
PHYSICAL REVIEW E 94, 023114 (2016)

Relation of the fourth-order statistical invariants of velocity gradient tensor in isotropic turbulence
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We show by direct numerical simulations (DNSs) that in different types of isotropic turbulence, the fourth-order
statistical invariants have approximately a linear relation, which can be represented by a straight line in the phase
plane, passing two extreme states: the Gaussian state and the restricted Euler state. Also, each DNS case
corresponds to an equilibrium region that is roughly Reynolds-dependent. In addition, both the time reversal and
the compressibility effect lead to nonequilibrium transition processes in this phase plane. This observation adds
a new restriction on the mean-field theory.
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I. INTRODUCTION

In homogeneous isotropic turbulence (HIT), the expression
of the statistical moments of a velocity gradient tensor has
always been considered an important basic problem [1]. The
quasi-Gaussian closures [2,3] assume a relation between the
second- and fourth-order moments, while the direct interaction
approximation (DIA) relaxes this restriction [4] and captures
more details on the fourth-order accumulations [5,6]. For all
of these existing closure methods, the high-order moments
are always difficult problems. In fact, there are even quite a
few studies on understanding and explaining the high-order
statistics.

It is not difficult to show that both the second-order [7]
and third-order moments [8] of a velocity gradient tensor have
only one degree of freedom, but for the fourth-order moments
it is more complicated. From Siggia [9] one can obtain
four invariants, which are expressed by the combinations of
vorticity and strain rate. Several studies have been performed
to deduce the exact formation of the fourth-order moments
[9–11]. In particular, from Hierro and Dopazo [11] these four
invariants can be defined as
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with 〈 〉 the ensemble average and ui,j = ∂ui/∂xj the velocity
gradient tensor. In some of the literature, these four invariants
are alternatively written in the formula

I1 = 〈s4〉, I2 = 〈s2ω2〉, I3 = 〈ωisijωkskj 〉, I4 = 〈ω4〉, (2)

with s2 = sij sij , sij = (∂ui/∂xj + ∂uj/∂xi)/2, and ω is the
vorticity. The transformation between (1) and (2) can be found
in Ref. [11].

In the present contribution, we aim to investigate the
relation among these invariants in real turbulence. We show by
different types of direct numerical simulation (DNS) cases that
the locations of (F2/F1,F3/F1) in the phase plane are always
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near a straight line, which can be defined by two extreme
theoretical states. In addition, we show the evolution trends
in this phase plane for compressible turbulence and time-
reversed nonequilibrium turbulence. Finally, the observation is
employed in the mean-field theory to provide a new restriction.

II. EXTREME STATES

In this section, we list two typical extreme states that were
employed in turbulence closures, and we show that both states
imply typical constant points in the (F2/F1,F3/F1) phase
plane.

A. Gaussian state

The quasi-Gaussian assumption is widely used in turbu-
lence closures such as the eddy-damping quasinormal Marko-
vian (EDQNM) theory [2]. Similar to that, we may obtain
Gaussian relations in the physical space for the fourth-order
moments in Eq. (1), which simply leads to
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Considering the relation in HIT that 〈u2
1,1〉 = 1

2 〈u2
2,1〉 [12],

we have finally
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or using the other invariants,

I1 : I2 : I3 : I4 = 1 :
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B. Restricted Euler state

Another extreme state, known as the restricted Euler (RE)
state, corresponds to vanishing pressure and viscous terms
in the Navier-Stokes equations and retaining the advection
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term [13]. As discussed by Hill and Boratav, the RE state
yields [see Eqs. (12) and (13) of Ref. [14]]

∂rD1111(r) + 2

r
[D1111(r) − 3D11αα(r)] = 0,

∂rD11αα(r) − 4

3r
[Dαααα(r) − 3D11αα(r)] = 0,

(6)

where D is the fourth-order structure function with the
two-point distance r , and the subscripts 1 and α denote the
longitudinal and transverse components, respectively (without
taking summation). Taking the limit of Eq. (6) when r → 0,
one obtains finally

F1 : F2 : F3 = 1 :
1

2
:

15

8
. (7)

The value of F4 is independent of the other three values in
the RE state. Due to the uncertainty of F4, we cannot obtain
any exact relation on the invariants I1, . . . ,I4.

We remark that although the RE system leads to singularity
of the velocity gradient in finite time [13], the RE simplification
provides an analytical tool to explain the invariants that can
be nonsingular, for example the so-called Q-R phase-space
problem [15–18]. Q and R are defined as second- and third-
order invariants, respectively, while in the present contribution
we show similarly that the RE system leads to an extreme state
for the fourth-order invariants.

Comparing the Gaussian state and the RE state, it is possible
to define an (F2/F1,F3/F1) phase plane, in which the two states
correspond to two typical points. In the following section, we
will show by DNS databases the behavior of real turbulence
in this phase plane.

III. NUMERICAL RESULTS

In this section, we summarize and perform DNS for
different types of HIT flows to investigate the statistical
behavior in the (F2/F1,F3/F1) phase plane, including forced
incompressible turbulence, free-decaying and time-reversed
nonequilibrium incompressible turbulence, and compressible
turbulence.

A. Forced incompressible turbulent flows

In the work of Ishihara et al. [19], the fourth-order statistical
moments were carefully examined with high-resolution DNS
by using the invariants I1, . . . ,I4, and they were discussed
together with the DNS data by Kerr [20]. We calculate the
values of F2/F1 and F3/F1 from these data and plot them in
Fig. 1. It is obvious that all the points are located around
the straight line passing both the Gaussian state and the
RE state (denoted as the “Gaussian-RE line” in the present
contribution), which implies that each field can be statistically
regarded as a superposition of these two extreme states. Indeed,
this is because each invariant Fi is a different mix of the
invariants I1, . . . ,I4, which are roughly of the same scaling
in Ref. [19], expect for lower Reynolds numbers. Another
observed fact is the trend in each group that when the Reynolds
number decreases, the field usually moves toward the Gaussian
state in the (F2/F1,F3/F1) phase plane (except for several
cases). This may be because in lower-Reynolds turbulence the
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FIG. 1. Comparisons of F2/F1 and F3/F1 in forced incom-
pressible turbulent flows. 12 < Reλ < 1133. The arrows denote the
decrease of the Reynolds number in each group of DNS cases.

inertial range is shorter, and the dissipative range, which is
close to a Gaussian state, occupies more parts in the scale
space. Therefore, phenomenally we may conclude that when
a turbulent flow is more “well-organized,” it is located farther
away from the Gaussian state in the (F2/F1,F3/F1) phase
plane with greater values of F2/F1 and F3/F1 (we call this
“over-Gaussian” in the present contribution).

B. Free-decaying and time-reversed nonequilibrium
incompressible turbulent flows

We perform a series of DNS runs with 3843 resolution with
regard to the free-decaying turbulence as well its time-reversed
nonequilibrium cases. We review here that the idea of time
reversal is to construct a gedanken experiment [21], which
leads to extreme spectrally nonequilibrium turbulent flows
[22]. The numerical details of the calculation method can
be found in Refs. [23] and [21]. A free-decaying turbulence
is calculated and is denoted as “Normal-Normal” since all
scales are normally decaying; two parallel nonequilibrium
cases are performed by reversing the velocity field of the
“Normal-Normal” case (with “Reverse-Normal” reversing
only the large-scale field, while “Reverse-Reverse” reverses
all scales). The Reynolds number is Reλ = 80.8 at the time
of reversal. From Fig. 2(a) it is clear that all cases are
located near the Gaussian-RE line in the over-Gaussian region,
which is consistent with the results of forced turbulence as
discussed in the previous subsection. In Fig. 2(b) it is shown
that the free-decaying case is located in a small statistically
equilibrium region with 0.80 < F2/F1 < 0.83, while the other
nonequilibrium cases correspond to increasing values of F2/F1

and F3/F1 in a short time (i.e., in about one turnover time)
and statistically equilibrium values (about 0.825 < F2/F1 <

0.855) in a longer time. Considering the analysis in the
previous subsection, this short-time nonequilibrium transition
procedure can be considered as a self-organizing process,
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FIG. 2. Comparisons of F2/F1 and F3/F1 in free-decaying turbulence (denoted as “Normal-Normal” in the figure) and time-reversed
nonequilibrium turbulent flows (with “Reverse-Normal” reversing only the large-scale field, while “Reverse-Reverse” reversing all scales).
Reλ = 80.8 at the time of reversal. The arrows denote the direction of time in each group of DNS cases. (a) Global view. (b) Zoomed view.

which is consistent with our a priori tests for other statistical
quantities such as the skewness of the velocity gradient [22].

C. Free-decaying compressible turbulent flows

To the best of our knowledge, there is still no existing re-
search on the effect of compressibility on the fourth-order mo-
ments of a velocity gradient. Here we perform a series of DNS
cases to investigate the behavior of compressible turbulence.
The nondimensional, compressible Navier-Stokes equations
in the strong conservation form are solved within the frame-
work of a high-order finite-difference method. A seventh-
order low-dissipative monotonicity-preserving scheme [24] is
adopted to capture shock waves that emerge from the strong
compressible turbulence, while a classic sixth-order compact
central scheme is used to solve the viscous terms [25]. The
Navier-Stokes equations are advanced in time by using the
third-order total variation diminishing Runge-Kutta scheme
[26]. The periodic boundary conditions are employed in all
three directions [27]. The initial thermodynamic variables
have uniform distributions, and the initial velocity field is
generated according to the method of Rogallo [28] and satisfies
the Gaussian spectral density function. A 5123 resolution is
employed with initial Reynolds number Reλ = 72 and initial
turbulent Mach numbers Ma0 = 0.1, 0.3, 0.5, 0.7, 0.9, and 1.2,
respectively. Figure 3(a) shows the fourth-order behavior with
low initial Mach numbers (Ma0 � 0.5), while Fig. 3(b) shows
the behavior with higher initial Mach numbers (Ma0 � 0.7).
Similar to the results in the previous subsections, all points
are also located near the Gaussian-RE line. The difference
is that here, the initial fields of these compressible cases are
very distinct in the (F2/F1,F3/F1) phase plane: higher initial
Mach numbers yield greater values of F2/F1 and F3/F1. For
the Ma0 = 0.7 case, the initial field is near the RE state, while
for the Ma0 = 0.9 and 1.1 cases, the initial fields are located

at the other side with small F2/F1 and F3/F1 in the phase
plane (we call it “over-RE” by comparing to the over-Gaussian
states). Another fact observed in the figures is that after a
transition process, all cases reach their own equilibrium status.
The difference is that for small initial Mach numbers, the
transition processes are not monotonous, as shown in Fig. 3(a).
This transition process in the (F2/F1,F3/F1) phase plane
may imply new physics, since traditional investigations of
low-order statistics of free-decaying compressible turbulence
do not indicate such a transition. As discussed in previous
subsections, this transition implies a self-organizing process
for the fourth-order statistics.

IV. DISCUSSIONS

A. Gaussian-RE line and pressure effect

It is quite difficult to systematically explain the Gaussian-
RE relation using a complete theory. However, at least
we can say that this phenomenon is closely related to the
pressure effect. This can be explained by comparing to the
RE simplification, where the anisotropic pressure Hessian is
omitted. If we reconsider this pressure Hessian and obtain
the statistically steady Navier-Stokes equations, we have [by
taking the limit of r → 0 in Eqs. (5) and (6) of Ref. [14]]

F1 − 2F2 = − 1

ρ

〈
u2

1,1p,11
〉
,

5F2 − 4

3
F3 = − 1

ρ

〈
u2

2,1p,11 + 2u1,1u2,1p,12
〉
,

(8)

with p pressure and p,ij = ∂2p/∂xi∂xj .
The right-hand-side terms of Eq. (8) represent the corre-

lations between the pressure Hessian in RE and the velocity
gradients. Clearly, these correlations lead to the departure of
the RE state in the (F2/F1,F3/F1) plane. These pressure-
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FIG. 3. Comparisons of F2/F1 and F3/F1 in free-decaying compressible flows. The arrows denote the direction of time in each group of
DNS cases. 14 < Reλ < 70. (a) Ma0 � 0.5; (b) Ma0 � 0.7.

velocity gradient correlations are indeed central problems
of the RE system, which have attracted many studies, in-
cluding geometrical considerations [29,30], assumptions on
the short-time deformation [31], and assumptions on the
Gaussianity of the pressure Hessian [32]; however, presently
the understanding is still not clear. From the present study, the
Gaussian-RE line simply implies an approximate relation

〈
6u2

1,1p,11 − u2
2,1p,11 − 2u1,1u2,1p,12

〉 = 0, (9)

which is expected to inspire future research on the pressure-
velocity gradient correlations.

We recall another fact to explain and to support the
Gaussian-RE line phenomenon. In the investigation of the
short-term evolution of Lagrangian velocity gradient corre-
lation, it is found that for statistically steady turbulence, there
should be (see Sec. III A of Ref. [33])

〈u̇i,j u̇j,i〉/〈u̇i,j u̇i,j 〉 ≈ 0.6, (10)

where •̇ is the Lagrangian derivative. Without omitting the
pressure term or the viscosity term, the incompressible Navier-
Stokes equations lead to [see Eq. (4) of Ref. [13]]

u̇i,j = −ui,kuk,j − 1

ρ
p,ij + νui,jkk. (11)

Substituting Eq. (11) into (10) yields the following formula:

〈ui,kuk,juj,mum,i〉 + 2
ρ
〈ui,kuk,jp,ij 〉 + · · ·

〈ui,kuk,jui,mum,j 〉 + 2
ρ
〈ui,kuk,jp,ij 〉 + · · · ≈ 0.6. (12)

We do not write all terms here, but only emphasize that some
pressure-related terms are symmetric to the subscripts and
therefore remain the same between numerator and denom-
inator [e.g., 〈ui,kuk,jp,ij 〉, corresponding to the right-hand

side of Eq. (8)], while some terms are not (e.g., the fourth-
order velocity gradient correlations 〈ui,kuk,juj,mum,i〉 and
〈ui,kuk,jui,mum,j 〉, which can be decomposed to the invariants
F1, . . . ,F4). The ratio 0.6 represents a balance among them that
is roughly Reynolds-independent [33]. This is quite similar to
our discussion above, i.e., Eqs. (8) and (9), although many
other additional terms also appear here in Eq. (12). In brief,
though not rigorously, the constant 0.6 implies that there is
a Reynolds-independent relation for the pressure effect of the
fourth-order velocity gradient correlations, which is consistent
with the Gaussian-RE result (9) and therefore supports the
present work.

In addition, the studies of Yeung et al. [34,35] might also be
related to the present contribution, and they show approximate
linearity between the high-order vorticity flatness and the
high-order strain flatness. Although the underlying reason is
not clear, this fact might also be useful evidence for future
investigations of the constraints of high-order statistics in
turbulent flows.

B. Using the Gaussian-RE line in the mean-field theory

As shown previously from the DNS databases, the
Gaussian-RE line might be a good approximation for varies
turbulent fields. This fact involves a new restriction that
can be employed in statistical turbulence models concerning
fourth-order statistics, such as, for instance, the mean-field
theory (MFT).

The MFT was introduced to take into account the neglected
pressure terms of the RE state [14,36]. It was found that
neglecting the pressure term involves an imbalance of the
approximate equation for the fourth-order structure function
at the inertial range, of the order of 10% [36]. In MFT, two
underdetermined functions G and H were observed to be
constant in the inertial range, but in the dissipative range this is
not the case. Similar to the discussion in the previous section,
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we have
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For the third-order moments, in HIT we have
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where S = 〈u3
1,1〉/〈u2

1,1〉3/2 is the skewness of the longitudinal
velocity gradient, which is a negative constant in HIT, and
K = 〈u4

1,1〉/〈u2
1,1〉2 is the flatness of the longitudinal velocity

gradient, which is related to the intermittency behavior.
Therefore, when r → 0, substituting (14) in (13), finally

we can obtain

F1 : F2 : F3 = 1 :
2+2G

4+G
:

4

3

× 9(1+G)(5+G+2H )K−2(4+G)HS2

(4+G)(8+3G)K
.

(15)

Also, the value of F4 is independent of the other three values in
MFT. If the pressure-term functions G and H tend to 0 when
r → 0, Eq. (15) is reduced to the RE state (7); if we choose
G = 1/2 and H = 6K/(3K − S2) when r → 0, Eq. (15) is
reduced to the Gaussian state (4).

The Gaussian-RE line implies a linear interpolation be-
tween the Gaussian state and the RE state, leading to

K

S2
= − 16(4 + G)H

9(79G + 34G2 − 16H − 16GH )
, (16)

which implies a relation between the model functions G and
H in MFT at small scales.

C. Discussions on the fourth invariant F4

In the present contribution, the fourth invariant F4 has
not been discussed yet, simply because in the RE state F4

is independent of the other three invariants and there remains
only the Gaussian prediction for F4. Here we attempt to discuss
the behavior of F4 from DNS evidence, though without much
theoretical analysis. In Fig. 4 we plot all DNS results of Sec. III
in the (F2/F1,F3/F1) and (F2/F1,F4/F1) planes, respectively.
As already discussed, all (F2/F1,F3/F1) points are located
near the Gaussian-RE line, shown in Fig. 4(a). By contrast,
the fitting line of all (F2/F1,F4/F1) results in Fig. 4(b) is far
from the Gaussian state, which means that it is difficult to find
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FIG. 4. Drawing all DNS results together. (a) The (F2/F1,F3/F1)
phase plane; (b) the (F2/F1,F4/F1) phase plane; (c) the
(F2/F1,F4/F1) phase plane, zoomed view.
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another “Gaussian-RE” method to describe the behavior of
F4; moveover, the fitting lines for separated DNS groups are
distinct, as shown in Fig. 4(c), implying that the physical laws
(if they exist) for these DNS groups are not the same. Further
investigations are therefore expected to clarify the physics of
the fourth invariant F4.

In addition, from Sec. IV A we argued that the Gaussian-RE
line corresponds to a pressure effect that can be represented
by a relation of the pressure-velocity correlations. Whether
considering Eq. (9) or (12), there is only one equation for
describing this pressure effect. Therefore, from the present
analysis we can only obtain one pressure-caused constraint on
the invariants (i.e., the Gaussian-RE line), and we cannot pro-
vide more linear constraints for describing F4. We remark that
the behavior of F4 might be related to another physical mech-
anism, which is beyond the scope of the present contribution.

V. CONCLUSION

In the present contribution, we aim to investigate the
relation of the fourth-order statistical invariants of a velocity
gradient tensor in different types of isotropic turbulence. The
observations are summarized and discussed as follows:

(i) All turbulent fields are located near the Gaussian-RE
line in the (F2/F1,F3/F1) phase plane, which implies that
any turbulent field might be considered as, in the sense of
fourth-order statistics, a superposition of the Gaussian state
and the RE state. This fact, which corresponds to a pressure
effect, reduces approximately one degree of freedom for the
fourth-order tensor. This also leads to a new restriction on the
MFT at small scales.

(ii) Each DNS run has its own “equilibrium region” that is
roughly Reynolds-dependent. With a higher Reynolds number,
the flow is more over-Gaussian in the (F2/F1,F3/F1) phase
plane.

(iii) Both the nonequilibrium transition process and the
compressible transition process lead to the toward-equilibrium
trajectories in the (F2/F1,F3/F1) phase plane. We remark that
compared to the recent studies on nonequilibrium turbulence
based on energy transfer [22,37,38], here the nonequilibrium

is a description in the phase plane of fourth-order invariants,
which may imply new physics on high-order statistics. In
particular, the nonequilibrium evolution of compressible flows
has not been reported in the literature, and future studies are
called for.

(iv) There seems to be no universal law for the fourth
invariant F4 in the phase space. In particular, the Gaussian
point is indeed far from all possible fitting lines for F4.

We remark that the present contribution is not a comparison
of the Gaussian and RE assumptions. Although most DNS
cases are closer to the Gaussian state, we do not argue that
the Gaussian assumption is better. Instead, we emphasize that
both assumptions are appropriate simplifications that correctly
capture parts of the physics, since both are located in the
Gaussian-RE line, which is shown to be a good approximation
for real turbulence. The present contribution also shows that
both assumptions need to be relaxed to be more general
for different turbulent flows: for the Gaussian assumption,
one should consider the fourth-order accumulations [5,6] for
relaxation; for the RE assumption, one should consider the
pressure effect for obtaining more realistic models on the
fourth-order moments. In future work, we therefore expect
to investigate the possibility of decomposing a real flow field
into a Gaussian field and an RE field (similar to the procedure
in Ref. [22]) and to provide more realistic models.

Finally, we clarify that in the present contribution we
use the term “over-Gaussian” to represent a behavior in the
(F2/F1,F3/F1) phase plane. It differs from the definition of
“over-Gaussianity” in the research of intermittency, which
implies that the flatness of velocity gradient K is greater than
the Gaussian value 3 and represents a strong intermittency.

ACKNOWLEDGMENTS

We are grateful to Wouter Bos for the important discussions
and to the two anonymous referees for the many constructive
suggestions. This work is supported by the National Science
Foundation in China (Grants No. 11572025, No. 11202013,
No. 11302012, and No. 51420105008) and the National Basic
Research Program of China (Grant No. 2012CB720200).

[1] C. Meneveau, Lagrangian dynamics and models of the velocity
gradient tensor in turbulent flows, Annu. Rev. Fluid Mech. 43,
219 (2011).

[2] M. Lesieur, Turbulence in Fluids (Kluwer Academic, Dordrecht,
1997).

[3] S. A. Orszag, Lectures on the statistical theory of turbulence:
Fluid Dynamics, Les Houches Summer School of Theoretical
Physics, edited by R. Balian and J. L. Peube (Gordon and Breach,
New York, 1974), p. 677.

[4] R. H. Kraichnan, The structure of isotropic turbulence at very
high Reynolds numbers, J. Fluid Mech. 5, 497 (1959).

[5] W. J. T. Bos and R. Rubinstein, On the strength of the
nonlinearity in isotropic turbulence, J. Fluid Mech. 733, 158
(2013).

[6] W. Bos, R. Rubinstein, and L. Fang, Reduction of mean-square
advection in turbulent passive scalar mixing, Phys. Fluids 24,
075104 (2012).

[7] J. O. Hinze, Turbulence, 2nd ed. (McGraw-Hill, New York,
1975).

[8] F. H. Champagne, The fine-scale structure of the turbulent
velocity field, J. Fluid Mech. 86, 67 (1978).

[9] E. D. Siggia, Invariants for the one-point vorticity and strain rate
correlation functions, Phys. Fluids 24, 1934 (1981).

[10] N. Phan-Thien and R. A. Antonia, Isotropic Cartesian tensors of
arbitrary even orders and velocity correlation functions, Phys.
Fluids 6, 3818 (1994).

[11] J. Hierro and C. Dopazo, Fourth-order statistical moments of the
velocity gradient tensor in homogeneous, isotropic turbulence,
Phys. Fluids 15, 3434 (2003).

[12] G. K. Batchelor, The Theory of Homogeneous Turbulence
(Cambridge University Press, Cambridge, 1953).

[13] B. J. Cantwell, Exact solution of a restricted euler equa-
tion for the velocity gradient tensor, Phys. Fluids 4, 782
(1992).

023114-6

http://dx.doi.org/10.1146/annurev-fluid-122109-160708
http://dx.doi.org/10.1146/annurev-fluid-122109-160708
http://dx.doi.org/10.1146/annurev-fluid-122109-160708
http://dx.doi.org/10.1146/annurev-fluid-122109-160708
http://dx.doi.org/10.1017/S0022112059000362
http://dx.doi.org/10.1017/S0022112059000362
http://dx.doi.org/10.1017/S0022112059000362
http://dx.doi.org/10.1017/S0022112059000362
http://dx.doi.org/10.1017/jfm.2013.405
http://dx.doi.org/10.1017/jfm.2013.405
http://dx.doi.org/10.1017/jfm.2013.405
http://dx.doi.org/10.1017/jfm.2013.405
http://dx.doi.org/10.1063/1.4731302
http://dx.doi.org/10.1063/1.4731302
http://dx.doi.org/10.1063/1.4731302
http://dx.doi.org/10.1063/1.4731302
http://dx.doi.org/10.1017/S0022112078001019
http://dx.doi.org/10.1017/S0022112078001019
http://dx.doi.org/10.1017/S0022112078001019
http://dx.doi.org/10.1017/S0022112078001019
http://dx.doi.org/10.1063/1.863289
http://dx.doi.org/10.1063/1.863289
http://dx.doi.org/10.1063/1.863289
http://dx.doi.org/10.1063/1.863289
http://dx.doi.org/10.1063/1.868373
http://dx.doi.org/10.1063/1.868373
http://dx.doi.org/10.1063/1.868373
http://dx.doi.org/10.1063/1.868373
http://dx.doi.org/10.1063/1.1613648
http://dx.doi.org/10.1063/1.1613648
http://dx.doi.org/10.1063/1.1613648
http://dx.doi.org/10.1063/1.1613648
http://dx.doi.org/10.1063/1.858295
http://dx.doi.org/10.1063/1.858295
http://dx.doi.org/10.1063/1.858295
http://dx.doi.org/10.1063/1.858295


RELATION OF THE FOURTH-ORDER STATISTICAL . . . PHYSICAL REVIEW E 94, 023114 (2016)

[14] R. J. Hill and O. N. Boratav, Next-order structure-function
equations, Phys. Fluids 13, 276 (2001).

[15] B. J. Cantwell, On the behavior of velocity gradient tensor
invariants in direct numerical simulations of turbulence, Phys.
Fluids 5, 2008 (1993).

[16] J. Martin, A. Ooi, M. S. Chong, and J. Soria, Dynamics of the
velocity gradient tensor invariants in isotropic turbulence, Phys.
Fluids 10, 2336 (1998).

[17] Y. Li and C. Meneveau, Origin of Non-Gaussian Statistics
in Hydrodynamic Turbulence, Phys. Rev. Lett. 95, 164502
(2005).

[18] B. Luthi, M. Holzner, and A. Tsinober, Expanding the QR space
to three dimensions, J. Fluid Mech. 641, 497 (2009).

[19] T. Ishihara, Y. Kaneda, M. Yokokawa, K. Itakura, and A.
Uno, Small-scale statistics in high-resolution direct numerical
simulation of turbulence: Reynolds number dependence of
one-point velocity gradient statistics, J. Fluid Mech. 592, 335
(2007).

[20] R. M. Kerr, Higher-order derivative correlations and the align-
ment of small-scale structure in isotropic numerical turbulence,
J. Fluid Mech. 153, 31 (1985).

[21] L. Fang, W. J. T. Bos, L. Shao, and J.-P. Bertoglio, Time-
reversibility of Navier-Stokes turbulence and its implication for
subgrid scale models, J. Turb. 13, 1 (2012).

[22] L. Fang, Y. Zhu, Y. W. Liu, and L. P. Lu, Spectral non-
equilibrium property in homogeneous isotropic turbulence and
its implication in subgrid-scale modeling, Phys. Lett. A 379,
2331 (2015).

[23] L. Fang, L. Shao, J. P. Bertoglio, G. Cui, C. Xu, and Z. Zhang,
An improved velocity increment model based on Kolmogorov
equation of filtered velocity, Phys. Fluids 21, 065108 (2009).

[24] J. Fang, Z. Li, and L. Lu, An optimized low-dissipation
monotonicity-preserving scheme for numerical simulations of
high-speed turbulent flows, J. Sci. Comput. 56, 67 (2013).

[25] S. K. Lele, Compact finite difference schemes with spectral-like
resolution, J. Comput. Phys. 103, 16 (1992).

[26] S. Gottlieb and C. W. Shu, Total variation diminishing Runge-
Kutta schemes, Math. Comput. 67, 73 (1998).

[27] Z. C. Qin, L. Fang, and J. Fang, How isotropic are turbulent
flows generated by using periodic conditions in a cube? Phys.
Lett. A 380, 1310 (2016).

[28] R. S. Rogallo, Numerical experiments in homogeneous turbu-
lence, NASA Tech. Mem. 81315 (1981).

[29] M. Chertkov, A. Pumir, and B. I. Shraiman, Lagrangian tetrad
dynamics and the phenomenology of turbulence, Phys. Fluids
11, 2394 (1999).

[30] A. Naso and A. Pumir, Scale dependence of the coarse-grained
velocity derivative tensor structure in turbulence, Phys. Rev. E
72, 056318 (2005).

[31] L. Chevillard, C. Meneveau, L. Biferale, and F. Toschi, Modeling
the pressure Hessian and viscous Laplacian in turbulence:
Comparisons with direct numerical simulation and implications
on velocity gradient dynamics, Phys. Fluids 20, 101504 (2008).

[32] M. Wilczek and C. Meneveau, Pressure Hessian and viscous
contributions to velocity gradient statistics based on Gaussian
random fields, J. Fluid Mech. 756, 191 (2014).

[33] L. Fang, W. J. T. Bos, and G. D. Jin, Short-time evolution of
lagrangian velocity gradient correlations in isotropic turbulence,
Phys. Fluids 27, 125102 (2015).

[34] P. K. Yeung, D. A. Donzis, and K. R. Sreenivasan, Dissipation,
enstrophy and pressure statistics in turbulence simulations at
high reynolds numbers, J. Fluid Mech. 700, 5 (2012).

[35] D. A. Donzis, P. K. Yeung, and K. R. Sreenivasan, Dissipation
and enstrophy in isotropic turbulence: Resolution effects and
scaling in direct numerical simulations, Phys. Fluids 20, 045108
(2008).

[36] S. Kurien and K. R. Sreenivasan, Dynamical equations for high-
order structure functions, and a comparison of a mean-field
theory with experiments in three-dimensional turbulence, Phys.
Rev. E 64, 056302 (2001).

[37] P. C. Valente and J. C. Vassilicos, The non-equilibrium region
of grid-generated decaying turbulence, J. Fluid Mech. 744, 5
(2014).

[38] P. C. Valente and J. C. Vassilicos, Universal Dissipation Scaling
for Nonequilibrium Turbulence, Phys. Rev. Lett. 108, 214503
(2012).

023114-7

http://dx.doi.org/10.1063/1.1327294
http://dx.doi.org/10.1063/1.1327294
http://dx.doi.org/10.1063/1.1327294
http://dx.doi.org/10.1063/1.1327294
http://dx.doi.org/10.1063/1.858828
http://dx.doi.org/10.1063/1.858828
http://dx.doi.org/10.1063/1.858828
http://dx.doi.org/10.1063/1.858828
http://dx.doi.org/10.1063/1.869752
http://dx.doi.org/10.1063/1.869752
http://dx.doi.org/10.1063/1.869752
http://dx.doi.org/10.1063/1.869752
http://dx.doi.org/10.1103/PhysRevLett.95.164502
http://dx.doi.org/10.1103/PhysRevLett.95.164502
http://dx.doi.org/10.1103/PhysRevLett.95.164502
http://dx.doi.org/10.1103/PhysRevLett.95.164502
http://dx.doi.org/10.1017/S0022112009991947
http://dx.doi.org/10.1017/S0022112009991947
http://dx.doi.org/10.1017/S0022112009991947
http://dx.doi.org/10.1017/S0022112009991947
http://dx.doi.org/10.1017/S0022112007008531
http://dx.doi.org/10.1017/S0022112007008531
http://dx.doi.org/10.1017/S0022112007008531
http://dx.doi.org/10.1017/S0022112007008531
http://dx.doi.org/10.1017/S0022112085001136
http://dx.doi.org/10.1017/S0022112085001136
http://dx.doi.org/10.1017/S0022112085001136
http://dx.doi.org/10.1017/S0022112085001136
http://dx.doi.org/10.1080/14685248.2011.639777
http://dx.doi.org/10.1080/14685248.2011.639777
http://dx.doi.org/10.1080/14685248.2011.639777
http://dx.doi.org/10.1080/14685248.2011.639777
http://dx.doi.org/10.1016/j.physleta.2015.05.029
http://dx.doi.org/10.1016/j.physleta.2015.05.029
http://dx.doi.org/10.1016/j.physleta.2015.05.029
http://dx.doi.org/10.1016/j.physleta.2015.05.029
http://dx.doi.org/10.1063/1.3153911
http://dx.doi.org/10.1063/1.3153911
http://dx.doi.org/10.1063/1.3153911
http://dx.doi.org/10.1063/1.3153911
http://dx.doi.org/10.1007/s10915-012-9663-y
http://dx.doi.org/10.1007/s10915-012-9663-y
http://dx.doi.org/10.1007/s10915-012-9663-y
http://dx.doi.org/10.1007/s10915-012-9663-y
http://dx.doi.org/10.1016/0021-9991(92)90324-R
http://dx.doi.org/10.1016/0021-9991(92)90324-R
http://dx.doi.org/10.1016/0021-9991(92)90324-R
http://dx.doi.org/10.1016/0021-9991(92)90324-R
http://dx.doi.org/10.1090/S0025-5718-98-00913-2
http://dx.doi.org/10.1090/S0025-5718-98-00913-2
http://dx.doi.org/10.1090/S0025-5718-98-00913-2
http://dx.doi.org/10.1090/S0025-5718-98-00913-2
http://dx.doi.org/10.1016/j.physleta.2016.02.001
http://dx.doi.org/10.1016/j.physleta.2016.02.001
http://dx.doi.org/10.1016/j.physleta.2016.02.001
http://dx.doi.org/10.1016/j.physleta.2016.02.001
http://dx.doi.org/10.1063/1.870101
http://dx.doi.org/10.1063/1.870101
http://dx.doi.org/10.1063/1.870101
http://dx.doi.org/10.1063/1.870101
http://dx.doi.org/10.1103/PhysRevE.72.056318
http://dx.doi.org/10.1103/PhysRevE.72.056318
http://dx.doi.org/10.1103/PhysRevE.72.056318
http://dx.doi.org/10.1103/PhysRevE.72.056318
http://dx.doi.org/10.1063/1.3005832
http://dx.doi.org/10.1063/1.3005832
http://dx.doi.org/10.1063/1.3005832
http://dx.doi.org/10.1063/1.3005832
http://dx.doi.org/10.1017/jfm.2014.367
http://dx.doi.org/10.1017/jfm.2014.367
http://dx.doi.org/10.1017/jfm.2014.367
http://dx.doi.org/10.1017/jfm.2014.367
http://dx.doi.org/10.1063/1.4936140
http://dx.doi.org/10.1063/1.4936140
http://dx.doi.org/10.1063/1.4936140
http://dx.doi.org/10.1063/1.4936140
http://dx.doi.org/10.1017/jfm.2012.5
http://dx.doi.org/10.1017/jfm.2012.5
http://dx.doi.org/10.1017/jfm.2012.5
http://dx.doi.org/10.1017/jfm.2012.5
http://dx.doi.org/10.1063/1.2907227
http://dx.doi.org/10.1063/1.2907227
http://dx.doi.org/10.1063/1.2907227
http://dx.doi.org/10.1063/1.2907227
http://dx.doi.org/10.1103/PhysRevE.64.056302
http://dx.doi.org/10.1103/PhysRevE.64.056302
http://dx.doi.org/10.1103/PhysRevE.64.056302
http://dx.doi.org/10.1103/PhysRevE.64.056302
http://dx.doi.org/10.1017/jfm.2014.41
http://dx.doi.org/10.1017/jfm.2014.41
http://dx.doi.org/10.1017/jfm.2014.41
http://dx.doi.org/10.1017/jfm.2014.41
http://dx.doi.org/10.1103/PhysRevLett.108.214503
http://dx.doi.org/10.1103/PhysRevLett.108.214503
http://dx.doi.org/10.1103/PhysRevLett.108.214503
http://dx.doi.org/10.1103/PhysRevLett.108.214503



