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2Quantum Materials Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
(Received 11 June 2015; revised manuscript received 13 July 2016; published 5 August 2016)

Analytic continuation of numerical data obtained in imaginary time or frequency has become an essential part
of many branches of quantum computational physics. It is, however, an ill-conditioned procedure and thus a
hard numerical problem. The maximum-entropy approach, based on Bayesian inference, is the most widely used
method to tackle that problem. Although the approach is well established and among the most reliable and efficient
ones, useful developments of the method and of its implementation are still possible. In addition, while a few
free software implementations are available, a well-documented, optimized, general purpose, and user-friendly
software dedicated to that specific task is still lacking. Here we analyze all aspects of the implementation that are
critical for accuracy and speed and present a highly optimized approach to maximum entropy. Original algorithmic
and conceptual contributions include (1) numerical approximations that yield a computational complexity that
is almost independent of temperature and spectrum shape (including sharp Drude peaks in broad background,
for example) while ensuring quantitative accuracy of the result whenever precision of the data is sufficient, (2) a
robust method of choosing the entropy weight α that follows from a simple consistency condition of the approach
and the observation that information- and noise-fitting regimes can be identified clearly from the behavior of
χ 2 with respect to α, and (3) several diagnostics to assess the reliability of the result. Benchmarks with test
spectral functions of different complexity and an example with an actual physical simulation are presented. Our
implementation, which covers most typical cases for fermions, bosons, and response functions, is available as an
open source, user-friendly software.
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I. INTRODUCTION

Most calculations in quantum statistical mechanics, as
applied in condensed matter physics, nuclear physics, and
particle physics, rely on the Matsubara approach. The pro-
cedure is, in principle, well defined: Compute the appropriate
correlation function in imaginary time or frequency with a
given method, then perform the analytic continuation to obtain
physically meaningful results. However, when the calculations
are numerical, the latter step is not straightforward and is, in
fact, an ill-conditioned problem for most worthwhile cases.
This means that very high precision data are needed to obtain
a reasonable precision in the final result. Therefore, although
very simple qualitative information, such as the insulating or
conducting character, can be deduced from imaginary time or
frequency representation, obtaining quantitative information
contained in spectral functions is a difficult task.

For very accurate data, fitting an analytic interpolating
function and substituting Matsubara frequency with real
frequency can yield good results. Rational polynomials, also
called Padé approximants, are usually the best choice for
that procedure [1–3]. However, for noisy data, obtained from
quantum Monte Carlo, for example, Padé approximants often
fail to give sensible results. Even for nonstochastic results,
finite precision roundoff errors may yield unphysical results
[4]. Other direct fitting schemes based on known analytical
properties of the result can also be used [5].

To extract as much information as possible from noisy
Matsubara data, one must restrict the space of possible spectral
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functions by using what is known a priori about the exact
result. This type of approach, called Bayesian inference, has
proven very successful for the analytic continuation problem
[6–9]. In that context, instead of an interpolating scheme
like the Padé approximants approach, the maximum entropy
(MaxEnt) procedure amounts to a smoothing of the data
involving the minimization of a “free energy” Q = 1

2χ2 − αS,
where χ2 is the quadratic distance between the data and the
fit, S is an entropy relative to a default model, and α is an
adjustable parameter [8]. The choice of α is critical since it
controls the distance between the fit and the data, which has
a very large effect on the resulting spectrum because of the
bad conditioning of the problem. A few different approaches
to determine α have been used so far. Although some are more
reliable, it is not clear which one is the best approach.

Other approaches use stochastic sampling over likely spec-
tra for analytic continuation [3,10–14]. The most widely used
stochastic analytic continuation approach (SAC) computes the
average spectrum according to the distribution exp(−χ2/�)
[3,10,12–15]. Therefore, χ2 in this approach is treated as the
energy of a fictitious physical system and � as the temperature.
SAC can also be formulated using the Bayesian principle [14],
but it does not, in principle, require a default model, or a
grid choice [11], although one can be introduced to yield the
same limits as MaxEnt at large and small α [12]. However,
it has been pointed out recently that the choice of a grid can
be equivalent to the choice of a default model [16,17]. As in
the MaxEnt approach, there is no unique way of choosing the
temperature � in SAC. Moreover, it typically takes several
hours to compute a single spectrum with SAC, hundreds
of times longer than for MaxEnt [14]. It is also not clear
if it systematically produces improved results over MaxEnt.
Indeed, for reasonably precise data, both approaches should
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yield the same result. Considering how much faster MaxEnt
is, it is clearly the best method for these cases. For moderate
or low precision data, only qualitative results can be obtained,
whatever the approach used. The main question about SAC,
which remains to be answered, is therefore whether it is better
than MaxEnt to extract all the available information from the
data in those cases. Note that recent improvements related
to an optimal choice of bounds [15] should be considered in
MaxEnt as well.

MaxEnt thus remains the most practical approach available
so far for analytical continuation, and although it has been
used for more than two decades in statistical physics, we show
here that relevant new developments can still be made for
the approach itself and its implementation. In particular, we
introduce (1) techniques that minimize errors due to numerical
approximations and make them negligible compared to typical
noise magnitudes and at the same time yield a computational
complexity almost independent of temperature and spectrum
complexity, which therefore ensure quantitative accuracy of
the result, whenever data precision is sufficient; (2) a different
approach to choose the optimal α that produces optimal results
under some reasonable conditions and that follows merely
from internal consistency of the MaxEnt approach and from
the observation that information- and noise-fitting regimes can
be identified clearly when χ2 is plotted as a function of α on a
log-log scale. An analogous idea [12] or variations [10] have
been discussed before in the context of SAC and analogies to
phase transitions, but here we justify why this procedure works
in the context of MaxEnt without invoking phase transitions
and we also show how to verify its consistency; (3) graphical
diagnostic tools to assess consistency of the above choice of
α, the quality of the fit, and the reliability of the resulting
spectrum.

To summarize, we present specific algorithms to optimize
all aspects of the maximum-entropy approach, with the aim
of extracting as much information as possible from the data,
while also keeping computation time low. Those algorithms
are implemented in a user-friendly software, freely available
under the GNU general public license. The software can take
as input data a fermionic or a bosonic Green’s function,
correlation function, or self-energy, given as a function of
Matsubara frequency or of imaginary time, with diagonal
or general covariance matrices. It treats normal Green’s
functions, namely those for which the spectral weight A is
positive, namely A(ω) > 0 for fermions, while for bosons,
A(ω)/ω > 0 [18]. The code [20] was written in C++ using
the Armadillo C++ linear algebra library [21].

The paper is organized as follows. A short review of
Bayesian inference and the basis of maximum entropy is
presented in Sec. II, then our algorithms are summarized in
Sec. III, which contains, in particular, Sec. III A on the kernel
matrix definition, Sec. III B on the choice of the coefficient α of
the entropy, and Sec. III C on what we call “diagnostic tools”
to check the level of confidence in the results. The step-by-step
procedure is described in Sec. IV, which is divided into
subsections: Sec. IV A on the extraction of information directly
from Matsubara data, Sec. IV B on the case of imaginary-time
data, Sec. IV C on the grid and default-model definition,
Sec. IV D on the kernel, Sec. IV E on solving the minimization
problem, and Sec. IV F on choosing the optimal α. Section V

presents benchmarks, an application to a real physical problem,
and the diagnostic tools. Finally, the discussion and conclusion
are in Secs. VI and VII, respectively. Mathematical details
on all aspects of the various algorithms are provided in nine
appendixes.

II. BAYESIAN INFERENCE AND MAXIMUM ENTROPY
FOR ANALYTIC CONTINUATION

Before addressing the algorithms, let us review the basic
equations of the MaxEnt approach. More details and dis-
cussion about those equations can be found in the classic
review of Jarrell and Gubernatis [8]. Appendix A presents an
independent heuristic derivation that suggests the connection
with stochastic analytic continuation.

The main equation of the analytic continuation problem for
the Matsubara Green’s function is

G(iωn) =
∫

dωK(iωn,ω)A(ω), (1)

where G(iωn) is the input Green’s function (or correlation
function) known numerically for a certain number of Matsub-
ara frequencies iωn, and A(ω) is the spectral function to be
determined. The function K(iωn,ω), to be defined for a specific
problem, is usually called the kernel. We assume here that
A(ω) is a positive function. This covers the cases of “normal”
Green’s functions, for which the true spectral function A∗(ω)
is positive for fermions, while the condition A∗(ω)/ω > 0 is
satisfied for bosons. The Green’s function may also be known
as a function of imaginary time, in which case the Fourier
transform of Eq. (1) may also be used:

G(τ ) =
∫

dωK(τ,ω)A(ω). (2)

The kernels in those expressions are typically very sharp
functions with large ratios between largest and smallest values.
This makes it impossible to obtain a reasonable accuracy by
numerically solving those equations in a standard way, namely
by simply discretizing ω with as many points as there are
values of τ (or of iωn) and solving the resulting linear system.
That system would be too ill conditioned. Nevertheless, the
problem is not hopeless. Although it remains very difficult,
using Bayesian inference makes it tractable.

Consider a Green’s function G∗ related to a spectrum A∗
through (1) and another G, which is an approximation to G∗
known with accuracy σ . Because of the bad conditioning of
the system G = KA obtained from discretizing (1), the space
of possible spectra A that can produce a function G′ within
G ± σ contains very different spectra. The main idea behind
Bayesian inference is to use known information about the true
spectrum A∗ other than the constraint G − σ < KA < G + σ

to restrict that space to only the most probable ones according
to that prior information. The starting point to do that is Bayes’
rule,

P (A|G) = P (G|A)P (A)

P (G)
. (3)

P (A|G), the probability that, given the data G, we obtain the
spectral weight A, is called the posterior probability; P (G|A),
the probability that, given A, we obtain the data G, is the
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likelihood; and P (A) is the prior probability for A. For the
present case, P (G) is a constant that can be ignored since
the data are fixed. The most probable A, given the data G,
is thus obtained by maximizing P (G|A)P (A). If the data are
generated using a stochastic method, the likelihood is obtained
from the central limit theorem. For an element of G, we have

P (Gi |Ḡi) ∝ e
− (Gi−Ḡi )2

2σ2
i , (4)

where Ḡi is the expected value of Gi and σ 2
i is the variance.

For all the elements of G, we thus have

P (G|Ḡ) ∝ e− χ2

2 , (5)

where

χ2 =
∑

i

(Gi − Ḡi)2

σ 2
i

. (6)

If the covariance is not diagonal, one must instead use

χ2 = (G − Ḡ)T C−1(G − Ḡ), (7)

here in matrix form, where C is the covariance matrix. Now,
given a spectrum A, Ḡ = KA, where K is the kernel matrix,
and thus

P (G|A) ∝ e− χ2

2 , (8)

with

χ2 = (G − KA)T C−1(G − KA). (9)

Now the basic assumptions when using (8) as the likelihood
are as follows.

(1) Ḡ = KA is a good approximation to the exact Green’s
function. It is therefore a smooth function.

(2) The elements of �GU = U†(G − Ḡ) = U†(G − KA),
where U contains the eigenvectors of the covariance matrix C,
are uncorrelated random variables.

We come back to those assumptions at end of the present
section and in Sec. III B.

The prior probability P (A) is more difficult to define. Its
main property should be to favor the prior information we have
about the spectrum, without introducing any correlation not
present in that information or in the data [22,23]. In the present
case, we want to enforce positivity and maybe a few global
properties such as normalization and the first two moments of
A. A form that satisfies those requirements is

P (A) = eαS

ZS
α

, (10)

where

ZS
α =

∫
DAeαS (11)

and

S = −
∫

dω

2π
A(ω) ln

A(ω)

D(ω)
(12)

is the relative entropy (also known as the Kullback-Leibler
divergence), which becomes

S = −
∑

i

�ωi

2π
A(ωi) ln

A(ωi)

D(ωi)
(13)

after discretizing ω [24]. D(ω), called the default model, is
the solution of the optimization problem without any data [for
that form, the solution is actually e−1D(ω)] and should thus
contain merely the prior information about the spectrum.

With this definition, the posterior probability becomes

P (A|G) ∝ eαS− χ2

2 . (14)

This quantity must be maximized to obtain the spectrum A;
hence the name maximum entropy.

We still need to fix the value of α. There is, however, no
unique prescription to do that. Three different approaches have
mainly been used to this day. Those are the historic approach,
the classic one [25,26], and Bryan’s approach [27].

In the historic approach, α is chosen such that χ2 = N ,
where N is the number of elements in G. This is indeed
the expected value of χ2 if the elements of G are randomly
distributed according to (8). However, as such, N is only an
average and not the value to expect for a single sample G.
In addition, the covariance matrix is not known exactly in
practice, its elements being also random variables, which adds
uncertainty to the value of χ2. The criteria χ2 = N at the
optimal spectrum should therefore be a good choice only if N

is large and the covariance is known accurately. Indeed, this
approach is very sensitive to bad estimates of the error on the
data. For example, if it is overestimated by a factor of 10, χ2

calculated for the optimal spectrum, obtained with the correct
error, will now be reduced by a factor of 100. The approach
will also fail if the error is not well estimated for some of the
data points, for example if some errors are overestimated in
a frequency range with respect to another. In conclusion, the
historic approach works only in ideal cases.

In the classic approach, Bayes inference is used again to find
the most probable α. Then Eq. (14) is maximized with α set to
that value [8,25,26,28]. In addition to the above, this involves
the definition of a prior probability for α, P (α). According to
Bayes’ rule, we have

P (A,α|G) = P (G|A,α)P (A,α)

P (G)

= P (G|A,α)P (A|α)P (α)

P (G)

= P (G|A)P (A|α)P (α)

P (G)
, (15)

which, according to (8) and (10), becomes

P (A,α|G) ∝ 1

ZS
α

eαS− χ2

2 P (α). (16)

Now, by functionally integrating that expression with respect
to all possible spectra A, one obtains the distribution

P (α|G) ∝ P (α)

ZS
α

∫
DAeαS− χ2

2 , (17)

The value of α is then taken as the most probable one. To find
the maximum, one needs a guess for the prior P (α). The most
commonly used is 1/α.

The classic approach assumes that P (α|G) is a narrow dis-
tribution centered around the maximum. When this assumption
is not valid, the above reasoning leads to Bryan’s approach
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[27], where the spectrum is given by the average spectrum

A =
∫

dα Aα P (α|G), (18)

where Aα is the spectrum at the value α.
To perform the functional integral in Eq. (17), it is necessary

to use a Gaussian approximation for the posterior probability
P (A,α|G) [25,26]. This approximation is valid when the
default model and the spectrum are close to each other and
thus α remains large [29]. When this condition is not satisfied,
P (α|G) in Eq. (17) is peaked at a value of α so small that
it leads to overfitting. Therefore, in the classic and Bryan’s
approaches, the default model must be chosen carefully [8].

Our approach to choose α consists in finding the spectrum
that satisfies assumptions (1) and (2) given above. These
assumptions are implicit when we use (8) as the likelihood,
with χ2 given by (9). Since assumption (1) sets a lower bound
on α and assumption (2) an upper bound, they define the region
where the optimal α is located. Our criterion to choose α is
equivalent to assuming that, at the optimal α, the spectrum
contains as much of the information present in the data as
possible, without containing its noise. If one can identify a
range of α where essentially only information is fitted and a
range where no more information, but only noise, is fitted, then
we can define the range where the optimal α is located, namely
in the crossover between the two regions. Under reasonable
conditions, which are discussed below, those ranges of α

do exist. The default model is not required to be close to
the spectrum in this approach. The procedure to locate the
crossover region and choose precisely the value of α within it
is described in more detail in Sec. III B.

III. ALGORITHMS

The following sections describe the most important aspects
of our maximum-entropy implementation. More technical
details are given in the Appendixes.

A. The kernel matrix

In the present discussion, we assume the thermodynamic
limit, namely that the spectrum A(ω) is a continuous function.

The kernel matrix K in χ2, Eq. (9), is obtained from a
numerical approximation to

G(iωn) =
∫ ∞

−∞

dω

2π

A(ω)

iωn − ω
, (19)

or

G(τ ) = −
∫

dω

2π

e−ωτA(ω)

1 ± e−βω
, (20)

where

ωn =
{

(2n + 1)πT, fermions,

2nπT , bosons,
(21)

n is an integer, T is the temperature in the same units as the real
frequencies, β = 1/T , and −β < τ < β is the imaginary time.
Now the form to use seems at first to depend simply on which
type of data is available, G(iωn) or G(τ ). However, assuming
that G(iωn) and G(τ ) are equally accessible, the choice
between (19) and (20) actually has important consequences

numerically. Indeed, if we assume a piecewise polynomial
approximation for A(ω) between the discrete points ωj where
the (trial) spectrum A is defined, then integrating analytically
the form (19) in each interval yields relatively simple and easy
to evaluate expressions (see Appendix E). In that case, the
kernel 1/(iωn − ω) is treated exactly, and the accuracy of the
result depends only on how well the “true” spectrum A(ω) is
approximated by the piecewise polynomial. More specifically,
it depends on the interpolation scheme—linear, quadratic,
cubic spline, etc.—and on how well the grid resolves the
structures in A(ω). On the other hand, integrating (20) with the
piecewise polynomial approximation for A(ω) produces quite
cumbersome hypergeometric functions. The other possibility
is to use a full numerical integration method, but then the
grid must be adapted to both the spectrum A(ω) and to
the kernel e−ωτ /(1 ± e−βω) to obtain a good accuracy for
the integral. Since the kernel becomes increasingly sharp
around ω = 0 as temperature decreases, numerical integration
then becomes harder, regardless of the complexity of A(ω).
Therefore, if both G(iωn) or G(τ ) are accessible, it is much
more convenient to use (19), in combination with piecewise
analytical integration, instead of (20) to compute K. Now, as
described in Appendix C, if G(τ ) is the input data, G(iωn)
can be computed accurately, using cubic splines, if the first
two moments of the spectrum are known. These moments can
be obtained by two different methods, i.e., by a commutator
calculation, or by a polynomial fit to G(τ ) if the step in τ is
small enough. Hence, G(iωn) is relatively easy to obtain.

The accuracy of the approximation

G(iωn) ≈ K(iωn)A (22)

to (19), written here in matrix notation with the line label
explicit, depends on the choice of interpolation method, and
depending on the noise level in the input data, this choice
can be more or less critical. In general, the error introduced
by using the approximation (22) must be small compared to
the noise in the input data Gin(iωn), so that the error on the
spectrum A is a consequence of the error on the data and not
of the error resulting from numerical approximations. Indeed,
although the use of a maximum-entropy approach renders the
inversion of the form (19) tractable, the spectrum A is still very
sensitive to errors in G, and the integration error is equivalent
to adding a systematic error to the data, which can distort
the resulting spectrum. Gaussian quadratures are usually the
best choice for numerical integration. However, they cannot
be used in the present case because we want to treat exactly
the kernel 1/(iωn − ω). We would thus use it as the weight
function and would obtain grid points ωi and corresponding
weights wi that depend on ωn. However, the result we are
looking for is a vector A defined on a fixed grid. In that case,
the best interpolation method for a smooth function is a cubic
spline, which is what we use.

Another assumption on the spectrum A(ω) that is implicit
is that it is bounded; that is, it decreases rapidly at high |ω|.
For this type of behavior, polynomials in 1/ω are much better
approximations than polynomials in ω. For that reason, below a
certain frequency ωl and above ωr , we use splines that are cubic
in u = 1/(ω − ωμ), where ωμ takes different values on the left
and right sides and is determined by the cutoff frequencies.
The spline we use to model the spectrum is thus a “hybrid”
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spline. In addition, instead of using a dense grid in ω in the
high-frequency regions, we use a grid density that is uniform
in u, and thus highly nonuniform in ω. For ωl < ω < ωr , the
grid density can be adapted to spectral features, but is uniform
in ω by default. The grid and the spline are thus perfectly
adapted to each other, and the combination of hybrid spline
and nonuniform grid still yields highly accurate results for
the integral (19) and also when computing moments of the
spectrum (the use of moments is discussed below), although
the frequency step �ωi = ωi+1 − ωi increases rapidly in the
high-frequency regions, leading to a very sparse grid in those
regions. Indeed, for example, when comparing the moments of
a given spectrum, for which the moments are known exactly,
computed with an ordinary spline and with the hybrid spline
with the same nonuniform grid, the moments obtained with
the ordinary spline have very low precision, especially high
order ones, while the moments obtained with the hybrid spline
are closer to the exact results by a few orders of magnitude.
As a result, the combination hybrid spline and nonuniform
grid greatly reduces the number of frequency grid points,
which reduces computation time, while keeping high accuracy.
Finally, the computation time can further be reduced by using
a grid well adapted to the spectrum in the low frequency region
(see Sec. IV C and Appendix H for more details).

Since the spectrum we are looking for is a function of
frequency, it is also more convenient to work with G(iωn), in-
stead of G(τ ). This allows for a straightforward optimization of
the Matsubara frequency grid when the number of Matsubara
frequencies becomes large. (a) First, the part of the data that
behaves as the asymptotic expansion of G [see Eq. (B3)], say
for ωn > ωas , typically contains only information about a few
moments of the spectrum. Therefore, the terms corresponding
to frequencies larger than ωas in χ2 can be replaced with
a few terms constraining moments. Namely, all the terms
of the form [Gin(iωn) − K(iωn)A]/σ (ωn) with ωn > ωas are
replaced with a few terms of the form (Mj − mjA)2/σMj

,
where Mj is the j th moment of the true spectrum, σMj

its standard deviations, and mj is a line vector such that
mjA computes the j th moment of the trial spectrum A.
In practice, the frequencies ωn > ωas in the vector G are
replaced with the Mj ’s and the lines corresponding to those
frequencies in the matrix K, replaced with the line vectors
mj ’s. This substitution reduces the number of terms in χ2

essentially without losing information contained in the data.
(b) The second optimization of the Matsubara frequency grid
follows, first, from the fact that the low frequencies of A(ω)
are related to the low Matsubara frequencies of G(iωn),
and similarly for other frequency ranges, although not in
a local manner, and second, from the fact that, in systems
of interacting particles, quasiparticle lifetime decreases with
frequency, and thus the structures in A(ω) are typically broader
as ω increases. Consequently, most of the time, not all the terms
corresponding to Matsubara frequencies below ωas need to
be kept in χ2, and the frequency grid can actually be made
more sparse as ωn increases, again while keeping the most
relevant information contained in the data. The nonuniform
Matsubara frequency grid we use is described in Appendix I.
Those two optimizations of the Matsubara frequency grid
greatly reduce computation time without noticeable effect on
the result. In fact, they modify the scaling with temperature

of the number of terms to be included in χ2, and once they
are combined with the piecewise analytical integration of the
form (19), and the adapted nonuniform real-frequency grid, the
computational complexity becomes only weakly dependent on
spectrum complexity and temperature.

Note that the spectral moments are mentioned in Ref. [8],
but only as prior information useful to define the default model.
Although, this yields a good default model, if they are not
included in χ2 as well, then their importance in the problem
becomes smaller as α decreases. We also use the first and
second moments to define a good default model, but because
we use them in χ2 as well, they are treated in the same manner
as the rest of the data, therefore as strong constraints on the
spectrum. The moments have also been used as constraints in
stochastic analytic continuation [10,12,14,30].

To summarize, we use the representation (19) with a
piecewise polynomial approximation for A(ω) which al-
lows easy evaluation of the integral by piecewise analytical
integration. This operation solves the problem of difficult
numerical integration at small ωn that worsens as temperature
decreases. In addition, we use a hybrid spline with a matching
nonuniform real-frequency grid adapted to spectrum structure
and a truncated nonuniform Matsubara frequency grid with
constraints on moments included as terms in χ2. The combi-
nation of those techniques yields in the end a computation
time that is only weakly dependent on temperature and
spectrum complexity. Note that the hybrid spline and the
piecewise analytical integration have already been used in
a previous maximum-entropy implementation, although only
for the optical conductivity. Also, the frequency grid was less
sophisticated and the other aspects described in the following
sections were not present. This implementation is described in
Appendix F of Ref. [31].

The kernel matrix definition is described in detail in
Appendix E. More discussion on the grid definition appears in
Sec. IV C and details are given in Appendixes H and I. Also,
some preliminary steps are necessary before defining the grid
and computing the kernel matrix. Those steps are discussed in
Sec. IV A.

B. The optimal α

Let us assume for now that the spectrum A(ω) has been
computed for a wide range of α, starting at large values, where
the spectrum minimizing χ2/2 − αS is essentially the default
model D(ω) (which maximizes S alone) to small values, where
the term χ2 dominates. If we plot the function χ2(α) in log-log
scale, we obtain a shape similar to the schematic curve of Fig. 1,
where three different regimes are found: At large α, χ2 does not
change for a certain range of α, where it is negligible compared
to αS, and thus the spectrum barely departs from the default
model. Let us call that region the default-model regime. Then,
below a certain value of α, while αS is still the largest term, χ2

is not negligible anymore and plays the role of a constraint. In
that range, reducing α has a strong effect on χ2, as it directly
controls how well that constraint is satisfied. We call that range
of α the information-fitting regime. Then, below some value of
α, the effect of decreasing that parameter has a much smaller
effect on χ2. This is, in fact, the region where the noise in G

is also being fitted, which we call the noise-fitting regime.
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Informa�on fit�ng
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FIG. 1. Schematic behavior of log(χ 2) vs log(α). Three regimes
can be identified.

The correspondence between the small slope region at low α

and the range where the noise is being fitted can be made easily
by looking at the function �G(iωn) = Gin(iωn) − K(iωn)A
(diagonal covariance case) at different values of α. Above the
value of α where the slope starts decreasing rapidly, �G(iωn)
has correlations between frequencies iωn, while below that
value, that function contains mainly noise. This indicates that,
at the point of the drop, Gout(iωn) = K(iωn)A is a good fit to
the data Gin(iωn), but because Gout(iωn) does not yet contain
noise, �G is essentially the noise in Gin(iωn). This becomes
more clear in Sec. V.

Although the global behavior of χ2(α) in the default-model
regime and the information-fitting one is intuitive, why the
slope is much lower in the noise-fitting region is more subtle. A
very small decreasing rate of χ2 with decreasing α is expected
at very small α, deep in the noise-fitting region, when the term
χ2 dominates and the entropy term mainly prevents A(ω) from
becoming negative where it is close to zero. However, in the
range of α where the slope decreases rapidly with decreasing
α, the entropy term is still, in fact, much larger than χ2, and A

and Gout = KA are smooth functions, namely, no noise from
the data has been fitted yet. To understand the drop in the
decreasing rate of χ2 with α, expression (G3),

δAj = �αj

[
K̃T K̃ + αj�ωA−1

j−1

]−1

× [�ω ln(D−1Aj−1) + �ω], (23)

from Appendix G is very useful. Here, �ω, D, and A are
the diagonal matrices with �ω, D, and A as their diagonal,
respectively. The spectrum at αj = αj−1 − �αj is given by
Aj = Aj−1 + δAj , assuming that the spectrum Aj−1 at αj−1

is known and that δAj is small. An important point about
expression (23) is that it does not explicitly contain the data
Gin, or �G = Gin − KA, which is essentially the noise in the
data when most of the available information is contained in A.
Instead, δA is a smooth function at the crossover between the
information- and noise-fitting regions since Aj−1 is smooth at
that point, and therefore δG = KδA is necessarily also smooth
and cannot reduce by much the amplitude in the noisy function
�G. To summarize, expression (23) tells us that not only does
the entropy term in χ2/2 − αS control the distance �G, it

also enforces smoothness on A, which prevents easily fitting
the noise.

This behavior in χ2 as function of α is also observed in
SAC. In that context, where χ2 is the energy of the system, the
drop in the rate of change in χ2 as a function of temperature
corresponds to a drop in the specific heat and thus to a
phase transition [12]. Although the entropy does not appear
explicitly in SAC, the statistical treatment in the canonical
ensemble implies that it is maximal, given the value of the
average “energy” 〈χ2〉. The drop in dχ2/dα observed in
both approaches must therefore have a similar origin (the
statistical entropy in SAC is equal to ln Z + 〈χ2〉/2�, where
the partition function Z = Tr[exp(−χ2/2�)] is a trace over
all configurations {A(ωi)�ωi}). The phase transition analogy
of Beach [12] that we just discussed can also be seen in the
sudden entropy drop discussed by Sandvik [10].

Now, because we want the spectrum to contain the
information in G, but not its noise, it is clear that the
optimal α is somewhere in the crossover region between
the information- and the noise-fitting regimes. This is also
where the basic assumptions for the likelihood, assumptions
(1) and (2) in Sec. II, become valid and therefore where the
maximum-entropy approach is consistent.

The crossover region is well delimited if the covariance
matrix C is a good estimate of the actual one. This is
not so, on the other hand, when the covariance is not well
estimated in some frequency ranges. To illustrate this, let us
first consider a diagonal covariance for simplicity. Then it
is the standard deviation σ that controls the rate at which
Gout becomes close to Gin as α decreases. When all the
information contained in Gin is in the spectrum A, but not
its noise, the function �G(iωn) = Gin(iωn) − Gout(iωn) =
Gin(iωn) − K(iωn)A contains mostly noise. Indeed, if Gout is
smooth and is a good fit to Gin, which is the basic assumption
here, then �G(iωn) is approximately the noise in Gin. Now,
if σ (iωn) is well estimated, �G(iωn) becomes noisy around
the same value of α for all values of iωn. However, assume
that σ is underestimated in a given frequency range; then
the corresponding �G(iωn) becomes noisy at a larger α in
that range of frequencies. Then, at the value of α where
�G(iωn) becomes noisy in the other frequencies ranges,
the frequency range where σ was underestimated will be
overfitted. Therefore, when the ratio of the σ (iωn) between
different frequency ranges is incorrect, some noise is fitted in
some frequency ranges while some information has not yet
been fitted in others. Large errors in σ therefore reduce the
range of α where only information is fitted and create a large
crossover region, where both noise and information are fitted
at the same time. On the other hand, if σ is a good estimate,
the crossover region is narrow. When the covariance is not
diagonal, the analysis is the same, but we have to consider σ

and �G expressed in the eigenbasis of the covariance C.
Because of the rapid change of slope in log χ2 as a function

of log α at the crossover between the information-fitting and
noise-fitting regimes, there is a peak in the curvature of that
function at the crossover. We choose the optimal α, say α∗, at
the maximum curvature, and we look at the variation of the
spectrum within the width of the peak to obtain an estimate
of the uncertainty of the spectrum. No observable change
to the spectrum within the crossover region points toward
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good quantitative accuracy of the results. Other diagnostic
quantities, discussed in Sec. III C, can be used to analyze
systematically the results to assess the quality of the fit and the
accuracy of the resulting spectrum.

Unlike in the classic and Bryan methods, the reliability of
this approach to choose α does not depend on the proximity
between the spectrum and the default model. Indeed, it yields
the correct value for the optimal α even when the spectrum is
extremely different from the default model, as illustrated by
the second example of Sec. V (Fig. 4). This is an important
advantage over the conventional methods since very little prior
information is needed on the spectrum to obtain good results.

In the classic or Bryan’s methods, the following procedure
is often used to obtain a default model that is close to the
final result: (a) One obtains data at high temperature, where
the spectrum is simple and the analytic continuation easy.
(b) The result for the spectrum is then used as the default
model for a slightly lower temperature. (c) This annealing
process is pursued until the lowest temperature [28]. We could
also use this annealing procedure, but it is not necessary in
our case. Note that a variation of α is different from annealing
since the data and default model are not changed as α is varied.

The choice of α at the point where the slope of log χ2

as a function of log α drops has been used before with the
stochastic approach [12,14]. The justification for this choice
was not clear, however. The analysis in the context of the
maximum-entropy approach clarifies why α should be chosen
in that region.

To apply this approach to find the best α, the spectrum must
be computed typically for a few hundred values of α. We thus
need an efficient method to minimize χ2/2 − αS. This part of
the calculation is discussed briefly in Sec. IV E and details are
given in Appendix F.

C. Diagnostic tools

As mentioned above, Gin(iωn) − Gout(iωn) can be used
to determine when most of the information has been fitted.
Now, assuming again a diagonal covariance matrix, a more
convenient quantity to analyze is the normalized function
�G̃(iωn) = [Gin(iωn) − Gout(iωn)]/σ (iωn). Indeed, if σ is
accurate, �G̃(iωn) should contain only noise of constant
amplitude at α∗, with a variance around unity. Its auto-
correlation �G̃2(�n) ≡ (1/N)

∑
n �G̃(ωn)�G̃(ωn+�n) must

therefore look like a Kronecker δ, although noisy because N

is finite. However, once the optimal α is reached, the shape
of �G̃(iωn) and �G̃2(�n) remains qualitatively similar at
smaller α, and their amplitude decreases very slowly. By
contrast, at large values of α, �G̃(iωn) is a smooth function
of ωn, since Gout(iωn) is smooth and farther away from
Gin(iωn) than σ (iωn), and �G̃2(�n) is broad since long
range correlations are present in �G̃(iωn). Therefore, those
two functions provide a way to determine whether α > α∗ or
α � α∗, i.e., whether the optimal α has been reached.

The function �G̃(iωn) (or �G̃i where i is a covariance
matrix eigenvector index) is also very useful to tell whether
the error estimate is good. Indeed, if it is the case, at values
of α where �G̃(iωn) is noisy, the noise amplitude will be
comparable at all frequencies. If some ranges of frequencies
in �G̃(iωn) are noisy while others still contain correlations,

this means that the ratio of the errors between those frequency
ranges is off. In such cases, different frequency regions in
A(ω) will “converge” at different values of α, an undesirable
state of affairs.

If C is not diagonal, the functions �G̃ and �G̃2 to be
analyzed must be expressed in the eigenbasis of the covariance
matrix C. Therefore, in that case we use �G̃ = G̃in − G̃out,
where G̃ =

√
C̃−1U†G and U contains the eigenvectors of C,

such that C̃ = U†CU is diagonal.
Finally, other quantities that are useful to estimate the

quality of the analytic continuation are the curves of A(ω)
at a few sample frequencies ω

samp
i as a function of log α. As

we see in specific examples treated in Sec. V, if the quality of
the data is sufficient, those curves have plateaus in a range of
α around α∗. If precision is not sufficient to observe plateaus,
inflexion points or extrema will typically still be present in the
curves around α∗. In other words, there are local minima in
|dA(ω)/d log α| around α∗. Then, at a certain value of α below
α∗, the sample spectra A(ωsamp

i ) have unpredictable behavior,
increasing or decreasing quickly, as the system’s conditioning
worsens. The A(ωsamp

i ) as a function of log α curves also tell if
the error is well estimated. If it is, the A(ωsamp

i ) at the different
sample frequencies have the same optimal α. Otherwise, if
the ratio of the errors in different frequency ranges is off,
the local minima in |dA(ωsamp

i )/d log α| above the onset of
unpredictable behavior will appear at different values of α

for different frequencies. In those cases, and if improving the
estimate of the covariance is impossible, the curves of A(ωsamp

i )
may be very useful to select the optimal α from a specific
real-frequency range instead of the average value obtained
from the curvature of log χ2 as a function of log α. This may
also be preferable to averaging the spectrum over a range of α,
since there is less risk of “contaminating” the spectrum in the
chosen frequency range with underfitted or overfitted spectra.

To summarize, in addition to the function χ2(α), three other
quantities give information about the optimal value of α and
more: �G̃(iωn), �G̃2(�n), and A(ωsamp

i ) versus log α. Those
quantities also allow to evaluate the quality of the fit and the
reliability of the result. Practical examples of this analysis are
given in Sec. V.

IV. STEP-BY-STEP PROCEDURE

Here we discuss briefly the steps in our maximum-entropy
implementation. The technical details are left in Appendixes.

A. Extracting information directly from the input
Green’s function

Under certain conditions, we can obtain relatively easily
two types of information directly from the Matsubara data:
moments and a low frequency peak width and weight if present.
This information is then used throughout the preprocessing
stage, allowing important optimizations, some of which have
been discussed in Sec. III A. The first step in the procedure is
therefore to extract that information, when available.

1. Extracting moments

If the moments are not known, and if there are enough
Matsubara frequencies, or imaginary-time slices, such that the
information on the moments is actually present in the data,
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then the moments can be extracted from the Matsubara data.
At least the first two moments are generally well defined.
The procedure to extract the moments basically involve
fitting a Matsubara frequency, or imaginary time, asymptotic
expansion to G(iωn), or G(τ ), respectively, using a least-
squares fitting method. The details for both cases are given in
Appendix B. In the software, the moments can also be provided
by the user. Note that, for a given model, the expressions for
the first few moments as functions of Hamiltonian parameters
can be obtained by straightforward commutator calculations.
This is documented in standard many-body textbooks or
here [32]. We do not discuss this calculation here, but only
consider the analytical continuation procedure itself, starting
from some numerical Matsubara data that can be represented
by expression (19) or (20), and useful additional data, such as
a covariance matrix and spectral moments. The approach we
use here is meant to apply in the most general case possible
and not only to specific Hamiltonians.

2. Finding the width and weight of a quasiparticle or Drude peak

Let us assume we know Gin(iωn) either directly, or from
the Fourier transform of Gin(τ ) (see Sec. IV C). It can be very
useful to be able to tell directly from Gin(iωn) if the system is
metallic and to have an estimate of the width and the weight
of the quasiparticle peak, or of the Drude peak in the case
of optical conductivity. This information can then be used to
determine the optimal frequency step around ω = 0.

When there is a well-defined peak near ω = 0, with weight
essentially below a frequency Wqp well separated from the
rest of the spectrum, whose weight we assume is mostly above
a frequency Winc, then the Green’s function in the frequency
range Wqp < ωn < Winc can be expanded in a Laurent series,

GLS(iωn) ≈ −(iωn)L−1M inc
−L − · · · − (iωn)2M inc

−3

− (iωn)M inc
−2 − M inc

−1 + M
qp

0

iωn

+ M
qp

1

(iωn)2

+ · · · + M
qp

N

(iωn)N+1
. (24)

In the above expression, the M inc
−j ’s are the inverse moments

of the high frequency part of the spectrum, and the M
qp

j ’s
are moments of the quasiparticle peak. This expression is
for a fermionic Green’s function. Those partial moments
can be obtained by the same fitting procedure as the one
used to extract the moments of the complete spectrum. The
quasiparticle peak weight is then M

qp

0 , its position is given by

M
qp

1 /M
qp

0 , and its width is
√

M
qp

2 /M
qp

0 − (Mqp

1 /M
qp

0 )2. This
procedure will give accurate values if the number of Matsubara
frequencies satisfying Wqp < ωn < Winc is sufficient to ensure
convergence of the partial moments. If that condition is not
satisfied, it will nevertheless produce the right orders of
magnitude. Knowing the width of the low frequency peak
is useful to define the frequency step around ω = 0 and thus to
define a frequency grid adapted to the spectrum’s sharpest part.
More details are given in Appendix D, with the discussion for
the bosonic case.

B. G(τ ) as input data

As mentioned in Sec. III A, we use the representation
(19) as the relation between G and A during the calculation.
Therefore, when the input data are given as a function of
imaginary time Gin(τ ), we need to Fourier transform it to
obtain Gin(iωn). To do so, knowing some spectral moments
becomes essential. Indeed, to obtain a Gin(iωn) as accurate as
possible, i.e., without adding large errors, the best approach
is to Fourier transform the cubic spline of Gin(τ ), using
the first and second moments to define the two additional
equations required to define the spline. Using splines and
partial integration for the transform enforces [31,33] the
required [34] asymptotic behavior of Gin(iωn) and also
produces more accurate results at low frequency than a discrete
Fourier transform. The Fourier transforms of the data and the
covariance matrix will add some noise, but the use of fast
Fourier transforms minimizes that noise by minimizing the
number of operations in the transforms. More details on this
procedure, and how to obtain the covariance matrix of Gin(iωn)
from the covariance of Gin(τ ), are described in Appendix C.
Once the moments, Gin(iωn), and its covariance matrix are
computed, Gin(τ ) is not used anymore in the calculation.

C. Frequency grid and default model

Optimizing the real-frequency and the Matsubara grids is
critical for the efficiency of the maximum-entropy calculation.
As shown in Appendix F, each iteration in the minimization
of Q = 1

2χ2 − αS requires O(N2
ωn

Nω) operations (for Nωn
<

Nω). The number of values of α that need to be computed
is typically a few hundred. In addition, the grid should
allow a good resolution of all the structures in the spectrum.
Optimizing both the Matsubara and real-frequency grids is
thus necessary to keep computation time reasonable without
affecting the quality of the result.

To define a grid adapted to the spectrum, while minimizing
the number of points, we use a dense grid in the main spectral
range [ωl,ωr ], where most of spectral weight is found, and a
step size that increases with |ω| outside that range. By default,
in the software, the step �ω in the main spectral range is
constant and defined by setting (ωr − ωl)/�ω to a preset value,
which can be modified by the user. At high frequency, the grid
has a constant �u increment where

u =
{

1
ω−ω0r

, ω > ωr,
1

ω−ω0l
, ω < ωl.

(25)

The parameters ω0l and ω0r are determined by the high
frequency cutoff, which can be modified by the user (see
Appendix H for more details). The frequencies ωl and ωr

that define the main spectral region are set by default to
M1 − �ωstd and M1 + �ωstd, respectively, where �ωstd =√

M2/M0 − (M1/M0)2 is the standard deviation of the spec-
trum. This choice of grid at high frequency is the most natural
one considering the type of interpolation method used to
define the kernel matrix K and discussed in Sec. III A. It also
efficiently reduces the number of points in the grid, which helps
keep the computation time short. The grid in u is defined such
that the step in ω is continuous at the boundaries of the main
spectral region. This is actually important to obtain smooth
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spectral functions. Further details on the grid definition are
provided in Appendix H.

The software offers a few possibilities to define a more
adapted grid in the main spectral range. The simplest choice
given to the user is to choose the boundaries and the step �ω

in that range. There is also a tool to define a nonuniform grid
with a smoothly varying step between intervals of different
step sizes provided by the user in the form of a vector,

[ω1 �ω1 ω2 �ω2 ω3 · · · �ωN−1 ωN ], (26)

where the frequencies ωi define the intervals’ boundaries and
�ωi the corresponding step size in each interval. Given this
input by the user, the frequency step is defined to follow a
hyperbolic tangent shape around the boundaries. An example
of the resulting frequency grid density 1/�ω as a function
of ω corresponding to three intervals of different step sizes is
illustrated in Fig. 6 of Appendix H. The reason for forcing a
smooth variation of the grid between different intervals is that
discontinuities in �ω can cause spurious oscillations in the
results. Finally, the user can also provide a customized grid for
the main spectral region. The grid outside the main spectral
range is always defined in the same way.

If a quasiparticle peak has been found and characterized
using the Laurent series fit to G(iωn) described in Sec. IV A 2,
then the step �ω around ω = 0 is set to a fraction of the width
of the peak and a vector of the type (26) is generated automati-
cally to define a nonuniform grid with a small number of points
for the main spectral region. This feature allows the possibility
of automatically computing the spectra for large sets of data.

As for the Matsubara frequency grid, if the moments are
used as constraints, the Matsubara frequencies corresponding
to the asymptotic part can be removed. This is the simplest
modification of the Matsubara grid that can improve computa-
tional efficiency without losing accuracy. In addition, when the
number of Matsubara frequencies below the cutoff becomes
large at low temperature, a nonuniform grid can be used to
further reduce the number of frequencies. This is because sharp
features in the spectrum are usually located at low frequency,
while the spectrum broadens as |ω| increases. Therefore, as
the magnitude of ωn increases, the grid can become sparser.
The grid we use is given in Appendix I.

The default model should contain the information known
about the spectrum, but should otherwise be featureless, to
ensure that any structure appearing in the spectrum comes
necessarily from the data. In the program, the default model
is defined as a Gaussian with the same first two moments as
the spectrum, if they have either been extracted from the high
frequencies of the data or else provided by the user. Otherwise,
if the grid in the main spectral region is defined by the user, then
the width and center of that region are used as the width and
center of the default model, respectively. Other default models,
such as a flat spectrum, are available and can be selected by the
user. Finally, the default model can also be entirely provided
by the user.

D. Defining the kernel matrix

The kernel matrix can be defined once the real-frequency
and Matsubara grids are defined. The general approach was
discussed in Sec. III A. In practice, defining K with the hybrid

spline interpolation method described in Sec. III A involves
analytically integrating (19) in the case where A(ω) is a cubic
polynomial in ω and the case where it is a cubic polynomial in
u, defined by Eq. (25). This yields a linear relation between the
vector G and a vector formed by the spline coefficients. Then
the linear relation between those coefficients and the vector
A are obtained by computing the general solutions for the
linear systems of equations defining the splines in the different
regions of the real-frequency grid (low and high frequency
regions). The details are given in Appendix E.

E. Computing the spectrum as a function of α

To obtain the spectrum as a function of α in the relevant
range, we have to minimize Q = χ2

2 − αS, where χ2 is given
by (9) and S by (13). This function is bounded from below
and is convex. It therefore has a unique minimum that is the
solution to ∇Q = 0. Although that equation cannot be solved
exactly because the entropy part is nonlinear, we know that,
for large α, the solution must be close to the one minimizing
the entropy term only, namely A = e−1D. In addition, if the
solution Aα at a given α is known, then the solution for a new
value of α, Aα′ , can be obtained by Newton’s method, provided
that Aα′ is close to Aα . In other words, in that case we can solve
iteratively a linearized version of the system ∇Q = 0.

Therefore, the solutions for the whole α range can be
obtained by starting from a large value of α, using e−1D

as the initial spectrum and decreasing α at a rate such that
|Aα − Aα′ |/Aα is small, so that the minimization routine
converges. The starting value of α is chosen to ensure that the
first solution is very close to the default model. The calculation
stops when the slope in log χ2 as a function of log α is smaller
than a certain fraction of its maximum value in the whole α

range (see the last two paragraphs of Appendix F).
There are a few obstacles to overcome when solving the

linearized system ∇Q = 0. On one hand, the system is ill
conditioned and, on the other hand, negative values of A can
appear because of linearization, even though the entropy term
forbids it initially. The bad conditioning can be dealt with by
using a preconditioning step, and by solving the system using a
singular value decomposition (SVD) [27,28]. Note that all the
singular values are kept. The SVD is typically more efficient
numerically than Gaussian elimination for that particular type
of system. As for the problem of negative values of A, when
the argument of log[A(ωj )/D(ωj )] in ∇S is below the smallest
numerical value possible, the log is smoothly continued by a
quadratic function. Although not strictly forbidding negative
values, this strongly penalizes them and ensures stability of the
algorithm. As a result, negative values of very small amplitude
may still appear, but only in regions where the spectrum should
actually vanish. The minimization approach is described in
more detail in Appendix F.

F. Finding the optimal α

To find the optimal α, we compute the curvature in log10 χ2

as a function of γ log10 α, where γ is an adjustable parameter
smaller than 1. The local curvature is computed by fitting an
arc of a circle to a section of the curve and taking the inverse of
the radius as the curvature. The sign is chosen to be positive if
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the circle center is above the curve and negative if it is below it.
Although fitting an arc is numerically more tedious than fitting
a parabola, it was found to produce a smoother curvature as a
function of α. Then, as discussed in Sec. III B, the optimal α

is chosen at the maximum of the curvature. The parameter γ

is used to increase the amplitude of the peak corresponding to
the crossover region between the information- and the noise-
fitting regions, compared to other peaks that may appear in the
information-fitting region. A value of γ smaller than 1 also
shifts the location of the maximum toward lower α, but not
by a large amount if γ is not too small. The value of 0.2 was
found to be a good compromise to identify clearly the correct
peak in the curve, without shifting too much the value of α.
This parameter is considered as a fixed internal parameter in
the program, but its default value can be modified easily by
the user.

G. Diagnostics

At the end of the calculation, in addition to the optimal
spectrum, the curves used to find the optimal α, namely,
log10 χ2 as a function of log10 α and its curvature, are
displayed, along with the diagnostic quantities discussed
in Sec. III C. Analyzing those quantities yields information
about the quality of the fit, the reliability of the result, and,
if necessary, how to improve the result. Section V gives
examples of this analysis. The documentation on the software
also explains how to perform the analysis [20]. Since the
computation takes only between a few seconds and a few
minutes, trying different sets of input parameters to improve
the result is easy. For example, between iterations one can
modify the frequency grid parameters to obtain the grid that
optimally resolves all structures in the spectrum.

V. BENCHMARKS, APPLICATIONS, AND DIAGNOSTIC
TOOLS FOR ACCURACY

To test our approach, we first use the program to analytically
continue Green’s functions obtained from inserting spectral
functions in the spectral representation (19). For the purpose
of applying maximum entropy, Gaussian noise is added to
those Green’s functions. By comparing with the exact spectrum
we can then assess the accuracy that can be reached by the
program. Finally, an example with a real physical Monte Carlo
simulation is given. In all examples, frequency and temperature
are in energy units.

A. Two examples with known exact results

We illustrate our approach first with a simple spectrum and
then with a difficult case that has both coherent and incoherent
features.

The first example, shown in Fig. 2, is the analytic contin-
uation of a fermionic Green’s function given as a function of
Matsubara frequency, with a diagonal covariance, a constant
relative error of 10−5, at a temperature T = 0.05. The spectrum
used to compute G(iωn) from (19) is the sum of two Gaussians.
It is shown in green in Fig. 2(a). In Fig. 2(b), we observe clearly
the three regimes discussed in Sec. III B for χ2 as a function
of α on a log-log plot. If we take the optimal α at the position
of the maximum in the curvature of log χ2 as a function of
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FIG. 2. (a) Spectrum obtained with the program at a temperature
T = 0.05, with a constant relative diagonal error of 10−5; (b) χ 2

as a function of α for the example in (a); (c) curvature computed
from log10 χ 2 as a function of γ log10 α, where γ = 0.2, plotted as
a function of log10 α; and (d) spectrum as a function of α at sample
frequencies corresponding to the three extrema of the spectrum in (a).

γ log α, where γ = 0.2, shown in Fig. 2(c), we obtain the
spectrum in red triangles shown in (a).

Figure 2(d) shows, as a function of α, the spectral function
at the frequencies corresponding to the two maxima and to the

023303-10



ALGORITHMS FOR OPTIMIZED MAXIMUM ENTROPY AND . . . PHYSICAL REVIEW E 94, 023303 (2016)

0 20 40

−100

0

100

200
α = 1000α∗

Im
Δ

G̃

frequency index

(a)

0 10 20

−2000

0

2000

4000

6000 α = 1000α∗

Im
Δ

G̃
m
Im

Δ
G̃

n

n−m

(b)

0 20 40

−5

0

5

α = 10α∗

Im
Δ

G̃

frequency index

(c)

0 10 20
−5

0

5

α = 10α∗

Im
Δ

G̃
m
Im

Δ
G̃

n

n−m

(d)

0 20 40

−2

−1

0

1

2 α = α∗

Im
Δ

G̃

frequency index

(e)

0 10 20
−0.5

0

0.5

1
α = α∗

Im
Δ

G̃
m
Im

Δ
G̃

n

n−m

(f)

FIG. 3. Normalized errors and autocorrelations as a function of
frequency index at three different values of α for the example given
in Fig. 2. (a) Error and (b) autocorrelation at α = 1000α∗; (c) error
and (d) autocorrelation at α = 10α∗; (e) error and (f) autocorrelation
at α∗.

minimum between them in Fig. 2(a). As discussed in Sec. III C,
the plateaus in the curves indicate convergence of the spectrum
at those frequencies, which is expected for sufficiently precise
data. As seen from the optimal spectrum shown in Fig. 2(a),
those plateaus occur at values that coincide with the exact
spectrum with very good accuracy. Other useful information
is obtained by comparing the curves to each other. A good
overlap of the plateaus over some range of α indicates that
the different parts of the spectrum reach their optimal value
around the same α. When this is not the case, then the ratios
of the standard deviations σ (iωn) between different frequency
regions are probably incorrect [35], causing the regions with an
underestimated σ to converge faster. Note, however, that, for a
given precision, some parts of the spectrum may not converge,
while others do. Sharp features, or parts of the spectrum that are
very different from the default model, typically reach stability
at lower values of α and thus require higher precision to
converge. For instance, we note in Fig. 2(d) that the peak
at ω = 1 converges at α ≈ 105, while the spectrum at the
other peak converges at α ≈ 107. Something similar happens
in the next example discussed below. Finally, below some
value of α the spectrum eventually behaves in an unpredictable
manner as a function of α since the conditioning of the linear
system becomes bad at very low α. Indeed, in the brackets of
expression (23) the term proportional to α that regularizes the
linear system gradually vanishes as α decreases.

Continuing the analysis of the example shown in Fig. 2,
consider in Fig. 3 the normalized distance �G̃(ωn) between

the input Green’s function Gin and output Gout, as well as
the autocorrelation �G̃2(�n). Those functions are plotted
for three different values of α, namely two values above
α∗, as well as the optimal value α∗. In (a), far above α∗,
�G̃(ωn) is a smooth function since the difference between
Gout and Gin is much larger than the noise amplitude in Gin.
The corresponding autocorrelation in (b) is also smooth and
broad since the correlations between different frequencies of
�G̃ are large. Slightly above α∗, in (c), �G̃ becomes noisy
as Gin − Gout becomes comparable to the noise in Gin. The
autocorrelation is still broad, since �G̃ still has well-defined
structures, but it is becoming slightly noisy. At α∗, �G̃, in
(e), is essentially noise, as expected from the discussion in
Sec. III B. This is confirmed by the noisy Kronecker δ shape
of �G̃2, in (f). In addition, �G̃2(0) is close to 1, as expected
since it is equal to χ2/N , where N is the number of terms in
χ2, and the standard deviation for the data is known exactly
in that example (see the discussion on the historic approach in
Sec. II).

For the second example, we show in Fig. 4 the analytic
continuation of another fermionic Green’s function computed
with a spectrum that is the sum of three Gaussians, on which
a constant relative diagonal error of 10−6 has been added. The
scale in Fig. 4(a) is adapted to the two broad peaks, while the
scale in Fig. 4(b) is adapted to the very sharp central peak
around ω = 0. Note in Fig. 4(c) the presence of the three
regimes in χ2 as a function of α, and in Fig. 4(d) the plateaus
indicating good quantitative precision in the result. The much
smaller width and much larger amplitude of the central peak
compared to the two others makes this case difficult from a
computational point of view. Indeed, if the grid in the main
spectral region was uniform, while fine enough to resolve the
central peak, it would contain thousands of points, increasing
significantly the computation time. Therefore, in addition to
the nonuniform grid used automatically by the program outside
the main spectral region, and described in Appendix H, a
nonuniform grid within the main spectral region has also been
used. For that purpose, as explained in Sec. IV C, a vector of
the form (26) was given to the program, which has generated
a grid with a step varying smoothly between the provided
intervals. For the example, in Fig. 4, the step around ω = 0
is �ω = 2 × 10−4, while �ω = 0.1 for the peak centered on
ω = −3 and �ω = 0.05 for the one at ω = 2.

The standard deviation of the central peak is equal to the
temperature T = 0.002, putting the magnitude of the first
Matsubara frequency πT outside its frequency range. This
might seem to make the analytic continuation difficult for
that part of the spectrum since essentially only information
on the moments of that peak is contained in the Matsubara
Green’s function. The central peak is nevertheless very well
reproduced, as shown in Fig. 4(b). It converges for a value of
α only slightly lower than the two broad peaks, as shown in
Fig. 4(d). This is analog to what is observed in the example of
Fig. 2.

The temperature in the example of Fig. 4 is very small
compared to the total width of the spectrum; therefore, the
number of Matsubara frequencies that are within the spectral
range, and which have to be taken into account, is large. If
all the frequencies below the onset frequency of asymptotic
behavior ωas were used, the computation time would be quite
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FIG. 4. (a) Spectrum obtained with the program at a temper-
ature T = 0.002, with a constant relative diagonal error of 10−6;
(b) magnification on the low frequency peak; (c) χ2 as a function
of α; and (d) spectrum as a function of α at sample frequencies
corresponding to the maxima. The value for the ω = 0 peak is given
on the left axis while the values for the two other peaks are given on
the right axis.

high since the minimization of Q scales as O(N2
ωn

Nω) if
Nωn

< Nω, or O(Nωn
N2

ω) if Nωn
> Nω (see Appendix F).

However, although the whole frequency range below ωas

contains relevant information on the spectrum, using all the

Matsubara frequencies in that range is not necessary (see
Sec. IV C). In that example, the spectrum was obtained with
high accuracy using a nonuniform Matsubara grid, of the
type described in Appendix I, which contains 321 frequencies
instead of about 1000 below ωas .

Finally, we notice in Figs. 2(d) and 4(d) that there is a
range of values of α where the values of the spectrum at
the maxima are higher than both the exact values and the
optimal ones (both essentially identical). The structures in the
spectrum in that range of α are therefore sharper than those
of the exact spectrum. This means that, if the data’s standard
deviations were comparable to the values of |�G| in that range
of α, the final MaxEnt result would have sharper structures
than the exact spectrum. Therefore, contrary to a common
belief about maximum entropy, even for a very smooth and
featureless default model, the maximum-entropy results are
not systematically smoother than the exact result. Note that
this “overshoot” of the values at the maxima as a function of
α is not a numerical artifact. The spectra in that range are the
actual solutions of the equation ∇Q = 0 at each α. This can
also be verified by starting the calculation at the lowest α, using
the spectrum obtained at that value as the initial spectrum and
recomputing the spectrum for increasing values of α instead of
the opposite. If there is no hysteresis in the sample-frequency
curves, as we did observe during the tests, then we can have
very high confidence in the results.

B. Analytic continuation for single-site dynamical
mean-field theory

Finally, we present in Fig. 5 the result of analytic con-
tinuation of single-site dynamical mean field-theory (DMFT)
data obtained with a continuous-time quantum Monte Carlo1

[36] solver for the one-band Hubbard model on the half-filled
bipartite square lattice at U = 6t and temperature T = 0.01t ,
where t is the nearest neighbor hopping. The covariance
matrix was computed using the Green’s functions of the
last 24 DMFT converged iterations. The relative error is of
order 5 × 10−4 at most. This type of problem was studied
in detail at the beginning of DMFT when quantum Monte
Carlo algorithms did not allow low temperature and high
precision [33]. However, the qualitative form of the spectrum
is well known. Here we find that, as expected, the peak in
the density of states at the Fermi level becomes very sharp at
low temperature. This can be obtained even in the presence of
broad incoherent features at high frequency.

As shown in Fig. 5(b), χ2 versus α has the same general
shape as in the previous examples. The spectrum shown in
Fig. 5(a) is the result at the maximum of the curvature in
log χ2 versus 0.2 log α, as in the previous examples. That
example is particularly interesting for benchmarks because
particle-hole symmetry makes it clear when only information
is fitted and when noise is also fitted. Indeed, since the
noise does not respect particle-hole symmetry (the real part
of the data does not vanish completely), noise fitting starts
when the spectrum stops being symmetric as α decreases.
This value is easy to find in Fig. 5(c), where the spectrum is

1We are grateful to Giovanni Sordi and Patrick Sémon for providing
the quantum Monte Carlo data used in this section.
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FIG. 5. (a) Spectrum for single-site DMFT on a square lattice at
U = 6, filling n = 1 and temperature T = 0.01; (b) χ2 as a function
of α for the above example; (c) spectrum as a function of α at sample
frequencies. The relative error in the data is of order 5 × 10−4 at most.

plotted at symmetric frequencies on each side of ω = 0, as
a function of α. We note, by comparing Figs. 5(b) and 5(c)
that the highest α where the values of the spectrum at two
symmetric frequencies depart from each other is effectively
around the maximum curvature in Fig. 5(b). Figure 5(c) also
suggests a relatively good quantitative accuracy of the result in
Fig. 5(a), considering that the input data here are the result of
an actual physical simulation and not an ideal case like in the
previous examples. Indeed, the curves at sample frequencies
have a relatively stable region as a function of α. However, the
absence of flat plateaus suggests a precision of the order of
10% at most around ω = 0.

We should mention that when the covariance is not
diagonal, �G̃ is not a smooth function anymore at large
α because the diagonalization routine sorts eigenvalues in
decreasing order. This makes the difference between the
information- and noise-fitting regimes less clear to estimate
from that quantity, which therefore becomes slightly more

difficult to analyze. On the other hand, the difference between
the autocorrelations �G̃2(�n) at α > α∗ and α � α∗ is still
clear, with one exception, namely for a particle-hole symmetric
case like the example we just considered in Fig. 5. Indeed, in
that case the real part of the Green’s function should vanish, but
it is mostly noise because of intrinsic computational errors. In
addition, because there are correlations in general between the
errors on the real and on the imaginary parts, the transformation
(F4) mixes the real and imaginary parts of the Green’s function.
This can cause �G̃ and �G̃2(�n) to look noisy for all values
of α. Therefore, those quantities are much less useful for the
analysis in the particle-hole symmetric case, including the
example of Fig. 5. This does not affect, however, the behavior
of χ2 and A(ωsample

i ) as a function of α, and therefore it does not
influence how the optimal α is determined. In the general case
where both the real and the imaginary parts have structure, �G̃

and �G̃2(�n) are useful, although �G̃ can be more difficult
to read for nondiagonal covariance.

VI. DISCUSSION

The approach presented here relies critically on the al-
gorithms discussed in Sec. III. Indeed, because of the ill-
conditioned nature of the problem and the bad scaling of
the minimization problem with grid size, all aspects of the
calculation must be optimized to compute the spectrum in
a reasonable time, and without sacrificing accuracy, for the
hundreds of values of α required for the analysis.

First, the real-frequency grid size can be minimized
because we combine nonuniform real-frequency grids with
hybrid cubic splines in ω and u = 1/(ω − ωμ) that are well
adapted to each other. Cubic splines are the best interpolation
approximation for smooth functions on arbitrary grids. They
allow minimization of the grid density for a given precision
of the integrals. In addition, the hybrid splines are preferable
because they give much better accuracy than ordinary splines
on the type of highly nonuniform grids we need. Second,
using the Matsubara-frequency spectral representation of the
Green’s function also helps minimize both the real- and the
imaginary-frequency grid sizes. Indeed, because the kernel
times the spectral weight can be integrated analytically when
A(ω) is modeled as a piecewise polynomial function, the
real-frequency grid does not need to be adapted to the kernel,
but only to the spectrum. In addition, working with Matsubara-
frequency functions instead of imaginary-time ones allows a
straightforward optimization of the grid on the imaginary-time
axis, first by replacing the frequencies in the asymptotic region,
iωn > iωas , by constraints on moments and, second, by using
an adapted nonuniform Matsubara frequency grid below the
cutoff iωas determined during the moment-fitting procedure.
Those carefully chosen approximations and optimizations lead
to a computational complexity that is only weakly dependent
on temperature and spectrum complexity.

The minimization algorithm is another key aspect of the
implementation. Since the spectrum changes only slightly
between consecutive values of α, the minimization algorithm
based on Newton’s approach is very well adapted. In addition,
the singular value decomposition takes advantage of the
specific structure of the linear system to solve it more
efficiently. The resulting routine is very fast. For example, on
a 2-GHz laptop, computing the spectrum for about 600 values

023303-13



DOMINIC BERGERON AND A.-M. S. TREMBLAY PHYSICAL REVIEW E 94, 023303 (2016)

of α with a grid of 110 real and 95 Matsubara frequencies
takes 15 s, and the same number of values of α for a grid of
550 real and 510 Matsubara frequencies takes about 8 min
to compute. As a comparison, the computation time with a
generic routine based on the trust-region-reflective algorithm
that we used in a previous work was a few hours for a few
hundred values of α and frequencies [31]. Speed can be
very important, for example in the context of modern ab
initio methods that combine density functional methods with
dynamical mean-field theory [37]. The stochastic approach
would not be a good choice in that context since the time
required for analytical continuation can become longer than
the computation time of the Matsubara data [38].

As discussed in Sec. III B, it is a consistency requirement
of the maximum-entropy approach that α be chosen in the
region where d log χ2/d log α drops when α decreases. This
is where the likelihood (8) is actually valid, where most of the
information has been fitted and where noise starts to be fitted
as well. However, we still need a criterion to choose precisely
α within that crossover region. Since both information and
noise are being fitted in that region, that criterion is not
obvious in general. For data accurate enough, however, the
actual value of α within the crossover region is irrelevant since
the spectrum does not change within that region. This might
apply quite routinely to deterministic numerical calculation,
which typically has only small roundoff errors, but it will apply
more rarely to stochastic results. For this type of data, when
the covariance is reasonably accurate, the crossover region is
narrow, and the choice of α is still relatively easy. Indeed, as
discussed in Sec. III C, local minima in |dA(ω)/d log α| are
usually present in the crossover region and thus the spectrum
will only have small variations over a narrow range of log α.
Choosing the maximum of curvature in log χ2 as a function of
γ log α will thus give very similar results for different values of
γ . Given that the spectrum cannot have large variations when
the crossover region is narrow and that there is still some
information to fit within that region, it might be preferable
to choose α∗, the optimal α, closer to the noise-fitting region
to ensure fitting as much information as possible. The choice
γ = 0.2 serves that purpose.

It is always preferable to look at the diagnostic functions to
verify that they have the correct properties. At the optimal α,
the function �G̃ should look like noise and its autocorrelation
should have a Kronecker δ shape, while the curves A(ωsamp

i )
should have either an extremum or an inflexion point at α∗.
It may happen that �G̃ seems to contain only noise, but
its autocorrelation has a finite width. This indicates that the
covariance matrix is not well estimated, in particular if it has
been assumed to be diagonal, then a nondiagonal covariance
should be used. Another possibility is that �G̃ never becomes
completely noisy. This is generally because the grid is not
dense enough to produce a good fit, and it must be refined
until �G̃ has the correct properties at α∗.

The diagnostic tools become even more useful as the
error estimates are less accurate and the region where both
information and noise are fitted simultaneously becomes
wider. They can then be used to choose α such that the most
relevant part of the spectrum has converged. For example,
if we are more interested in the spectrum around ω = 0,
one can choose a value of α for which �G̃ is noisy at low
Matsubara frequency and A(ω) is the most stable around

ω = 0 as a function of log α. To allow the user to choose a
different value of α than the one selected automatically, the
program saves the results for a certain range of α around that
value (by default, one decade above and below). For very bad
estimates of the errors however, some compromise must be
made because some parts of the spectrum might become quite
distorted because too much noise has been fitted, while other
parts have not yet converged. The error estimate is therefore
a very important part of the data. As for the input data itself,
ensuring accuracy of the error estimate is the responsibility
of the user. As discussed in Sec. II and emphasized in the
classic review [8], the maximum-entropy formalism assumes
that the data obey Gaussian statistics with accurate estimates
of the covariance. This can be checked by histogram methods
and by binning procedures such as those available in the ALPS

software [39]. In practice, the data are not perfectly Gaussian
and the error estimate is often not very accurate. The diagnostic
tools provide at the same time a means to evaluate if the error
estimate is good and, to some extent, to compensate if it is not.

The question of whether the spectrum should be taken
at a single value of α or averaged over a certain range is
certainly relevant for poor estimates of the covariances. Since
the software saves the spectrum for a range of α around the
selected optimal value, averaging is a possible option. This
can, however, produce unpredictable results since overfitted
spectra are mixed with underfitted ones. On the other hand,
when choosing the best α for a particular spectral frequency
range, one neglects the rest of the spectrum, but ensures that
the part of the spectrum that seems the most interesting is as
accurate as possible.

The program can be used both in an interactive way, where
the user can obtain results in real time and modify parameters to
see the effect on the results, or in batch calculations. The level
of automatization is sufficient to generate series of calculations
without the need to interact with the program, assuming
that realistic standard deviations or covariance matrices are
provided.

VII. SUMMARY AND CONCLUSION

With the entropic prior, only the correlations present in the
data are significant [8], while positivity and smoothness of the
spectrum are enforced. Given that the maximum-entropy ap-
proach is very tractable computationally, it is therefore the best
practical choice for analytic continuation of noisy numerical
data, whether the noise comes from a Monte Carlo procedure or
from numerical roundoff. The main challenge in that approach
is to determine α, or a range of values of α, for which the
result is the most accurate possible. As we have illustrated with
examples, consistency with the assumptions of the approach
is often sufficient to determine the optimal value of α. This is
possible because, for realistic estimates of the standard devia-
tion (or covariance), there exist well-separated regions where
the behavior of χ2 as a function of α differs, depending on
whether only information is being fitted or only noise is added
to the fit. Those regions can be clearly identified when χ2(α)
is plotted on a log-log scale. The optimal α is in the transition
region between the information- and the noise-fitting regions.

The information- and noise-fitting regimes also have dis-
tinctive signatures (a) in the normalized distance between the
data and the fit expressed in the eigenbasis of the covariance
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matrix, (b) in the autocorrelation of that function, and (c) in
sample frequencies of the spectrum plotted with respect to
log α. Those functions can therefore be used as diagnostic
tools to assess the quality of the fit and also to fine tune the
value of the optimal α. The spectrum as a function of log(α)
at sample frequencies also informs us on the accuracy of the
spectrum. Indeed, high accuracy is indicated by high stability
of the spectrum as a function of log α around the optimal α.

The accuracy and efficiency of our implementation is
optimized using approximations adapted to the specific nu-
merical challenges of the problem. This includes the use
of nonuniform frequency grids, moment constraints, hybrid
spline interpolation, and piecewise analytical integration of
the spectral representation. Those optimizations, combined
with a good minimization routine, make it possible to obtain
high quality results very quickly, and therefore to check the
sensitivity of the results to the grid, the default model, or
other parameters in real time. The level of automatization of
the program is also sufficient for batch calculations. Unlike
the classic and Bryan approaches, our method to choose the
optimal α does not require the default model to be close to the
final answer. An annealing procedure is therefore not necessary
to obtain reliable results.

To illustrate our approach, we have shown three examples
with fermionic Matsubara-frequency Green’s functions: Two
fictitious examples with diagonal covariance and one example
with real data from a physical simulation, with general
covariance. The examples demonstrate that our approach can
produce very accurate spectra when the Matsubara data are
sufficiently, but realistically, precise. They also show that our
implementation can resolve very sharp and very incoherent
features at the same time without difficulty, including a spec-
trum possessing a low-energy peak of width smaller than πT .

Our maximum-entropy implementation is freely available
under the GNU general public license as a software with a
complete user interface. It is written in C++, but uses Python
to automatically plot the results and diagnostic functions at
the end of the calculation. It comes with a detailed user
guide and provides default options that make it easy to
use for beginners. The numerous options make the software
flexible for the experienced user. The software is fast and can
handle fermionic and bosonic input Green’s functions, self-
energies, and correlation functions with arbitrary covariance
and whether the data are provided in Matsubara frequency or
in imaginary time [20].
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APPENDIX A: HEURISTIC DERIVATION OF THE
MAXIMUM-ENTROPY METHOD

In this Appendix we present a heuristic derivation of the
maximum-entropy method that suggests a connection with the
stochastic analytical continuation approach [12]. It follows a
derivation of statistical ensembles often found in textbooks
and based on ideas from information theory [23].

Since the spectral weight A′(ωi) on a frequency grid ωi of
M points is normalized, it can be thought of as a probability.
Here we take

M∑
i−1

A′(ωi)�ωi = 1. (A1)

In the main text, A(ωi) is normalized to 2π instead.
Define a stochastic process with statistically independent

trials where qi is the a priori probability to fall on the interval
i. By repeating the trials N times with N large, we can discover
empirically the probabilities qi. Let the empirical probability
Pi for interval i be

Pi ≡ ni(N )

N
= A′(ωi)�ωi, (A2)

where ni is the number of times that the result i is obtained
in the trials (i is between 1 and M). The central limit
theorem suggests that in the limit N → ∞ (N � M), the most
probable value of ni and its average value will be identical and
the corresponding Pi will converge to qi ; in other words, we
expect

lim
N→∞

Pi = lim
N→∞

ni(N )

N
= qi. (A3)

This can be checked as follows.
The probability (n1,n2, . . . ,nM ) to obtain n1 times the

result 1, n2 times the result 2, and so on, is given by

(n1,n2, . . . ,nM ) = N !

n1!n2! · · · nM !
(q1)n1 (q2)n1 · · · (qM )nM

(A4)
subject to the constraint

M∑
i=1

ni = N. (A5)

The most probable values can be obtained by maximizing the
logarithm. Stirling’s formula is then extremely accurate since
N tends to infinity. Rewritten, it is

ln (n1,n2, . . .) = ln N ! −
∑

i

ln ni! +
∑

i

ni ln qi

→ −
∑

i

ni ln
ni

Nqi

(A6)

= −N
∑

i

Pi ln

(
Pi

qi

)
, (A7)

which is called the relative entropy. We just need to maximize
this quantity while satisfying the constraint Eq.(A5), which we
rewrite in the form

N
∑

r

Pi = N. (A8)
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Using a Lagrange multiplier, it is easy to find the expected
solution Pi = qi , Eq. (A3).

In statistical mechanics, the canonical ensemble is obtained
by assuming (a) that i labels microstates that are equiprobable
(all qi are identical) and (b) that, in addition to the normaliza-
tion constraint, there is another constraint, namely the average
energy is fixed,∑

i

Eini = N
∑

i

EiPi = NE. (A9)

The inverse temperature β is the Lagrange multiplier and the
final result for Pi is given by the canonical distribution. Note
that N drops out of the final answers. It is just a conceptual
device.

Coming back to our problem, we must identify the
constraints and choose the a priori probabilities qi. There
are two constraints, normalization and the value of χ2 which
is quadratic in Pi . The parameter N/α plays the role of the
Lagrange multiplier for the constraint on χ2. In this case,
however, we do not know the value of χ2; hence, we must find
a way to determine α. In the historic approach, one assumes
that χ2 equals the number of Matsubara frequencies (not to
be confused with N ), which fixes α, but there are several
alternatives and our paper proposes a new one. Concerning the
a priori probabilities, if we assume that all real-frequency grid
points are equally probable, the qi are all equal to 1/M , with
M the number of grid points, and the relative entropy becomes

ln (n1,n2, . . .) = −N
∑

i

�ωiA
′(ωi) ln

[
�ωiA

′(ωi)

1/M

]
.

(A10)

In the language of maximum-entropy methods, our default
model is then D(ωi) = 1/(M�ωi) and the choice of grid
determines the default model [16]. It is clearly preferable to
choose qi = D(ωi)�ωi , which decouples the choice of grid
and of default model. In this case we have

ln (n1,n2, . . .) = −N
∑

i

�ωiA
′(ωi) ln

[
A′(ωi)

D(ωi)

]
, (A11)

which is the form used in the maximum-entropy method
before imposing the normalization constraint with a Lagrange

multiplier. As mentioned in Sec. III A, instead of using a
Lagrange multiplier, a constraint on normalization in χ2 can
also be used.

APPENDIX B: EXTRACTING MOMENTS FROM G

This Appendix explains the procedure to extract the
moments from either G(iωn) or G(τ ).

1. From G(iωn)

For frequencies ωn > W , where A(|ω| > W ) ≈ 0, the
spectral form of the Green’s function,

G(iωn) =
∫ ∞

−∞

dω

2π

A(ω)

iωn − ω
, (B1)

can be written as

G(iωn) =
∫ ∞

−∞

dω

2π
A(ω)

[
1

iωn

+ ω

(iωn)2
+ ω2

(iωn)3
+ · · ·

]

= 1

iωn

∫ ∞

−∞

dω

2π
A(ω) + 1

(iωn)2

∫ ∞

−∞

dω

2π
ωA(ω)

+ 1

(iωn)3

∫ ∞

−∞

dω

2π
ω2A(ω) + · · · , (B2)

or

G(iωn) = M0

iωn

+ M1

(iωn)2
+ M2

(iωn)3
+ · · · , (B3)

where Mj is the j th moment of A(ω). If the Green’s function is
known for a certain frequency range in that asymptotic region,
the first N moments can be deduced by fitting the function

Gas(iωn) = M0

iωn

+ M1

(iωn)2
+ · · · + MN−1

(iωn)N
(B4)

to that part of Gin, assuming that the terms MN/(iωn)N+1 and
MN+1/(iωn)N+2 can be neglected for frequencies larger than
a certain ωL.

If we write Gas(iωn) as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Re[Gas(iωL)]

Im[Gas(iωL)]

Re[Gas(iωL+1)]

Im[Gas(iωL+1)]

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
ω2

L

0 1
ω4

L

. . . 0 (−1)N 1
ω2N

L

− 1
ωL

0 1
ω3

L

0 . . . (−1)N 1
ω2N−1

L

0

0 − 1
ω2

L+1
0 1

ω4
L+1

. . . 0 (−1)N 1
ω2N

L+1

− 1
ωL+1

0 1
ω3

L+1
0 . . . (−1)N 1

ω2N−1
L+1

0

...
...

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M0

M1

...

M2N−1

M2N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(B5)

or

Gas = XM, (B6)

the moments are obtained by minimizing

χ2
M = (

GHF
in − XM

)T
C−1

HF

(
GHF

in − XM
)
, (B7)

where the superscript or subscript HF , for high-frequency,
indicates that ωn � ωL. To minimize χ2

M , we have to solve
the system ∂χ2

M/∂Mj = 0, which, using the fact that C is
symmetric, is written as

XT C−1
HF XM = XT C−1

HF GHF
in . (B8)
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This linear system can be solved if only moments of low
order are taken into account. Otherwise, the matrix XT C−1

HF X
becomes too ill conditioned. This is of no consequence
in practice, however, since only the information on a few
moments is present in noisy data. To find the onset ωL, the
fit is done repeatedly, while sweeping the starting frequency
from small to high until the result of the fit is stable.

We also need the covariance for the moments. It can be
found from the covariance of the Green’s functions

CHF = 〈(
GHF

in − 〈
GHF

in

〉)(
GHF

in − 〈
GHF

in

〉)T 〉
. (B9)

By multiplying the above by XT C−1
HF from the left and by the

transpose of that same matrix from the right and then using
(B8) to relate M to GHF

in , we obtain

CM = 〈(M − 〈M〉)(M − 〈M〉)T 〉 = (
XT C−1

HF X
)−1

. (B10)

2. From G(τ )

Using the spectral form

G(τ ) = −
∫

dω

2π

e−ωτA(ω)

1 ± e−βω
, (B11)

where + is for fermions and − is for bosons, we easily obtain
the moments

M0 = −[G(0) ± G(β)],

M1 = [G′(0) ± G′(β)],

...

Mj = (−1)j+1[G(j )(0) ± G(j )(β)],

...,

(B12)

where ± has the same correspondence with fermions and
bosons as in Eq. (B11) and where we defined

G(j )(τ ′) = djG(τ )

dτ j

∣∣∣∣
τ ′
. (B13)

Now, when τ < 1/W , the exponential in the integrand of
(B11) can be expanded around τ = 0, and similarly around
τ = β when β − τ < 1/W since the Taylor series of G(τ )
converges in those regions of τ . For τ < 1/W , we thus have

G(τ ) = G(0) + G′(0)τ + G(2)(0)

2
τ 2 + G(3)(0)

6
τ 3 + · · · ,

(B14)
and for β − τ < 1/W ,

G(τ ) = G(β) − G′(β)(β − τ ) + G(2)(β)

2
(β − τ )2

− G(3)(β)

6
(β − τ )3 + · · · (B15)

or

G(β − τ ) = G(β) − G′(β)τ + G(2)(β)

2
τ 2

− G(3)(β)

6
τ 3 + · · · . (B16)

Now, adding and subtracting (B14) and (B16) gives

G(τ ) + G(β − τ ) = [G(0) + G(β)] + [G′(0) − G′(β)]τ

+ 1
2 [G(2)(0) + G(2)(β)]τ 2

+ 1
6 [G(3)(0) − G(3)(β)]τ 3 + · · · ,

(B17)

and

G(τ ) − G(β − τ ) = [G(0) − G(β)] + [G′(0) + G′(β)]τ

+ 1
2 [G(2)(0) − G(2)(β)]τ 2

+ 1
6 [G(3)(0) + G(3)(β)]τ 3 + · · · .

(B18)

From (B12) we see that the moments are obtained from (n!),
where n is a moment order, times the coefficients of the
polynomial fits to G(τ ) + G(β − τ ) and G(τ ) − G(β − τ ) in
the range τ < 1/W . For fermions, we use the even powers of
τ in the fit to G(τ ) + G(β − τ ), and the odd powers in the fit
to G(τ ) − G(β − τ ). For bosons, it is simply the opposite.

As in the fit of the asymptotic form (B4) to G(iωn), a
weighted least-squares fit can also be used here. However, the
procedure is slightly heavier because both the order of the
polynomial and the number of points must be varied to ensure
a stable result is found. However, if there are enough G(τi)
with τi < 1/W , accurate stationary values of the moments are
obtained.

For the least-squares fit we need the covariances of G(τ ) +
G(β − τ ) and G(τ ) − G(β − τ ). For G(τ ) + G(β − τ ),

C+
ij = 〈[�G(τi) + �G(β − τi)][�G(τj ) + �G(β − τj )]〉

= 〈�G(τi)�G(τj )〉 + 〈�G(τi)�G(β − τj )〉
+ 〈�G(β − τi)�G(τj )〉
+ 〈�G(β − τi)�G(β − τj )〉, (B19)

and for G(τ ) − G(β − τ ),

C−
ij = 〈[�G(τi) − �G(β − τi)][�G(τj ) − �G(β − τj )]〉

= 〈�G(τi)�G(τj )〉 − 〈�G(τi)�G(β − τj )〉
− 〈�G(β − τi)�G(τj )〉 + 〈�G(β − τi)�G(β − τj )〉,

(B20)

where �G(τi) = G(τi) − 〈G(τi)〉. Now G(β) is related to
G(0), so that elements containing �G(β) can be expressed
using �G(0).

For fermions, we have

GAB(β) = −〈{A,B}〉 − GAB(0+), (B21)

and for bosons,

GAB(β) = 〈[A,B]〉 + GAB(0+). (B22)

Since the (anti-)commutators are canceled when 〈G(β)〉 is
subtracted from G(β), we obtain, for τj = β,

〈�G(β)�G(τj )〉 = −〈�G(0)�G(τj )〉 (B23)
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for fermions and

〈�G(β)�G(τj )〉 = 〈�G(0)�G(τj )〉 (B24)

for bosons.

APPENDIX C: COMPUTING G(iωn) FROM G(τ )

To obtain G(iωn) from a G(τ ) known only on a discrete
set of points, we need an interpolating method. Simply
using a discrete Fourier transform would produce a periodic
function in ωn, while Im[G(iωn)] must decrease like 1/ωn

and Re[G(iωn)] like 1/ω2
n at high ωn. We can use a cubic

spline as the interpolating method. This has the advantages
of recovering automatically the asymptotic behavior for the
Fourier transform and of giving good accuracy in the whole
frequency range [31,33].

Suppose we have G(τi); for i = 0, . . . ,N , we need 4N

equations to define the spline. If Si(τ ) is the cubic polynomial
in the ith interval, the equations

Si(τi−1) = G(τi−1),

Si(τi) = G(τi),

S ′
i(τi−1) = S ′

i−1(τi−1),

S ′′
i (τi−1) = S ′′

i−1(τi−1), (C1)

for i = 1, . . . ,N give 4N − 2 equations. To obtain the last two
equations, we can use the first moment M1 and the second M2

of the spectral function. Using the definitions (B12), we have

S ′
1(0) ± S ′

N (β) = M1,

S ′′
1 (0) ± S ′′

N (β) = −M2,
(C2)

where the + sign is for fermions and the − for bosons.
Knowing the spline, the Fourier transform,

G(iωn) =
∫ β

0
dτeiωnτG(τ )

≈
N∑

j=1

∫ τj

τj−1

dτeiωnτ Sj (τ ), (C3)

becomes, after integration by parts three times,

G(iωn) = −G(0) ± G(β)

iωn

+ S ′
1(0) ± S ′

N (β)

(iωn)2

− S ′′
1 (0) ± S ′′

N (β)

(iωn)3
+ 1 − eiωnβ/N

(iωn)4

N−1∑
j=0

eiωnτj S
(3)
j+1,

(C4)

where S
(3)
j is the third derivative of Sj (τ ) and we assume that

the imaginary-time step is constant. Using (B12) and (C2), this
expression can also be written as

G(iωn) = M0

iωn

+ M1

(iωn)2
+ M2

(iωn)3

+ 1 − eiωnβ/N

(iωn)4

N−1∑
j=0

eiωnτj S
(3)
j+1. (C5)

The sum in the last term is a discrete Fourier transform that
can be computed with a fast Fourier transform (FFT) routine.

Using a cubic spline as the interpolation function therefore
makes it possible to set the norm and the first two moments
of the Fourier transform to the correct values. It is also very
efficient because we end up with a FFT.

We also want to obtain the covariance matrix of G(iωn)
from the one for G(τ ), which is assumed to be provided as
input data. We start with

C(τi,τj ) = 〈[G(τi) − Ḡ(τi)][G(τj ) − Ḡ(τj )]〉, (C6)

where Ḡ(τi) is the expected value of G(τi). In this case we
replace the continuous Fourier transform by a discrete one.
We then have

CRR(ωl,ωm) = 〈Re[G(iωl)−Ḡ(iωl)]Re[G(iωm)−Ḡ(iωm)]〉

=
(

β

N

)2 ∑
ij

cos(ωlτi) cos(ωmτj )C(τi,τj ),

(C7)

CRI (ωl,ωm) = 〈Re[G(iωl) − Ḡ(iωl)]Im[G(iωm) − Ḡ(iωm)]〉

=
(

β

N

)2 ∑
ij

cos(ωlτi) sin(ωmτj )C(τi,τj ),

(C8)

and

CII (ωl,ωm) = 〈Im[G(iωl) − Ḡ(iωl)]Im[G(iωm) − Ḡ(iωm)]〉

=
(

β

N

)2 ∑
ij

sin(ωlτi) sin(ωmτj )C(τi,τj ). (C9)

Those matrices can also be obtained more efficiently by first
calculating

C(τi,ωm) =
(

β

N

) ∑
j

eiωmτj C(τi,τj ), (C10)

then

CR(ωl,ωm) =
(

β

N

) ∑
i

eiωlτi Re[C(τi,ωm)] (C11)

and

CI (ωl,ωm) =
(

β

N

) ∑
i

eiωlτi Im[C(τi,ωm)], (C12)

so that

CRR(ωl,ωm) = Re[CR(ωl,ωm)],

CRI (ωl,ωm) = Re[CI (ωl,ωm)],

CII (ωl,ωm) = Im[CI (ωl,ωm)].
(C13)

APPENDIX D: ESTIMATING THE WIDTH AND WEIGHT
OF A QUASIPARTICLE PEAK

If the spectrum has a well-defined peak around ω = 0, it
is possible, under two conditions, to estimate its width and
weight. Those conditions are as follows.
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(1) There is a frequency interval Wqp < |ω| < Winc, where
A(ω) ≈ 0, such that the contribution to G(iωn) from this part
of the spectrum is negligible.

(2) A sufficient number of Matsubara frequencies satisfy-
ing the condition Wqp < ωn < Winc exists, such that G(iωn)
is represented by a unique Laurent series in that interval.

The treatment is however slightly different for fermions and
bosons. In the latter case, what is called the spectrum is in fact
A(ω)/ω. Let us start with the fermionic case.

If the spectrum is made of a well-defined peak around zero
frequency and a finite frequency part that is usually incoherent,
the Green’s function can be written as

G(iωn) =
∫ ∞

−∞

dω

2π

Aqp(ω)

iωn − ω
+

∫ ∞

−∞

dω

2π

Ainc(ω)

iωn − ω

= Gqp(iωn) + Ginc(iωn). (D1)

Then, since Aqp(|ω| > Wqp) ≈ 0, for frequencies ωn > Wqp,
a large ωn expansion can be used for the kernel in Gqp(iωn),

Gqp(iωn) =
∫ ∞

−∞

dω

2π

Aqp(ω)

iωn − ω

=
∫ ∞

−∞

dω

2π
Aqp(ω)

[
1

iωn

+ ω

(iωn)2
+ ω2

(iωn)3
+· · ·

]

= M
qp

0

iωn

+ M
qp

1

(iωn)2
+ M

qp

2

(iωn)3
+ · · · , (D2)

where M
qp

j is the j th quasiparticle peak moment.
On the other hand, the contribution to G from the incoherent

part of the spectrum is

Ginc(iωn) =
∫ ∞

−∞

dω

2π

Ainc(ω)

iωn − ω

=
∫ −Winc

−∞

dω

2π

Ainc(ω)

iωn − ω
+

∫ ∞

Winc

dω

2π

Ainc(ω)

iωn − ω
.

(D3)

Now, for ωn < Winc the kernel can be expanded in powers of
ωn/ω,

Ginc(iωn)

= −
∫ −Winc

−∞

dω

2π

Ainc(ω)

ω

[
1 + iωn

ω
+

(
iωn

ω

)2

+ · · ·
]

−
∫ ∞

Winc

dω

2π

Ainc(ω)

ω

[
1 + iωn

ω
+

(
iωn

ω

)2

+ · · ·
]
,

(D4)

which gives

Ginc(iωn) = −M inc
−1 − M inc

−2(iωn) − M inc
−3(iωn)2 + · · · ,

(D5)
where the M inc

j ’s are inverse moments of Ainc(ω).
We finally obtain the following Laurent series form for

Wqp < ωn < Winc:

GLS(iωn) ≈ · · · − M inc
−3(iωn)2 − M inc

−2(iωn) − M inc
−1

+ M
qp

0

iωn

+ M
qp

1

(iωn)2
+ · · · . (D6)

By fitting this form to G(iωn) in the frequency range Wqp <

ωn < Winc using the same method as the one used to fit the
moments in Appendix B 2, we can extract the moments of
the quasiparticle peak. The weight of the peak will then be
given by M

qp

0 , its position, by M
qp

1 /M
qp

0 , and its width by√
M

qp

2 /M
qp

0 − (Mqp

1 /M
qp

0 )2.
There is no way, however, to be sure that the conditions (1)

and (2) are fulfilled by looking at G(iωn) only, without trying
to fit the form (D6). When the weight M

qp

0 of the peak is large
enough, however, the imaginary part will seem to diverge at
small ωn. Therefore, we know if there is a peak, but we cannot
know from the shape of G(iωn) if it is isolated enough from
the rest of the spectrum so that the above procedure will work.

In addition, if conditions (1) and (2) are satisfied, the
optimal numbers Nqp and Ninc of moments M

qp

j and M inc
j ,

respectively, and the frequency range [Wqp,Winc] satisfying
conditions (1) and (2) are not known in advance. Those
parameters are to be determined during the fitting procedure.
In our code, the fit is done repeatedly by varying those
parameters, and the optimal values are determined by a
stationary point. If the fit is attempted and no stationary
point is found, then conditions (1) and (2) are not satisfied.
In particular, if there are not enough Matsubara frequencies
satisfying Wqp < ωn < Winc, the stationary character becomes
ill defined, and no unique result can be found; hence the
importance of condition (2).

For bosons, we consider the positive function �(ω) =
A(ω)/ω as the spectrum. If conditions (1) and (2) are satisfied,
the spectral form of G thus becomes

G(iωn) =
∫ ∞

−∞

dω

2π

ω�qp(ω)

iωn − ω
+

∫ ∞

−∞

dω

2π

ω�inc(ω)

iωn − ω

= Gqp(iωn) + Ginc(iωn). (D7)

From that expression, we deduce that the order of the
moment associated with a given power of iωn in the Laurent
series is increased by one with respect to the fermionic case.
We thus obtain directly

GB
LS(iωn) ≈ · · · − M inc

−2(iωn)2 − M inc
−1(iωn) − M inc

0

+ M
qp

1

iωn

+ M
qp

2

(iωn)2
+ · · · . (D8)

Note that we still use the qp notation but the low frequency
peak in the case of the conductivity, for example, would be a
Drude peak.

In that case, we do not obtain M
qp

0 from the fit since for the
qp part we are in the large ωn limit. However, since

G(iωn = 0) = −
∫ ∞

−∞

dω

2π
�qp(ω), (D9)

we have

M
qp

0 = −G(iωn = 0) − M inc
0 , (D10)
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and we have all the parameters necessary to compute the peak
position, width, and weight.

APPENDIX E: DEFINING THE KERNEL MATRIX

We want to approximate the form

G(iωn) =
∫ ∞

−∞

dω

2π

A(ω)

iωn − ω
(E1)

when A(ω) is known only on a discrete set of frequencies
ωj . To do that we use a cubic spline model for A(ω) and
integrate analytically (E1). However, instead of using the same
form for the polynomials Sj (ω) in the whole frequency range,

we take

Sj (ω) = aj (ω − ωj )3 + bj (ω − ωj )2 + cj (ω − ωj ) + dj

(E2)

for ωl < ω < ωr and

Sj (u) = a′
j (u − uj )3 + b′

j (u − uj )2 + c′
j (u − uj ) + d ′

j

(E3)

for ω < ωl and ω > ωr ,

u =
{

1
ω−ω0l

, ω < ωl,

1
ω−ω0r

, ω > ωr,
(E4)

where ωl and ωr are defined in Appendix H. We use ω as the
integration variable in the central region and u on the left- and
right-hand-side regions. Thus, (E1) becomes

G(iωn) = − 1

2π

∫ ul

0

du

u2

A(u)

iωn − 1/u − ω0l

+ 1

2π

∫ ωr

ωl

dω

2π

A(ω)

iωn − ω
− 1

2π

∫ 0

ur

du

u2

A(u)

iωn − 1/u − ω0r

, (E5)

where ul = 1/(ωl − ω0l) and ur = 1/(ωr − ω0r ). Let us assume for now that the coefficients in Eqs. (E2) and (E3) are known.
On the left-hand side we have

Gl(iωn) = − 1

2π

L∑
j=1

∫ uj+1

uj

du
aju

3 + bju
2 + cju + dj

(iωn − ω0l)u2 − u

= − 1

2π

L∑
j=1

{
u

(iωn − ω0l)2
+ u2

2(iωn − ω0l)
+ ln [1 − u(iωn − ω0l)]

(iωn − ω0l)3

}uj+1

uj

aj

+
{

u

iωn − ω0l

+ ln [1 − u(iωn − ω0l)]

(iωn − ω0l)2

}uj+1

uj

bj + ln [1 − u(iωn − ω0l)]

iωn − ω0l

∣∣∣∣
uj+1

uj

cj

+{− ln(u) + ln[1 − u(iωn − ω0l)]}
∣∣∣∣
uj+1

uj

dj , (E6)

where L is the number of intervals on the left and aj , bj , cj , and dj are the coefficients obtained after expanding (E3). In the
center, we obtain

Gc(iωn) = 1

2π

L+M∑
j=L+1

∫ ωj+1

ωj

dω

2π

aj (ω − ωj )3 + bj (ω − ωj )2 + cj (ω − ωj ) + dj

iωn − ω

= 1

2π

L+M∑
j=L+1

∫ ωj+1−ωj

0

dω

2π

ajω
3 + bjω

2 + cjω + dj

iωn − ωj − ω

= 1

2π

M∑
j=1

{
−(iωn − ωj )2ω − (iωn − ωj )

ω2

2
− ω3

3
− (iωn − ωj )3 ln[−iωn + ωj + ω]

}ωj+1−ωj

0

aj

+
{
−(iωn − ωj )ω − ω2

2
− (iωn − ωj )2 ln[−iωn + ωj + ω]

}ωj+1−ωj

0

bj

+{−ω − (iωn − ωj ) ln[−iωn + ωj + ω]}ωj+1−ωj

0 cj − ln[−iωn + ωj + ω]|ωj+1−ωj

0 dj , (E7)

where M is the number of intervals in the central region.
Between the first and the second lines, we have made the
change of variable (ω − ωj ) → ω in each interval. For the
right-hand side, the expression for Gr is the same as (E6),

except that ω0l is replaced with ω0r and the sum goes from
L + M + 1 to L + M + N , where N is the number of intervals
in that region. Then we have G(iωn) = Gl(iωn) + Gc(iωn) +
Gr (iωn) and, forming a vector  with the coefficients aj , bj ,
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cj , and dj of all the intervals, we obtain, in matrix form,

G = K, (E8)

whereK is the matrix obtained from expressions (E6) and (E7)
and the expression similar to (E6) for the right-hand side of
the grid.

The coefficients are the solution to the equations

Sj (ωj ) = A(ωj ),

Sj (ωj+1) = A(ωj+1),

S ′
j (ωj+1) = S ′

j+1(ωj+1),

S ′′
j (ωj+1) = S ′′

j+1(ωj+1),

j = 1, . . . ,N ,

(E9)

which provides 4N − 2 equations, where N = L + M + N

is the total number of intervals. The last two equations can be
taken as

∂A(u)

∂u

∣∣∣
u=0+

= 0,

∂A(u)

∂u

∣∣∣
u=0−

= 0, (E10)

which correspond to

lim
ω→∞ ω2∂A(ω)/∂ω = 0,

lim
ω→−∞ ω2∂A(ω)/∂ω = 0. (E11)

The linear system that gives the spline coefficients in terms of
the spectral weight has the form B = T A, where T A is a
vector with elements that are equal either to values of A or to
zero. Finally,

G = KA, (E12)

where

K = KB−1T (E13)

is the kernel matrix.

APPENDIX F: MINIMIZING 1
2 χ 2 − αS

We want to minimize

Q = χ2

2
− αS

= 1

2
(G − KA)T C−1(G − KA)

+α
∑

i

�ωiA(ωi) ln
A(ωi)

D(ωi)
. (F1)

This form of χ2 requires O(N2
ωn

) operations to compute,
which is not optimal for numerical calculation. Instead, if we
diagonalize the covariance C to obtain

C̃ = U†CU, (F2)

we can rewrite χ2 as

χ2 = (G̃ − K̃A)T (G̃ − K̃A), (F3)

where

G̃ =
√

C̃−1U†G,

K̃ =
√

C̃−1U†K, (F4)

and χ2 is computed in O(Nωn
) operations instead. Thus,

Q = 1

2
(G̃ − K̃A)T (G̃ − K̃A)

+α
∑

i

�ωiA(ωi) ln
A(ωi)

D(ωi)
, (F5)

is the function to minimize with respect to elements of A. This
is done by solving ∇Q = 0, namely

−K̃T (G̃ − K̃A) + α[�ω ln(D−1A) + �ω] = 0, (F6)

where �ω and D are the diagonal matrices with �ω and D as
their diagonals, respectively.

Now suppose we know the spectrum Aj−1 at αj−1 and
want to obtain the spectrum Aj at αj such that Aj differs only
slightly from Aj−1. We can write Aj = Aj−1 + δAj and we
have

ln

[
Aj (ωi)

D(ωi)

]
≈ ln

[
Aj−1(ωi)

D(ωi)

]
+ δAj (ωi)

Aj−1(ωi)
. (F7)

Then (F6) can be written as

[K̃T K̃ + αj�ωA−1
j−1]δAj

= K̃T (G̃ − K̃Aj−1) − αj [�ω ln(D−1Aj−1) + �ω], (F8)

where Aj−1 is the diagonal matrix made from Aj−1. This
equation can be solved iteratively to obtain Aj , corresponding
to αj , starting from Aj−1, corresponding to αj−1. This means
that, after the first iteration, Aj−1 in Eq. (F8) is replaced with
An

j + δAn
j obtained at the nth iteration. The iterations stop

when δAj is vanishingly small.
However, even though the original expression for the

entropy part prevents A from being negative, the solution to
(F8) can produce negative values because of the approximation
(F7). Since, in any case, the argument of the log on the
right-hand side of (F8) cannot be smaller than the smallest
representable floating point number fmin on the computer, one
solution to that problem is to smoothly continue the log by a
quadratic function whenever Aj (ωi)/D(ωi) < fmin. Although
it will not completely prevent negative values of A(ωi) from
appearing, the parameters of the quadratic function can be
chosen to strongly penalize those values, so that only rare
negative values of very small magnitude will appear in regions
where A(ωi) should vanish, values that can thus be considered
indeed as vanishing. Therefore, we replace the entropy part in
Eq. (F5) with

S̄ =
∑

i

si , (F9)
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where

si =
{

−�ωiA(ωi) ln
[

A(ωi )
D(ωi )

]
, A(ωi) > Amin(ωi),

−{
c2(ωi )

2 [A(ωi) − Amin(ωi)]2 + c1(ωi)[A(ωi) − Amin(ωi)] + c0(ωi)
}
, A(ωi) < Amin(ωi),

(F10)

with Amin(ωi) = fminD(ωi), and thus

∂si

∂A(ωj )
= δij

{
−{

�ωi ln
[

A(ωi )
D(ωi )

] + �ωi

}
, A(ωi) > Amin(ωi),

−{
c2(ωi)[A(ωi) − Amin(ωi)] + c1(ωi)

}
, A(ωi) < Amin(ωi).

(F11)

The matching of the derivatives at A(ωi) = Amin(ωi) gives
c1(ωi) = �ωi[ln(fmin) + 1]. As for c2(ωi), it must be large
enough to avoid negative values of A, but not too large;
otherwise, it would degrade the system’s conditioning.

Using (F11), the system (F8) becomes[
K̃T K̃ + MS

j

]
δAj = K̃T (G̃ − K̃Aj−1) + αjS

′
j−1, (F12)

where

(
MS

j

)
lm

= αjδlm

{
�ωl

Aj−1(ωl )
, A(ωl) > Amin(ωl),

c2, A(ωl) < Amin(ωl),
(F13)

and S ′
j−1 = ∇S̄j−1 is the gradient of the entropy (F9) evaluated

at Aj−1.
Because the elements in MS

j can differ by several orders
of magnitude, the system (F12) seems ill conditioned. This
problem can, however, be overcome by a preconditioning step.
If we write the right-hand side as Bj , (F12) can be written as

[√(
MS

j

)−1
K̃T K̃

√(
MS

j

)−1 + I
]√

MS
j δAj

=
√(

MS
j

)−1
Bj , (F14)

where I is the identity matrix. Then we use a singular value
decomposition (SVD) to write

K̃
√(

MS
j

)−1 = Uj κj VT
j , (F15)

where Uj and Vj are orthogonal matrices and κj is diagonal,
so that (F14) can be written[

κT
j κj + I

]
VT

j

√
MS

j δAj = VT
j

√(
MS

j

)−1
Bj . (F16)

Finally, the solution

δAj =
√(

MS
j

)−1
Vj

[
κT

j κj + I
]−1

VT
j

√(
MS

j

)−1
Bj (F17)

is easy to obtain since [κT
j κj + I ] is diagonal.

The value of Aj is obtained by iterating (F17) until δAj ≈
0. The convergence criteria we use is

∑
i �ωi |δAj | < tolδA,

where tolδA = 10−12 by default.
Assuming that Nωn

< Nω, where Nωn
is the number of

Matsubara frequencies and Nω, the number real frequencies,
the SVD solves the system (F14) in O(N2

ωn
Nω) operations.

This is more efficient than a more direct method, like Gauss
elimination, that would take O(N3

ω) operations. Having the
condition Nωn

< Nω is preferable, in general, to ensure that
there are enough degrees of freedom in the spectrum A to
capture all the structures contained in the Green’s function
G. If Nω < Nωn

, then the SVD computes the solution in
O(Nωn

N2
ω).

For the above method to work, the initial value of α must be
chosen such that the entropy term dominates. Using the SVD
for the default-model region

K̃
√

e−1�ω−1D = UDκDVT
D, (F18)

we use αinit = 100 max(κT
DκD). This ensures that the solution

is very close to e−1D when the computation starts, and that αinit

is not too high, which would uselessly make the computation
longer.

We know that the computation is over when
d log χ2/d log α is very small compared to its typical value
in the information-fitting region. The condition we use to stop
the computation is when d log χ2/d log α becomes smaller
than a certain fraction, say 0.01, of its maximum value.

APPENDIX G: RECURSIVE SOLUTION FOR THE
SPECTRUM A IN THE LIMIT OF SMALL CHANGES IN α

In this Appendix we derive Eq. (23), which is useful to
understand the changes of χ2 in the noise-fitting region. This
expression is not used in the code itself. Defining

αj = αj−1 − �αj , (G1)

expression (F8) can be rewritten as

[
K̃T K̃ + αj�ωA−1

j−1

]
δAj

= K̃T (G̃ − K̃Aj−1) − αj−1[�ω ln(D−1Aj−1) + �ω]

+�αj [�ω ln(D−1Aj−1) + �ω]. (G2)

Now if Aj−1 is the spectrum that minimizes (F1) when α =
αj−1, from (F6), the first two terms on the right-hand side
cancel each other and we obtain

δAj = �αj

[
K̃T K̃ + αj�ωA−1

j−1

]−1

× [�ω ln(D−1Aj−1) + �ω]. (G3)

Hence, in the limit of small �α, the variation in A does
not depend explicitly on the input Green’s function, and the
spectrum at αj is given by

Aj = Aj−1 + �αj

[
K̃T K̃ + αj�ωA−1

j−1

]−1

× [�ω ln(D−1Aj−1) + �ω]. (G4)
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The usefulness of this result is that it shows that the variation
δA is a smooth function of ω if �ω, D, and the current
spectrum A are themselves smooth. Therefore, A will have
the tendency to remain a smooth function when α decreases,
even in the overfitting regime. This behavior in the evolution
of A as a function of α is very useful in practice. Indeed, on
one hand, a smooth spectrum is generally desirable and, on
the other hand, because it prevents fitting the noise easily, it
provides an easy and efficient method for choosing the optimal
value of α, as discussed in Sec. III B.

APPENDIX H: NONUNIFORM REAL-FREQUENCY GRID

Let us define three regions for the grid: from −∞ to ωl ,
from ωl to ωr , and from ωr to ∞. Then, let us assume that the
step in the central region varies smoothly between �ωl and
�ωr . Now for ω � ωl we define

u = 1

ω − ω0l

(H1)

and, for ω � ωr ,

u = 1

ω − ω0r

. (H2)

Let us consider the left region. Assuming a constant step �u

and that ωmin is the first finite frequency of the grid on the left,
we want to determine ω0l and the number of values of u, Nu,
such that �ω is equal on the left and on the right side of ωl .
Those conditions give the step

�u = 1

ωl − ω0l

− 1

ωl − �ωl − ω0l

= − �ωl

(ωl − �ωl − ω0l)(ωl − ω0l)
(H3)

and the grid

u = �u,2�u, . . . ,Nu�u, (H4)

so that, given that the first finite value of u is �u,

ωmin = 1

�u
+ ω0l

= − (ωl − �ωl − ω0l)(ωl − ω0l)

�ωl

+ ω0l , (H5)

and thus,

ω0l = ωl +
√

�ωl(ωl − ωmin), (H6)

which is the solution such that u stays finite for all ω < ωl .
For now, ω0l is a temporary value. For Nu, from (H4), the
definition of u (H1), and the fact that �ω is equal on each side
of ωl , we have

Nu�u = 1

ωl − �ωl − ω0l

, (H7)

which gives, using (H3) for �u,

Nu = ω0l − ωl

�ωl

. (H8)
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FIG. 6. Example of frequency grid density 1/�ω as a function
of ω around the central part of the grid. In this example, the user has
provided parameters defining a grid with different constant frequency
steps in different intervals in the form of Eq. (26). The program
matches smoothly the steps in the different regions using a hyperbolic
tangent shape. Then the distance �u = 1/(ωi+1 − ωμ) − 1/(ωi −
ωμ) (with ωμ fixed by the cutoff) is constant outside the central
interval [−5,5].

Now if we substitute (H6) in that expression, Nu, in general,
is not an integer. Therefore, we define Nu as

Nu = ceil

(
ω0l − ωl

�ωl

)
. (H9)

We then redefine ω0l as

ω0l = ωl + Nu�ωl (H10)

and ωmin as well using (H5). The procedure is the same for the
right region of the grid.

Figure 6 shows 1/�ω as a function of ω around the central
region for such a grid. The central region is also nonuniform,
with a step that varies smoothly between the subregions of
constant step defined by the user in the form given by Eq. (26).
In practice it is recommended that the ratio between step sizes
of consecutive frequency ranges does not exceed a factor
of four. Large ratios can lead to spurious oscillations in the
spectral weight.

This is the natural grid corresponding to the spline used to
model A(ω) and described in Appendix E. It keeps the number
of points very low while keeping the integrals of A(ω) very
accurate for smooth spectra. Using a continuous step is also
necessary to avoid spurious oscillations in the results.

0 20 40 60
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200

400

600

800

1000

n

j

FIG. 7. Example of nonuniform Matsubara frequency index grid.
The vertical axis is the index of the Matsubara frequency and the
horizontal axis numbers the frequencies that are kept.
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APPENDIX I: NONUNIFORM MATSUBARA
FREQUENCY GRID

Let us assume an initial number of Matsubara frequencies
N0 + 1, where N0 = 2r with r an integer. A nonuniform Mat-
subara frequency grid can be generated as follows. Define the
following.

N1 = N0
2m , where N1 + 1 is the number of adjacent frequen-

cies close to the first frequency iω0, where m is an integer that
satisfies 0 � m < r;

N2 = N1
2 , number of frequencies in each subinterval with a

fixed spacing between Matsubara frequencies; and N = N1 +
1 + mN2, total number of frequencies.

Then the Matsubara frequencies iωn(j ) are defined using

n(j ) =
{

j, j = 0, . . . ,N1 − 1,

2lj +1mod(j − N1,N2) + N12lj , where lj = floor
(

j−N1

N2

)
, j = N1, . . . ,N − 1,

(I1)

Figure 7 shows n(j ) for N0 = 1024 and N1 = 16, which
gives a total of 65 frequencies.

The above nonuniform grid is used if Nωn
, the number

of Matsubara frequencies in the data, exceeds a maximum
default value Nd chosen typically between a few hun-
dred and a thousand. This default value can be modified
by the user. To generate the nonuniform grid, we first

choose r such that (N0 = 2r ) � Nωn
− 1 is satisfied. For

a given m, if N0 + 1 is strictly larger than Nωn
, then the

grid must be truncated to obtain a maximum frequency
iωmax smaller or equal to the maximum frequency available
in the data iωNωn−1. Given that procedure, m is chosen
such that the number of Matsubara frequencies does not
exceed Nd .
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