/2

,

(32)

where the “boundary nodes” refer to those on the left boundary
wall.

Similar to the Dirichlet problem, 
d = 
w = 
 = 0.5 is
considered first for the LBE results in Figs. 19–22. Figure 19
shows the contours of φLBE for f = flinear(η) with H = 64;

φw(x = 0, y)

y 
/ H

-0.1 -0.05 0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

linear, exact
           LBE
parabolic, exact
                 LBE
sine, exact
         LBE

FIG. 20. Profiles of φw(x = 0, y) on the left wall at H = 64,

τD = 0.75, and D = 1/12 with discontinuous Neumann conditions
on the left wall.

those for f = fparab(η) and fsine(η) are very similar and are
not shown. Figure 20 compares the profiles of φLBE(x = 0, y)
evaluated using Eq. (14) with the exact solutions for all three
forms of f (η). Excellent agreement is observed between the
LBE and exact solutions. Clearly φ(x = 0, y) is continuous
in the vicinity of y = H/2 where a discontinuity of boundary
flux is present. Figures 21(a) and 21(b) show the contours
for the derivatives �φ/�x and �φ/�y based on the LBE
solution for H = 64. In the absence of a singularity, the
magnitude for each derivative is much smaller than that for
the Dirichlet problem. Figure 22 shows the absolute errors
err = (∂φ/∂y)LBE − (∂φ/∂y)ex along the vertical lines near
the left wall for H = 32, 64, and 128. The magnitude of
the absolute errors for the derivatives decreases with the
improvement of grid resolution instead of remaining invariant
with resolution in the Dirichlet problem.

The results for E2, E2 tw, E2 ∂φ/∂x , and E2 ∂φ/∂y defined in
Eqs. (27), (32), (28a) and (28b) versus the grid resolution for
all three forms of f (η) at x = 0 for 
d = 
w = 
 = 0.5 are
shown in Figs. 23–25, respectively. For different 
d and 
w

values, flinear(η) is selected and the corresponding results are
shown in Figs. 26–28 for (
d,
w) = (0.5, 0.25), (0.25, 0.5),
and (0.25, 0.25). Scheme 2 in Eq. (10b) is used for computing
the boundary 	d values in Eq. (14). The results in Figs. 23,
24, 26, and 27 indicate that when the discontinuity point is
placed halfway in the lattice along the tangential direction
of the boundary, i.e., 
d = 0.5, the LBE results are second-
order accurate for interior φ field and superlinear (order ∼1.5)
for the boundary 	d values no matter what 
w values are
used. When 
d �= 0.5, both the interior and boundary values
become first-order accurate. The interior derivatives are first-
order accurate for all cases as shown in Figs. 25 and 28. Other
combinations of 
d and 
w values are also examined and the
same patterns as in Figs. 23–28 are observed; thus they are not
shown. Compared to the Dirichlet problem, the effect of the
boundary condition discontinuity on the accuracy of the LBE
results is less severe in general in the Neumann problem.

For both Dirichlet and Neumann problems, it is much
preferred to place the discontinuity point at the lattice center
with half lattice link fractions in both directions (
d = 
w =
0.5). Such an arrangement could potentially improve the order
of accuracy and/or reduce the magnitude of the errors.

B. Convection-diffusion in a channel

In this test, steady convection and diffusion of temperature
or concentration in channel flow are considered. The geo-
metric configuration and the lattice distributions are depicted
in Fig. 29. Discontinuous Dirichlet or Neumann boundary
conditions are imposed on the top and bottom walls, and
periodic boundary conditions are assumed in the x direction
for both φ and the distribution function gα [17]. To obtain
closed-form exact solutions, a plug flow is assumed following
[17]. The governing CDE reads

U
∂φ

∂x
= D

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
, (33)

where U is the constant velocity in the x direction, and the
velocity in the y direction is zero. This thermal or mass
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FIG. 21. Contours for interior derivatives (a) �φ/�x and (b) �φ/�y at H = L = 64 with a piecewise linear discontinuous Neumann
condition on the left wall.

transport problem is characterized by the Péclet number
defined as Pe = UH/D.

1. Discontinuous Dirichlet boundary condition

As shown in Fig. 29, the tangential-type discontinuous
Dirichlet boundary conditions are imposed as

φw(y = 0) = φw(y = H ) = F (x)

=
⎧⎨
⎩

0.5, 0 � x < L/4,

−0.5, L/4 < x < 3L/4,

0.5, 3L/4 < x < L.

(34)

j′= y − H/2

er
r 
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FIG. 22. Absolute errors of err = (∂φ/∂y)LBE − (∂φ/∂y)ex along
the vertical lines near the left wall at i = 2, 3, and 4 for different grid
resolutions, with a piecewise linear discontinuous Neumann condition
on the left wall.

Using Fourier series expansion, F(x) in Eq. (34) can be
expressed as

F (x) = 2

π

∞∑
n=1

(−1)n+1

2n − 1
cos[(2n − 1)2πξ ], ξ = x/L. (35)

Thus the exact solution for the scalar variable φ can be
expressed using complex variables as

φex(x,y)= 2

π
Re

[ ∞∑
n=1

(−1)n+1

2n − 1
ei(2n−1)2πξ eλ2n−1y+eλ2n−1(H−y)

eλ2n−1H + 1

]
,

(36)
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FIG. 23. Relative L2-norm error E2 of the interior φ values versus
1/H for steady diffusion in the square block with discontinuous
Neumann boundary conditions (
d = 
w = 
 = 0.5).
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FIG. 24. Relative L2-norm error E2 tw of the boundary φw values
versus 1/H for steady diffusion in the square block with discontinuous
Neumann boundary conditions (
d = 
w = 
 = 0.5).

where “Re” means taking the real part of a complex number,
and

λ2n−1 = (2n − 1)2π

L

√
1 + iUL

D(2n − 1)2π
.
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FIG. 25. Relative L2-norm errors E2 ∂φ/∂x and E2 ∂φ/∂y of
the interior derivatives versus 1/H for steady diffusion in the
square block with discontinuous Neumann boundary conditions
(
d = 
w = 
 = 0.5).
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FIG. 26. Relative L2-norm error E2 of the interior φ values versus
1/H for steady diffusion in the square block with the Neumann
condition flinear(η) on the left wall and the discontinuity point off
the lattice center.

As discussed in the previous diffusion problem, the solution
in Eq. (36) can be rearranged as

φex(x,y) = 2

π
Re

{
M∑

n=1

(−1)n+1

2n − 1
ei(2n−1)2πξ eλ2n−1y+eλ2n−1(H−y)

eλ2n−1H + 1

+
N∞∑

n=M+1

(−1)n+1

2n − 1
ei(2n−1)2πξ

× [eλ2n−1(y−H ) + e−λ2n−1y]

}
, (37)

with negligible loss of accuracy for relatively large M and
order-one ratio for H/L. For the boundary flux on the top
and bottom walls, the same extrapolation technique, Eq. (24),
is used. The interior derivatives ∂φex/∂x and ∂φex/∂y can
be directly calculated from φex. The distribution of φLBE at
Pe = 20 with H = L = 66 and 
d = 
w = 
 = 0.5 is very
similar to that in Fig. 6 of [17] where a sinusoidal variation of
wall temperature is imposed.

To examine the accuracy of the LBE solutions, the relative
L2-norm errors for the interior distribution of φ, the boundary
flux D∂φ/∂y|y=H , and the interior derivatives ∂φ/∂x and
∂φ/∂y are computed. Figure 30 shows the errors at different
τD values when � = 1/8 is fixed and 
d = 
w = 0.5. It is
clear that the magnitude of the errors is governed by � once
the resolution and Pe are fixed. This holds for both cases
with continuous and discontinuous boundary conditions as
shown in Figs. 30(a) and 30(b), respectively. As expected, the
case with discontinuous boundary conditions has much higher
error magnitude for all the L2-norm errors computed. It is of
particular interest to examine if the dependence of the solution
on � holds when the boundary is placed in an arbitrary position
in the lattice. Using the requirements given in Ref. [36] it is
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FIG. 27. Relative L2-norm error E2 tw of the boundary φw values
versus 1/H for steady diffusion in the square block with the Neumann
condition flinear(η) on the left wall and the discontinuity point off the
lattice center.

found that scheme 3 in Eq. (10c) is able to satisfy the equivalent
relations for the anti-bounce-back scheme and thus it would
produce exactly the same nondimensional solution when � is
fixed to 1/8. Contrarily, schemes 1 and 2 in Eqs. (10a) and
(10b) fail to satisfy these relations. Figure 31 shows the results
for 
d = 
w = 0.75 for both continuous and discontinuous
boundary conditions computed using these three schemes.
Indeed the results from scheme 3 are independent of τD . Other
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FIG. 28. Relative L2-norm errors E2 ∂φ/∂x and E2 ∂φ/∂y of the
interior derivatives versus 1/H for steady diffusion in the square
block with the Neumann condition flinear(η) on the left wall and the
discontinuity point off the lattice center.

±

−Δ

Δ
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Δ

Δ

FIG. 29. Schematic depiction of the computational domain and
lattice distribution for convection-diffusion in a channel with discon-
tinuous boundary conditions.

values of 
d and 
w are also checked and the same solution
behavior is observed.

Figures 32–34 show the L2-norm errors versus the grid
resolution for Pe = 0 (pure diffusion) and Pe = 20, 100
(moderate convection). First-order accurate solutions for the
interior φLBE and zeroth-order accurate solutions for the
interior derivatives are observed for all three cases with Pe = 0,
20, and 100. Similar to the diffusion problem presented in
Sec. IV A 1 with the piecewise discontinuous function f =
flinear(η) as a boundary condition, the boundary flux for Pe = 0
in this test also has exceptionally small relative errors. Only
first-order accuracy is obtained for the boundary flux when a
finite Pe(= 20, 100) is used, which is one degree lower than the
quadratic convergence of the boundary flux computed for the
diffusion problem in the block for f = fparab(η) and fsine(η)
and 
d = 
w = 0.5. Finite convection results in a boundary
layer near each of the horizontal walls, and a higher Pe implies
a thinner boundary layer. Furthermore, the convection also
results in asymmetry of the contours near the discontinuity
points, making it more difficult to resolve the downstream
region than the upstream region of the discontinuity due to
the boundary layer effect. This is directly responsible for the
change of the order of accuracy from second to first order for
the normal boundary flux. The convection clearly brings in
another important mechanism in affecting the transport and
enhancement of the errors.

The combined effect of convection and discontinuity
placement on the accuracy of the LBE results is elucidated
in the contours for err = φLBE − φex in Figs. 35(a)–35(f) for
(Pe,
d ) = (0, 0.5), (0, 0.25), (20, 0.5), (20, 0.25), (100, 0.5),
and (100, 0.25). For all six cases 
w = 0.5 in the y direction is
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FIG. 30. Relative L2-norm errors versus (τD − 0.5) for convection-diffusion in the channel at fixed � = (τD − 0.5)(τp − 0.5) = 1/8,

Pe = 20, and H = 18 with (a) continuous boundary conditions φw(y = 0) = φw(y = H ) = cos(2πx/L) and (b) discontinuous boundary
conditions (see Fig. 29) on the horizontal walls.

used. For each Pe, there is a drastic increase in the magnitude
of error when 
d changes from 0.5 to 0.25. On the other hand,
for 
d = 0.5, the error increases only by a factor of 2–3 when
Pe changes from 0 to 100. This indicates that the error is much
more sensitive to the placement of the discontinuity points
within the lattice. For each nonzero Pe, the error contours
of 
d = 0.5 and 0.25 are very similar; the difference is in
the magnitude caused by the discontinuity location. This is
simply because the error in φLBE is also governed by the same
convection-diffusion equation for φ except that the source
for generating the error at the discontinuity is much stronger
with 
d = 0.25 due to geometric asymmetry. Nevertheless,
for all cases with 
d = 0.25, first-order accuracy is obtained
for the interior φLBE at finite Pe. The accuracy for the
boundary flux and interior derivatives remains to be zeroth
order. Figures 36(a) and 36(b) also show how 
d and 
w

affect the L2-norm errors respectively for the interior φLBE,
the boundary flux, and the interior derivatives at Pe = 20
and H = 66. In Figure 36(a) the case with 
d = 0.5 has
minimum errors for all four quantities and a sharp increase
in the error magnitude is observed for E2 and E2 qw when
the discontinuity location moves away from the midpoint
(
d = 0.5) to either side. In Fig. 36(b), E2 and E2 qw also
have minimum values at 
w = 0.5. The smallest error for
E2 ∂φ/∂y is noticed at 
w ∼ 0.35 and E2 ∂φ/∂x decreases
monotonically as 
w increases from 0.01 to 0.99; however,
the differences between the E2 ∂φ/∂x and E2 ∂φ/∂y values at

w = 0.5 and their minimum values in the whole range of
0 � 
w � 1 are not significant. Overall, the placement of the
discontinuity point at the lattice center with 
d = 
w = 0.5 is
recommended.

It is also instructive to examine if using more distribution
functions from neighboring lattice nodes would change the
order of accuracy of the LBE solutions. To this end, the “third-

order” Dirichlet boundary schemes by Ginzburg [37], which
include five distributions at three lattice nodes near the bound-
ary, are implemented (see Refs. [17,35] for implementation
details). It should be noted that the correction term F

p.c.
q in [37]

was not included in [17]. Here we correct this implementation
and present the updated results in Figs. 37(a) and 37(b). For the
continuous boundary conditions φw(y = 0) = φw(y = H ) =
cos(2πx/L), the results in Fig. 37(a) include the second-order
boundary scheme in [17] (it reduces to anti-bounce-back at

 = 0.5), and the third-order schemes with or without the
correction term. It is noted that second-order accuracy is
obtained for all cases and by including the correction term the
magnitude of the errors is significantly reduced. These third-
order schemes with the correction term are also implemented
for the present discontinuous boundary condition in Fig. 37(b),
where first-order accuracy for E2 is obtained for each case.
Figure 38 also shows the variations of all the L2-norm errors
with � at Pe = 20 and H = 34 with the implementation of
both the second-order and third-order boundary schemes. For
most cases, the third-order scheme leads to slightly smaller
error magnitude and the optimal � value is also at � = 1/8.
Similar to the results in Fig. 12(a), the dependence of E2 on �

in Fig. 38 can also be well approximated by the power functions

E2 ∼ {−0.086
√

�+0.035, ��1/8,

0.154
√

�−0.064, ��1/8
for the anti-bounce-back scheme

and E2 ∼ {−0.067
√

�+0.029, ��1/8,

0.118
√

�−0.049, ��1/8
for the third-order scheme.

Overall, the results in Figs. 37 and 38 indicate that the
same order of accuracy is obtained for the second-order and
third-order Dirichlet boundary schemes; and one can tune the
adjustable parameter in the third-order schemes to reduce
the error magnitude. The optimal choice of the adjustable
parameters is out of the scope of this work and thus not
pursued.
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FIG. 31. Relative L2-norm errors versus (τD − 0.5) for convection-diffusion in the channel at fixed � = (τD − 0.5)(τp − 0.5) = 1/8, Pe =
20, H = 18.5, and 
 = 0.75: (a) E2, (c) E2 qw, (e) E2 ∂φ/∂x and E2 ∂φ/∂y with continuous boundary conditions φw(y = 0) = φw(y = H ) =
cos(2πx/L), and (b) E2, (d) E2 qw, (f) E2 ∂φ/∂x and E2 ∂φ/∂y with discontinuous boundary conditions (see Fig. 29) on the horizontal walls.
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FIG. 32. Relative L2-norm error E2 of the interior distribution
of φ versus the grid resolution 1/H for steady pure diffusion
(Pe = 0) and convection-diffusion (Pe = 20, 100) in the channel with
discontinuous Dirichlet boundary conditions.

2. Discontinuous Neumann boundary condition

For the Neumann problem, the boundary conditions in
Eq. (34) are replaced by

	n|y=0 = −D
∂φ

∂y

∣∣∣∣
y=0

= D
F (x)

H
, (38a)

	n|y=H = −D
∂φ

∂y

∣∣∣∣
y=H

= −D
F (x)

H
, (38b)
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FIG. 33. Relative L2-norm error E2 qw of the boundary flux versus
1/H for steady pure diffusion (Pe = 0) and convection-diffusion
(Pe = 20, 100) in the channel with discontinuous Dirichlet boundary
conditions.
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FIG. 34. Relative L2-norm errors E2 ∂φ/∂x and E2 ∂φ/∂y of the
interior derivatives versus 1/H for steady pure diffusion (Pe = 0)
and convection-diffusion (Pe = 20, 100) in the channel with discon-
tinuous Dirichlet boundary conditions.

where F (x) is given in Eq. (34). The exact solution for φ can
be expressed as

φex(x,y) = 2

πH
Re

{
M∑

n=1

(−1)n+1

(2n − 1)λ2n−1
ei(2n−1)2πξ

× eλ2n−1y + eλ2n−1(H−y)

eλ2n−1H − 1

+
N∞∑

n=M+1

(−1)n+1

(2n − 1)λ2n−1
ei(2n−1)2πξ

× [eλ2n−1(y−H ) + e−λ2n−1y]

}
. (39)

The distribution of φLBE for Pe = 20,H = 66, and 
d =

w = 0.5 is very similar to that shown in Fig. 14 of [17];
thus they are not shown here. The relative L2-norm errors
for the interior distribution of φ, the boundary values (φw),
and the interior derivatives (∂φ/∂x and ∂φ/∂y) are shown in
Figs. 39–41 for 
d = 
w = 0.5. The results for both pure
diffusion (Pe = 0) and moderate convection diffusion (Pe =
20, 100) are included. The orders-of-accuracy for these three
quantities are consistent with those in the square block
diffusion problem with discontinuous Neumann conditions
and 
d = 0.5, i.e., second-order accuracy for the interior
field of φ, a superlinear order ∼1.5 for the boundary
values, and first-order accuracy for the interior derivatives
in both directions are obtained for the present problem
with all three Pe = 0, 20, and 100. Other combinations
of 
d and 
w values are also examined and the same
patterns for the orders-of-accuracy as in Figs. 26–28 for
the diffusion problem are observed; thus they are not
shown.

023307-21



LI, AUYEUNG, MEI, AND KLAUSNER PHYSICAL REVIEW E 94, 023307 (2016)

0.0000

0.
00

00

0.
00

00

0.
00

00

x / L

y 
/ H

0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

err

0.0030
0.0025
0.0020
0.0015
0.0010
0.0005
0.0000

-0.0005
-0.0010
-0.0015
-0.0020
-0.0025
-0.0030

0.
00

0.01-0.01

x / L

y 
/ H

0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

err

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

-0.01
-0.02
-0.03
-0.04
-0.05
-0.06
-0.07
-0.08
-0.09

0.0000
0.0000

x / L

y 
/ H

0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

err

0.0040
0.0035
0.0030
0.0025
0.0020
0.0015
0.0010
0.0005
0.0000

-0.0005
-0.0010
-0.0015
-0.0020
-0.0025
-0.0030
-0.0035
-0.0040

0.00

0.00

-0.01 0.01

x / L

y 
/ H

0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

err

0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

-0.01
-0.02
-0.03
-0.04
-0.05
-0.06
-0.07
-0.08
-0.09
-0.10

0.000

0.000

0.000

0.001

0.000 -0.001

x / L

y 
/ H

0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

err

0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000

-0.001
-0.002
-0.003
-0.004
-0.005
-0.006
-0.007
-0.008
-0.009

0.00

0.00

0.00
0.00

x / L

y 
/ H

0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

err

0.11
0.09
0.07
0.05
0.03
0.01
0.00

-0.01
-0.03
-0.05
-0.07
-0.09
-0.11

(a) (b)

(c) (d)

(e) (f)

FIG. 35. Contours of the absolute errors of err = φLBE − φex in the upper half channel (H = L = 66) with discontinuous Dirichlet boundary
conditions for (a) Pe = 0, 
d = 0.5, (b) Pe = 0, 
d = 0.25, (c) Pe = 20, 
d = 0.5, (d) Pe = 20, 
d = 0.25, (e) Pe = 100, 
d = 0.5, and (f)
Pe = 100, 
d = 0.25.
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FIG. 36. Variations of the relative L2-norm errors with (a) the lattice fraction 
d when 
w = 0.5 and (b) the lattice fraction 
w when

d = 0.5, for the channel flow Dirichlet problem at Pe = 20.

C. Heat conduction in a circular cylinder

All the boundaries in the previous two tests involve straight
walls. To investigate the combined effect of curved geometry
and tangential-type boundary condition discontinuity on the
order of accuracy of LBE solutions, steady heat conduction in
a circular cylinder is considered next. The geometry and lattice
distribution are depicted in Fig. 42. The imposed Dirichlet and
Neumann boundary conditions have discontinuities at θ = 0
and θ = π . The specific lattice link fractions in both x and
y directions for the lattice nodes next to the boundary are
calculated (e.g., 
x and 
y for node P in Fig. 42) so that
the boundary condition treatments in Eqs. (10) and (12) are
implemented.

1. Discontinuous Dirichlet boundary condition

The discontinuous Dirichlet boundary condition is given by
a unit step function

φw(r = R,θ ) =
{

1, 0 < θ < π,

0, π < θ < 2π.
(40)

The exact solution for φ is

φex(r,θ ) = 1

2
+ 2

π

∞∑
n=1

(r/R)2n−1

2n − 1
sin(2n − 1)θ, (41)
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FIG. 37. Relative L2-norm error E2 versus the grid resolution 1/H for convection-diffusion (Pe = 20) in the channel with (a) continuous
boundary conditions φw(y = 0) = φw(y = H ) = cos(2πx/L) and (b) discontinuous boundary conditions (see Fig. 29) on the horizontal walls.
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FIG. 38. Variations of the relative L2-norm errors with � =
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and the radial and azimuthal derivatives are

∂φex

∂r
(r,θ ) = 2

π

∞∑
n=1

(r/R)2n−2

R
sin(2n − 1)θ, (42a)

1

r

∂φex

∂θ
(r,θ ) = 2

π

∞∑
n=1

(r/R)2n−1

r
cos(2n − 1)θ. (42b)
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FIG. 39. Relative L2-norm error E2 of the interior distribution
of φ versus 1/H for steady pure diffusion (Pe = 0) and convection-
diffusion (Pe = 20, 100) in the channel with discontinuous Neumann
boundary conditions.
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FIG. 40. Relative L2-norm error E2 tw of the boundary φw values
versus 1/H for steady pure diffusion (Pe = 0) and convection-
diffusion (Pe = 20, 100) in the channel with discontinuous Neumann
boundary conditions.

It is noted that the boundary fluxes cannot be obtained from
Eq. (42) since the series do not converge at r = R, and the
extrapolation in Eq. (24) is used again.

The three particular Dirichlet schemes in Eqs. (10a)–
(10c) are directly implemented with the local link fractions
calculated. Figures 43–45 show the L2-norm errors for the
interior distribution of φ, the boundary flux, and the interior
derivatives, as defined in Eqs. (27)–(29), respectively, versus
the grid resolution 1/R when 
d = 
w = 0.5 is used. The
boundary nodes in Eq. (29) for this test include all the
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FIG. 41. Relative L2-norm errors E2 ∂φ/∂x and E2 ∂φ/∂y of the
interior derivatives versus 1/H for steady pure diffusion (Pe = 0)
and convection-diffusion (Pe = 20, 100) in the channel with discon-
tinuous Neumann boundary conditions.
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FIG. 42. Schematic depiction of the lattice distribution for dif-
fusion in a circular plane. The circular geometry is preserved by
calculating the exact link fraction 
 values in both x and y directions
for the interior nodes next to the boundary, e.g., 
x and 
y for P.

intersection nodes by the lattice velocity vectors in both x

and y directions. It is also emphasized that the boundary flux
from the LBE computation is evaluated in the Cartesian x and
y directions parallel to the intersecting lattice velocity vectors
[see Eq. (13)] so that the extrapolated analytical boundary
fluxes in the normal and tangential directions are projected to
the x and y directions. The results in Figs. 43–45 from using the
three Dirichlet schemes are very close to each other at R > 10.
First-order accuracy for the interior φ values and zeroth-order
accuracy for the interior derivatives are clearly seen in Figs. 43
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FIG. 43. Relative L2-norm error E2 of the interior φ values versus
the grid resolution 1/R for steady diffusion in the circular plane with
a discontinuous Dirichlet boundary condition.
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FIG. 44. Relative L2-norm error E2 qw of the boundary flux versus
1/R for steady diffusion in the circular plane with a discontinuous
Dirichlet boundary condition.

and 45. The numerical convergence of the boundary flux
in Fig. 44 is also close to zeroth-order asymptotically. The
respective orders-of-accuracy are the same as those for the
square block diffusion problem when the discontinuity point
is placed away from the lattice center.

Ginzburg and d’Humieres [31,39] pointed out that when
a boundary scheme is incompatible with that for the in-
terior solution, an accommodation layer will develop and
the “accommodation” in the LBE method manifests itself
differently for different orders of the incompatibility with the
bulk nonequilibrium, from relatively smooth nonequilibrium
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FIG. 45. Relative L2-norm errors E2 ∂φ/∂x and E2 ∂φ/∂y of the
interior derivatives versus 1/R for steady diffusion in the circular
plane with a discontinuous Dirichlet boundary condition.
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FIG. 46. Distribution of the absolute error for the interior derivative A.E. = |(∂φ/∂x)LBE − (∂φ/∂x)ex| for diffusion in a circular domain
(R = 30) with (a) continuous boundary condition φw(r = R,θ ) = cos(4θ ) and (b) discontinuous boundary condition in Eq. (40).

layers which do not impact the macroscopic solution, e.g.,
[40], to jumps in boundary and interface derivatives for
inaccurate collision strategies with discontinuous coefficients
[31,32]. We also observed that in the cases with continuous
boundary conditions [17] or normal discontinuities (jumps)
across the interface [33], the presence of incompatibility and
accommodation layer does not lead to degradation of accuracy
when straight wall is involved for Dirichlet problems. For
curved boundary problems, the order of accuracy for the field
of φ is unaffected by the presence of the accommodation layer,
while that for the interior derivative decreases from 2 to 1.5
(superlinear) when a continuous Dirichlet condition is imposed
on the surface of a circular cylinder [17]. Figure 46(a) shows
the distribution of the absolute error for the interior derivative
in the x direction, i.e., A.E. = |(∂φ/∂x)LBE − (∂φ/∂x)ex|, at
R = 30 and 
d = 
w = 0.5 (see Fig. 42) for the Dirichlet
condition of φw(r = R,θ ) = cos(4θ ). The presence of such an
accommodation layer is clearly demonstrated in this example.
When the resolution R increases, the magnitude of the error
in the accommodation layer decreases as R−1.5. In contrast,
for the Dirichlet problem with tangential-type discontinuous
boundary condition given by Eq. (40), the error for �φ/�x
shown in Fig. 46(b) has two simple peaks near the discontinu-
ities. The two peaks have much larger magnitude than those
in Fig. 46(a), although both problems have order one variation
in the bourndary values. Varying the resolution R does not
change the magnitude of the two peaks as the derivatives near
the discontinuities remain invariant with R. Thus the error
caused by the discontinuity clearly dominates that caused
by the boundary scheme incompatibility. It is concluded
that for Dirichlet problems with tangential-type boundary
condition discontinuity on curved geometry, the increase in
the magnitude of numerical error and/or degradation in the
order-of-accuracy are mainly due to the presence of the
discontinuity.

The placement of the discontinuity point in the lattice for
curved geometry is also studied by shifting the whole circle in
the lattice structure (see Fig. 42). For a representative radius

R = 36, the L2-norm errors for the interior φLBE and boundary
flux are (E2,E2 qw) = (3.07 × 10−4, 8.43 × 10−2), (1.81 ×
10−3, 1.33 × 10−1), (7.47 × 10−3, 4.80 × 10−1), and (7.27 ×
10−3, 4.90 × 10−1) for (
d,
w) = (0.5, 0.5), (0.5, 0.25),
(0.25, 0.5), and (0.25, 0.25), respectively. The same increasing
trend is observed for the L2-norm errors for the interior
derivatives. Clearly when the discontinuity point is moved
away from the lattice center, a remarkable increase in the error
magnitude is noticed. And the influence of the intersection
fraction 
d is more significant than that of 
w, which is
consistent with the results in the previous two tests.

2. Discontinuous Neumann boundary condition

For the Neumann problem, the boundary condition in
Eq. (40) is changed to

	n = −D
∂φ

∂r

∣∣∣∣
r=R

=
{−D/R, 0 < θ < π,

D/R, π < θ < 2π.
(43)

The exact solution becomes

φex(r,θ ) = 4

π

∞∑
n=1

(r/R)2n−1

(2n − 1)2 sin(2n − 1)θ. (44)

The discontinuous Neumann boundary condition in
Eq. (43) also involves nonzero tangential flux along the
azimuthal direction on the curved boundary. The Cartesian
decomposition method [17,18], which first converts the normal
boundary flux 	n into the flux 	nᾱ in the discrete lattice
velocity direction, and then uses the Neumann scheme in
Eq. (12), are thus implemented. Three particular schemes
were examined in [17] with their corresponding choices of the
adjustable coefficient cd1 as in Eqs. (10a)–(10c). Using those
three particular schemes, Figs. 47–49 show the L2-norm errors
for the interior distribution of φ, the boundary φw values, and
the interior derivatives, respectively, when 
d = 
w = 0.5 is
used. First-order accuracy is observed for all cases and the
three boundary schemes give very close numerical results for
each quantity investigated.
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FIG. 47. Relative L2-norm error E2 of the interior φ values versus
1/R for steady diffusion in the circular plane with a discontinuous
Neumann boundary condition.

It should be noted that for Neumann problems with curved
geometry and nonzero tangential flux, even with continuous
normal flux distribution, the Cartesian decomposition method
would result in first-order accuracy for the interior and
boundary φ values [17,19,20]. To separate the contributions
of the wall flux discontinuity and the Cartesian decomposition
method on the order of accuracy of the LBE results, another
test for the same problem is conducted by applying the exact
boundary fluxes 	nᾱ in the x and y directions following the
similar test in [17], where it was verified that second-order
accuracy could be obtained for the interior and boundary
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FIG. 48. Relative L2-norm error E2 tw of the boundary φw

values versus 1/R for steady diffusion in the circular plane with a
discontinuous Neumann boundary condition.
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FIG. 49. Relative L2-norm errors E2 ∂φ/∂x and E2 ∂φ/∂y of the
interior derivatives versus 1/R for steady diffusion in the circular
plane with a discontinuous Neumann boundary condition.

φ values as well as for the interior derivatives if the exact
	nᾱ values were used. In the present test, the tangential
flux on the circular boundary is calculated from Eq. (44) at
r = R. Both the normal flux given by Eq. (43) and computed
tangential fluxes determine the precise 	nᾱ . All results for
E2, E2 tw, E2 ∂φ/∂x , and E2 ∂φ/∂y obtained from this test are
very close to those in Figs. 47–49 for each R value and thus
not shown. It is thus concluded that the first-order accuracy
in Figs. 47–49 is attributed to the tangential-type boundary
condition discontinuity on the curved geometry; the Cartesian
decomposition method has a much smaller impact on the error
than that caused by the normal wall flux discontinuity.

For both Dirichlet and Neumann problems with curved
geometry, the errors in the LBE solutions caused by the
tangential-type boundary condition discontinuities are much
higher than those by the particular boundary schemes, as also
demonstrated by the very close error magnitude in Figs. 43–45
and 47–49 for schemes 1, 2, and 3.

To summarize, the orders-of-accuracy for the various
quantities of interest from those three tests are listed in Table I.

V. DIFFERENCE BETWEEN NORMAL DISCONTINUITY
ACROSS AN INTERFACE AND TANGENTIAL

DISCONTINUITY ALONG A BOUNDARY

The present study focuses on the “tangential discontinuity”
along the boundary, as opposed to the “normal discontinuity”
across the interface. It is important to recognize that these two
types of boundary condition discontinuities are fundamentally
different. In [31–33] the effects of normal discontinuities in φ

and ∂φ/∂n across the interface have been investigated. One
can theoretically (based on the analysis of the distribution
functions within the LB framework) derive the relationships
between the “known” and “unknown” distributions near the
interface by taking into account the physical constraints, e.g.,
the governing equations on each phase adjacent the interface,
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TABLE I. Numerical accuracy in LBE computation for convection-diffusion with discontinuous Dirichlet or Neumann boundary conditions
(φ denotes temperature or concentration, 
d and 
w denote the lattice link fractions at the discontinuity point xd along the tangential and
normal directions of the boundary, respectively).

Boundary Boundary φ

Interior distribution of φ flux value Interior derivatives

1. Discontinuous Dirichlet
condition
a. Boundary aligned with
lattice vector with xd at lattice
center (
d = 
w = 0.5)

1st order 2nd ordera

1st orderb
0th order

b. Boundary aligned with
lattice vector with xd off
lattice center (
d �= 0.5 or

w �= 0.5)

1st order 0th order 0th order

c. Curved boundary 1st order 0th order 0th order

2. Discontinuous Neumann
condition
a. Boundary aligned with
lattice vector with

d = 0.5, 0 � 
w � 1

2nd order Superlinear
Order ∼1.5

1st order

b. Boundary aligned with
lattice vector with

d �= 0.5, 0 � 
w � 1

1st order 1st order 1st order

c. Curved boundary 1st order 1st order 1st order

aPure diffusion problems.
bGeneral convection diffusion problems.

and the particular discontinuity condition at the interface. For
instance, Ref. [32] presented the detailed analyses for two
types of interface tracking, “explicit interface” and “implicit
interface,” for both hydrodynamic and advection-diffusion
problems with discontinuous interface conditions. In the recent
work [33], we have developed an interface treatment for
both temperature and/or flux discontinuities (jumps) across
the interface in the LB method. The second-order accuracy
for straight interfaces was verified and the effect of curved
geometry on the accuracy of the LBE solution was also
presented in [33].

However, for the tangential discontinuity along the bound-
ary considered in this work, such simple relations across the
discontinuity do not exist. The local problem becomes two
dimensional with the errors originating from the discontinuity
on the boundary and propagating in all directions as shown
in Figs. 4, 21, 35, and 46. On the contrary, the local problem
for the normal discontinuity across the interface considered in
[31–33] is essentially one dimensional from one subdomain to
the other; there is no large variation along the interface. In fact,
if the flux discontinuity appears only on part of the interface
of two materials the tangential type of boundary condition
discontinuity in the present study will be observed. A much
larger error would be encountered.

It is also worth noticing that for tangential discontinuity
problems, the degradation of the numerical accuracy due to
the discontinuity is much more severe than encountered in
the normal discontinuity type. As in the first test with a
discontinuous Dirichlet condition on the straight boundary
located halfway (
 = 0.5) in the lattice, the interior solution
and its derivative have only first-order and zeroth-order

accuracy, respectively; they are considerably worse than the
second-order LBE solutions in [33] with both temperature and
flux jumps across the interface.

VI. CONCLUSIONS

The effects of tangential-type discontinuities in Dirichlet
and Neumann boundary conditions on the accuracy of nu-
merical solutions using the lattice Boltzmann equation (LBE)
method for thermal and mass transport are investigated. For
straight boundaries that are aligned with the lattice velocity
vectors, the discontinuous Dirichlet condition reduces the
accuracy of the interior temperature (concentration) field
from second to first order; while its second-order accuracy
is preserved for discontinuous Neumann conditions when the
discontinuity point is placed halfway in the lattice along the
tangential direction of the boundary. The effect of discontinuity
on the accuracy of LBE solutions in Dirichlet problems
is stronger than that in Neumann problems. This is also
demonstrated by the zeroth- and first-order accuracy of interior
derivatives for the problems with discontinuous Dirichlet and
Neumann boundary conditions, respectively.

For Dirichlet problems with a finite jump on the boundary
values, the local solution for the derivatives can be described by
a singular dipole model. The LBE solution for the derivatives
on the lattice scale largely remains invariant with changing
resolution, which is consistent with the dipole model. The local
errors for the LBE derivatives are also invariant with respect
to the resolution. The present results for the local derivative
errors should be generally applicable for Laplace equations
with finite boundary value jumps in Dirichlet problems. The
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transfer of the errors in the individual microscopic distribution
functions to those in the macroscopic value and its derivatives
is scrutinized to reveal the cause for the deteriorated accuracy.

The placement of discontinuity points away from the lattice
center results in either a degradation in the order of accuracy
or a significant increase in the magnitude of the error. Thus
it is highly preferable to place the discontinuity point at the
lattice center and keep the straight walls aligned with the lattice
directions.

The convection has a strong effect on the accuracy of
LBE solutions in the presence of boundary condition dis-
continuities. This can be clearly observed compared to the
pure diffusion problem with the discontinuity placed at the
center of the lattice. The convection reduces the accuracy
for boundary flux from second to first order in the Dirichlet
problem due to the asymmetry of the solution field with respect
to the discontinuity position caused by convection. The error
magnitude in general increases with increasing Péclet number.
When the discontinuity point is moved away from the lattice
center, however, the increase in the absolute error caused by
this off-center placement of the discontinuity is far greater than
that caused by the change in the Péclet number from 0 to 100. It
is strongly suggested that in arranging the lattice structure one

should make every effort possible to place the discontinuity at
the center of the lattice.

For curved geometry, the tangential-type discontinuous
Dirichlet condition results in a first-order accurate temperature
(concentration) field and zeroth-order accurate boundary flux
and interior derivatives. The degradation in the accuracy for
the interior derivative caused by the boundary discontinuity is
much more significant than that caused by the incompatibility
between the boundary condition treatment and the solution
scheme for the interior domain. For Neumann problems, the
discontinuity in the boundary condition causes the interior
and boundary temperatures (concentrations) and their interior
derivatives to be first-order accurate. The placement of a
discontinuity point in the lattice structure is also critical for
curved boundaries and it is recommended that the tangential-
type boundary condition discontinuity be placed at the lattice
center.
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