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Rebound suppression of a droplet impacting on an oscillating horizontal surface
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The behavior of a droplet impinging onto a solid substrate can be influenced significantly by the horizontal
motion of the substrate. The coupled interactions between the moving wall and the impacting droplet may result
in various outcomes, which may be different from the usual normal droplet impact on a stationary wall. In this
paper, we present a method to suppress drop rebound on hydrophobic surfaces via transverse wall oscillations,
normal to the impact direction. The numerical investigation shows that the suppression of droplet rebound has
a direct relationship with the oscillation phase, amplitude, and frequency. For a particular range of oscillation
frequencies and amplitudes, a lateral shifting of the droplet position is observed along the oscillating direction.
While large oscillation amplitude favors the process of droplet deposition, a high frequency promotes droplet
rebound from the oscillating wall. A linear trend in the transition region between deposition and rebound is
observed from a scaled phase diagram of the oscillation amplitude versus frequency. We provide a systematic
investigation of drop deposition and elucidate the mechanism of rebound suppression through the temporal
evolution of the nonaxial kinetic energy and the velocity flow field.
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I. INTRODUCTION

The phenomenon of a droplet impacting on a solid surface
is ubiquitous in nature and has been studied for decades
both experimentally and numerically owing to its fundamental
importance in several natural and industrial applications.
Important dynamical aspects of the impact phenomenon were
discussed in comprehensive reviews provided by Yarin [1] and
Rein [2]. A droplet impacting on a solid surface may exhibit
several physical outcomes, such as deposition, rebound, partial
rebound, and splashing [3]. Droplet rebound is a desirable out-
come in self-cleaning [4], antidew [5,6], and anticorrosion [7]
applications where removal of droplets from the surface is
required. However, it becomes indispensable to control drop
rebound in areas pertaining to spray cooling [8], ink-jet
printing [9], spray painting [10], and pesticide deposition [11].
In these applications, droplet rebound would lead to excess loss
in the impacting fluid leading to increased costs. Moreover,
droplet rebound in pesticide spraying on plant leaves would
result in environmental pollution. Hence, there is a need
to consider advanced methods which can lead to effective
suppression of droplet rebound from the solid substrate.

The dynamical outcome of drop impact on the solid
surface is a result of several factors, such as capillary and
inertial forces, viscous resistance, wall wettability, and surface
roughness. Droplet rebound is generally favored by high
impact velocity, low viscosity, and high surface tension. A
parametric study to investigate drop rebound was conducted
by Rioboo et al. [3]. They found that an increase in the surface
tension, impact velocity, and receding contact angle favors
the process of droplet rebound. For aqueous solutions, the
addition of flexible polymers was found to suppress droplet
rebound [12]. In this case, the initial spreading phase was
not altered, but the additives induced greater resistance during
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the recoiling phase of the droplet due to the non-Newtonian
viscous effects. The addition of surfactants [13] in droplet
liquid leads to a decrease in surface energy, thereby changing
the wetting properties. Reduction in the surface energy results
in less vigorous recoiling and prevents drop rebound. Deng
and Gomez [14] observed that ionic microdroplets impinging
on conductive surfaces exhibited droplet deposition instead
of bouncing off the surface. Mangili et al. [15] investigated
the impact dynamics of a droplet onto a soft solid substrate.
They reported that the droplet undergoes slower recoiling
and has a larger final resting diameter as compared to its
impact onto a hard substrate. Antonini et al. [16] conducted
experiments of droplet impact onto surfaces with different
advancing and receding contact angles and found out that the
receding contact angle as one of the key wetting parameters
contributing to the droplet rebound. The droplet rebound time
had a decreasing trend as the receding contact angle increased.
Such behavior was also observed by the lattice Boltzmann
method (LBM) simulations performed by Raman et al. [17].
In addition to the role of the receding contact angle, the
authors [17] also found that the presence of inhomogeneities
in the wetting characteristics in the form of a wetting gradient
would lead to suppression of the drop rebound. Recently,
Unnikrishnan et al. [18] performed experiments of droplet
impact onto three chemically modified aluminum substrates.
The receding velocities of the droplet in its recoiling phase for
the aluminum substrates coated with octadecyltrichlorosilane
were three times as that of drops on the aluminum substrate.

The above mentioned methods to suppress drop rebound
involve either modifying the chemical properties of the droplet
liquid or altering the physiochemical properties of the solid
surface. Such alterations may not be desirable for certain
applications, and the need to explore alternate methods which
do not resort to chemical modification of either droplet liquid
or solid surface becomes imperative. Rebound suppression
of impacting drops with electrically driven nonaxisymmet-
ric shapes on hydrophobic surfaces were reported by Yun
et al. [19]. Such impinging droplets undergo alternate spread-
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ing and recoiling on the surface, which leads to transfer of
kinetic energy (KE) along the principal horizontal axis rather
than the vertical axis. They found a considerable increase in the
critical Weber number (We) giving rise to rebound than that for
an axisymmetric drop. Lee and Kim [20] investigated the recoil
behavior of a droplet impacting on a surface moving along the
vertical direction. Their investigations revealed that droplet
rebound is promoted when the surface moves upward at the
moment of impact, whereas the drop rebound suppression was
observed when the surface moved downward at the impact
moment. They attributed this behavior to the change in the
impact speed of the droplet due to the surface motion. In
this paper, we present a method for drop rebound control
via external surface oscillations perpendicular to the line of
impact. Through a set of numerical simulations, we probe the
effects of oscillation amplitude and frequency on the impact
dynamics and the time-dependent outcome. The results are
illustrated through the time resolved interface profiles, the
time evolution of contact diameter, the shift in center of mass
of the droplet system, and the aspect ratio (AR) of the contact
area. We provide a phase diagram of oscillation amplitude
and frequencies wherein droplet rebound and suppression are
noticed. The mechanism of rebound suppression is explained
through the temporal evolution of nonaxial kinetic energy of
the droplet.

To investigate the dynamics of rebound suppression via
wall oscillations, we employ the lattice Boltzmann method
in the present study. Over the past two decades, the lattice
Boltzmann method has evolved as a powerful tool to simulate
interfacial dynamics and multiphase flows. In contrast to
the numerical solvers based on finite volume, difference,
and element methods to solve the continuum Navier-Stokes
equations, the LBM [21,22] is a simplified mesoscopic
reduced-order kinetic model based on the Boltzmann equation.
It solves the evolution of a particle distribution function, and
the macroscopic quantities are obtained from the hydrody-
namic moments of these distribution functions. In comparison
with a solution of the Navier-Stokes equations, the lattice
Boltzmann equations (LBEs) offer a simple, efficient, and
easily parallelizable system. With its basis in the kinetic
gas theory, the mesoscopic features of the LBM have been

useful in simulating the interface boundary between two binary
fluids. As such, the LBM has been successfully employed
in solving many multiphase flow problems [22–24]. Some
of the distinct multiphase LBM models include the color
gradient model [25,26], the interparticle potential model [27],
the free-energy model [28], and the index-function model [29].
The free-energy and the index-function models solve a separate
equation for the evolution of the interface, unlike the color
gradient and potential models. The liquid-gas density ratios
achieved with the model proposed by He et al. [29] was small.
Lee and Lin [30] enhanced the model of He et al. [29] to
capture two-phase flows with high-density ratios with a three
step discretized LBE system. The authors in Ref. [30] proposed
a compact isotropic finite differencing scheme to discretize the
gradients of intermolecular forcing terms which eliminates
spurious currents successfully. The authors have employed the
treatment given in Ref. [31] on the characteristics of stress and
potential forms related to the pressure tensor.

The paper is organized as follows: Sec. II outlines the details
of the problem definition. In Sec. III we discuss the numerical
formulation followed by validation in Sec. IV. The results on
the dynamics on drop impact on an oscillating surface are
presented and discussed in Sec. V. The essential mechanism
of rebound suppression is elucidated in Sec. VI. Concluding
remarks are provided in Sec. VII.

II. PROBLEM STATEMENT

A sketch outlining the problem definition is provided in
Fig. 1. The droplet and the surrounding fluid are considered to
be incompressible, viscous, and immiscible, and the surface
tension coefficient is assumed to be constant. The droplet
density and viscosity are denoted by ρl and μl , respectively,
whereas those of the surrounding fluid are represented by ρg

and μg as shown in the figure.
A droplet of diameter Do impinges normally onto a solid

surface with an impact velocity of Uo. The solid surface
oscillates horizontally with a wall velocity of Uw. All the
length and velocity scales are made nondimensional by the
initial droplet diameter (Do) and the impact velocity (Uo),
respectively. Accordingly, the nondimensional time is given

Y
X

Z
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UW

Solid Wall

Surrounding fluid

Liquid drop DO

FIG. 1. Schematic of a liquid droplet impacting on a horizontally oscillating solid surface.
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as T ∗ = tUo/Do, where t is the simulation time in lattice
units. The important dimensionless parameters governing
droplet impact on the solid substrate include the Weber
number We = ρlU

2
o Do/σ , which indicates the ratio of inertial

force to surface tension; the Reynolds number (Re) Re =
ρlUoDo/μl , which denotes the ratio of inertial force to
viscous force; the Bond number (Bo) Bo = (ρl − ρg)gD2

o/σ

measures the relative importance of surface tension force
compared to gravity force, and the Ohnesorge number (Oh)
Oh = μl/

√
ρDiσ = √

We/Re relates the viscous forces to
inertial and surface tension forces where σ is the liquid-gas
surface tension. The density ratio ρr = ρl/ρg and viscosity
ratio μr = μl/μg in the current paper are set to be ρr =
1000 and μr = 40, respectively. The realistic dimensions of
the droplets considered in this study are in micrometers as
illustrated in the validation section later. Hence, the effects of
gravity are considered to be negligible whereby the radius of
the droplet is smaller than the capillary length. The resulting
Bond number for the impacting droplet would be of the order
of O(10−4). To investigate the role of surface oscillations,
we set the Reynolds number and the Weber number of the
impinging droplet at Re = 600 and We = 51.2, respectively.
The computational domain is a cuboid with its nondimensional
size set to be 4.0 × 2.44 × 1.72. The no-slip wall boundary
conditions are applied on the top and bottom boundaries.
For the bottom boundary, the no-slip boundary condition is
imposed using the bounce back scheme [32] in which the
colliding particles not only reverse their momenta, but also gain

momentum due to the wall velocity Uw. Periodic boundary
conditions are imposed on the side boundaries. The wall
oscillates with an amplitude of UA and frequency ω, which is
given by

ω = (ω̄π )/Tiner, (1)

where Tiner is the inertial time scale defined as Tiner =
Do/Uo. In the subsequent sections, the wall oscillations will
be characterized by a simple wave form as a function of
oscillating velocity amplitude UA and the frequency ω̄: Uw =
UAf (ω̄,T ∗ + ψ), where the function f can take the form of
sinusoidal and nonsinusoidal (square and triangle) waves with
corresponding phase angle ψ .

III. MATHEMATICAL FORMULATION

In the present study, the dynamics of an impacting droplet
on an oscillating surface is simulated by a high-density
ratio multiphase lattice Boltzmann solver which has been
discussed and validated in our previous publications [17,33].
This method [30] employs two particle distribution functions
to recover the incompressible Navier-Stokes equation (gα) and
a macrointerface capturing equation (fα .) The model adopts
stress and potential forms of intermolecular forcing terms in
the momentum equation and the equation for order parameter,
respectively.

The distribution functions are solved in a three step process
as follows: (i) Prestreaming step,

ḡα(x,t) = gα(x,t) − gα − g
eq
α

2τ

∣∣∣∣
(x,t)

+ δt

2

(eαi − ui)∂i

(
ρc2

s

)
c2
s

[�α(u) − �α(0)]

∣∣∣∣
(x,t)

+ δt

2

(eαi − ui)[κ∂i(∂kρ∂kρ) − κ∂j (∂jρ∂iρ)]

c2
s

�α(u)

∣∣∣∣
(x,t)

, (2)

f̄α(x,t) = fα(x,t) − fα − f
eq
α

2τ

∣∣∣∣
(x,t)

+ δt

2

(eαi − ui)
[
∂iρc2

s − ρ∂i

(
φ − κ∂2

j ρ
)]

c2
s

�α(u)

∣∣∣∣
(x,t)

. (3)

(ii) Streaming,

ḡ(x + eαδt,t + δt) = ḡα(x,t), (4)

f̄ (x + eαδt,t + δt) = f̄α(x,t). (5)

(iii) Poststreaming step,

gα(x + eαδt,t + δt) = ḡα(x + eαδt,t + δt) − 1

2τ + 1

(
ḡα − ḡeq

α

)∣∣∣∣
(x+eαδt,t+δt)

+ 2τ

2τ + 1

δt

2

(eαi − ui)∂i

(
ρc2

s

)
c2
s

[�α(u) − �α(0)]
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(x+eαδt,t+δt)
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2
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, (6)

fα(x + eαδt,t + δt) = f̄α(x + eαδt,t + δt)

− 1

2τ + 1

(
f̄α − f eq

α

)∣∣∣∣
(x+eαδt,t+δt)
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FIG. 2. Schematic of a liquid drop on a solid surface with a contact angle. The diffused interface is shown by dashed lines.

The equilibrium distribution functions are given by

f eq
α = wαρ

[
1 + eα·u

c2
s

+ (eα·u)2

2c4
s

− (u · u)

2c2
s

]
, (8)

geq
α = wα

[
p

c2
s

+ ρeα·u
c2
s

+ ρ(eα·u)2

2c4
s

− ρ(u · u)

2c2
s

]
, (9)

where cs = 1/
√

3 and wα is the corresponding integral weights
for a D3Q19 lattice velocity model,

wα = 1
3 , α = 0,

wα = 1
18 , α ∈ [1,6],

wα = 1
36 , α ∈ [7,18], (10)

and

�α(u) = wα

[
1 + eα·u

c2
s

+ (eα·u)2

2c4
s

− (u · u)

2c2
s

]
. (11)

The chemical potential φ is given by

φ ≈ 4β
(
ρ − ρsat

v

)(
ρ − ρsat

l

)[
ρ − 1

2

(
ρsat

v + ρsat
l

)]
, (12)

where β is a constant and ρsat
v and ρsat

l are the saturation
densities of the vapor and liquid phases, respectively. The
interface thickness, denoted as D, is given by

D = 4(
ρsat

l − ρsat
v

)
√

κ

2β
, (13)

where κ is a constant related to the magnitude of the surface
tension. The surface tension force σ is represented as

σ =
(
ρsat

l − ρsat
v

)3

6

√
2κβ. (14)

The density of the fluid ρ, hydrodynamics pressure p, and
the velocity u are calculated by taking the moments of the
corresponding distribution function,

ρ =
∑

α

f̄α, (15)

p =
∑

α

ḡαc2
s + δt

2
ui

∂ρc2
s

∂xi

, (16)

ui =
∑

α

gαeα + δt

2
κ

[
∂

∂xi

(
∂ρ

∂xk

∂ρ

∂xk

)
− ∂

∂xj

(
∂ρ

∂xi

∂ρ

∂xj

)]
.

(17)

The relaxation parameter τ is related to the kinematic viscosity
ν = τc2

s δt , which can be calculated by a linear interpolation,

τ = Cτl − (1 − C)τv, (18)

where τl and τv are the relaxation times for liquid and vapor,
respectively, and C is the composition approximated by

C =
(
ρ − ρsat

v

)
(
ρsat

l − ρsat
l

) . (19)

Along with the consistent discretizations of the intermolecular
forcing terms, the aforementioned two-phase LBE formulation
provides necessary stabilization at high-density and viscosity
ratios. Although the mixed difference scheme is used in the pre-
streaming collision step, the second-order central difference
scheme is considered for the forcing terms in the poststreaming
collision step. Further details on the discretization schemes can
be found in Ref. [30].

For the wetting boundary condition, we employ a geometric
formulation proposed by Ding and Spelt [34]. This geometric
scheme has also been employed in the framework of the LBM
to investigate the dynamics of sliding droplets on ideal and
nonideal surfaces [35]. It assumes the density contours in the
interface to be parallel to each other including the regions near
the solid surface. This assumption relies on the fact that the
interface is in the equilibrium or near equilibrium conditions
at the solid surface. As such it is not applicable for scenarios
where the interface near the contact region may significantly
be thinned or thickened during computations. Furthermore,
the interface has to be resolved by four to eight grid points.
For a diffuse interface method, it is required that the interface
and the region near the contact line have enough grid points to
capture the droplet dynamics.

Figure 2 shows a schematic of the interface near the three
phase contact region. The unit vector ns , perpendicular to the
interface near the surface, is given by the following geometric
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relationship:

ns = ∇ρ

|∇ρ| . (20)

The gradient of the scalar field ρ can be decomposed into the
tangential and normal components along the two-dimensional
plane as

∇ρ = (n · ∇ρ)n + (t · ∇ρ)t, (21)

where t and n are the unit tangential and normal vectors on
the surface, respectively. Hence from Fig. 2, the three-phase
contact angle θ can be computed geometrically in terms of
density ρ by

tan
(π

2
− θ

)
= −n · ∇ρ

|(t · ∇ρ)t| = −n · ∇ρ

|∇ρ − (n · ∇ρ)n| , (22)

n · ∇ρ = − tan
(π

2
− θ

)
|(t · ∇ρ)t|. (23)

The discrete form of Eq. (22) can be expressed as

ρi,j,1 = ρi,j,2 + tan
(π

2
− θ

)
ζ, (24)

where the i and j indices denote the two orthogonal directions
on the wall plane and the third index indicates the direction
normal to the wall plane. Along the three-dimensional plane,
the quantity ζ = |(t · ∇ρ)t| is expressed as

ζ =
√

(ρi+1,j,2 − ρi−1,j,2)2 + (ρi,j+1,2 − ρi,j−1,2)2. (25)

From the above form, we can achieve a desired wettability
between the solid and the fluid by specifying the desired
contact angle in Eq. (24). Once the density on the boundary
points is specified, the normal gradient condition in Eq. (23)
is satisfied in the solver. It is worth noting that we consider
a constant contact angle mode in the present paper. The
current model does not account for the large range of length
scales associated with the moving contact lines. An alternative
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FIG. 3. Comparison of maximum spread factor from the present
study with prediction equations for a single droplet impacting on a
neutral wetting surface.

modeling approach can be considered based on dynamic
contact angle models [36,37], which however is not the focus
of the current study.

IV. NUMERICAL VALIDATION

Figure 3 shows the comparison of the maximum spread
factor (D∗

max), defined as the ratio of the maximum spread
diameter with initial droplet diameter, for different values of
Re and We with the well-known predictive trends [38–40]. A
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FIG. 4. Experimental validation of time evolution of spread factor D∗ and droplet height H ∗ for We = 12.8 at the contact angles:
(a) θ = 31◦ and (b) θ = 107◦.
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TABLE I. Numerical convergence for the various droplet radii
with Re = 600, We = 51.2, and θ = 140◦ at T ∗ = 1.0.

Do (in lattice units) 50 70 84

D∗ 1.599 1.666 1.694
Relative error 5.6% 1.65%

spherical drop with diameter and interface thickness of 50 and
5 lattice units, respectively, was initialized.

A good comparison between the present computation and
the prediction equation from previous literature is observed.
Experimental validation of the present solver is accomplished
by direct comparison of the dimensionless diameter or spread-
ing factor D∗ and the dimensionless height H ∗ with the results
of Dong et al. [41]. Figure 4 illustrates the comparison for
two different surface wettabilities: (a) 31◦ and (b) 107◦ with
the droplet impinging with the Reynolds number and Weber
number of Re = 241 and We = 12.8, respectively. A good
agreement with the experimental results particularly in the
initial stages of the impact is observed. The difference in the
values of D∗ between the experimental and the simulation
results towards the later stages may be attributed to the pinning
of the contact line which occurs due to contact angle hysteresis.

V. RESULTS AND DISCUSSION

After we validate the numerical model, we proceed to
investigate the impact dynamics of the impacting droplet on an
oscillating solid surface. We perform a grid independence test
by comparing the spread factor (D∗) for droplets impacting
with the same initial impact velocities at UA = 0.05 and
ω̄ = 1.0 at T ∗ = 1.0. Table I shows D∗ for three different
grid resolutions at T ∗ = 1.0. Only a slight variation in D∗ is
observed for various Do’s. Based on the grid independence
test, the droplet diameter is set to be 70 lattice units for the

simulations preformed in this study hereafter. The simulation
is initialized with the droplet placed just in contact with the
wall such that the distance between the wall and the droplet
center is 0.5Do. The velocity of the moving wall at this instant
is shown in Fig. 5(a) at T ∗ = 0 for the respective wave forms.

A. Effect of wave form geometry

The combined effects due to the interactions between
the moving surface and the impacting droplet determine the
final impact outcome and nonlinear dynamical interactions
of the droplet with the oscillating wall. As such, we begin
our investigations by exploring the influence of the wave
form geometry of the oscillating substrate on the impinging
droplet. We consider three different natures of wall velocity
profiles, namely, sine, triangle, and square wave form for the
oscillating substrate. Figure 5(a) shows the velocity profiles for
one cycle of oscillation with oscillation amplitude UA = 0.15
and frequency ω̄ = 1.0. The temporal evolution of the droplet
contact width for different wave forms is illustrated in Fig. 5(b).
The observations indicate that the droplet undergoes rebound
when the substrate is excited with the sinusoidal and triangle
wave forms. However, the suppression of droplet rebound
is observed when the surface oscillation is actuated with
the square wave form. It is to be noted that droplet lift-off
time when the surface oscillates with the sinusoidal wave
form is greater than that of the triangle wave form. As the
surface is excited with different wave profiles, the momentum
transferred to the impinging droplet differs. The magnitude
of this transferred momentum, which depends on the work
performed by the oscillating surface on the impacting droplet,
is proportional to the area under the curves shown in Fig. 5(a).

Hence, the surface excited with the square wave forms
results in maximum momentum transport to the droplet liquid.
When a droplet impinges on a stationary surface and reaches
its maximum spread, the surface energy converts back into
the kinetic energy resulting in droplet rebound. However,
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FIG. 5. (a) Profiles of the different wave forms for the oscillating substrate and (b) temporal evolution of the normalized contact width for
different wave forms for velocity amplitude UA = 0.15 and frequency ω̄ = 1.0.
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Velocity Magnitude: 0.002 0.008 0.014 0.02 0.026 0.032 0.038 0.044 (a)
Velocity Magnitude: 0.002 0.008 0.014 0.02 0.026 0.032

(b)

FIG. 6. Velocity field inside the droplet for two nonsinusoidal wave forms at T ∗ = 2.0 for UA = 0.15 and ω̄ = 1.0: (a) triangle and (b)
square.

when the surface oscillates, the momentum transferred by
the surface to the droplet liquid resists the surface tension
forces as the droplet recoils. This leads to additional stretching
of the droplet along the oscillating direction and prolongs
droplet recoiling. Depending on the magnitude of momentum
transferred, which in turn resists the surface tension forces,
there can be different droplet impact outcomes. Figure 6
depicts the velocity flow field inside the droplet along the
mid y plane for (a) triangle and (b) square wave forms at
T ∗ = 2.0. The velocity field indicates the presence of high
momentum fluid near the wall for case (b) unlike case (a)
where the fluid near this region is almost stationary. A notable
observation is the shape of the interface profiles observed for
the two cases. The interface profile for the square wave form
is stretched to a greater extent compared to the triangle wave
form.

The interface profiles of the recoiling droplet for the three
different wave forms are illustrated in Fig. 7 at T ∗ = 4.0. We
observe capillary waves traveling along the droplet free surface
for (a) sinusoidal and (c) square wave forms, whereas such
characteristic waves are absent on the droplet surface with (b)
the triangle wave form. Formation of such capillary waves has
been observed on a droplet resting on a vibrating surface [42].
Different resonant modes of the droplet shapes can be observed
by varying the vibration frequency. The droplet is more
stretched with a narrow contact area for case (c) unlike case
(a). The results presented in this section indicate that, out
of the different wave forms tested, the square wave form
promotes greater drop rebound suppression under a given set of
impact conditions. Due to this desirable behavior, we explore
the effect of different oscillation parameters on the drop
impact outcome using the square wave form in the following
subsections.

B. Effect of the oscillation phase at the instant of impact

What is the influence of the phase angle (ψ) of the
oscillating wall at the instant of drop impingement on the
impact outcome? Having fixed the geometry of the wave
form of the oscillating wall, we next investigate the effect
of the phase angle on the dynamics of the impacting droplet.
We first consider the case with fixed oscillation frequency
of ω̄ = 1.0 for two different oscillation amplitudes. Figure 8
illustrates the temporal evolution of the contact diameter with
(a) UA = 0.125 and (b) UA = 0.15 for different phase angles.
In general, we observed that, for the given wave form and other
impact conditions, the temporal evolution of the contact width
is fairly independent of the phase angle as shown in Fig. 8.
However, slight deviations in this behavior can be noticed
around the region surrounding the maximum spread in both
cases considered herein. This also is seen in the plot insets in
(a) and (b). The crashing time, defined as the time taken by
the droplet to undergo maximum spread, is around Do/Uo,
corresponding to T ∗ = 1.0. For the given ω̄ considered in
this case, the wall completes the first half of its oscillation
cycle at T ∗ = 1.0, corresponding to the crashing time when
ψ = 0. As ψ increases, the time period between the instant
of impact and the commencement of the second half of the
cycle decreases. This implies that, for the considered cases
with ψ greater than zero, the wall undergoes the second half
of the oscillation cycle within the crashing time. From the
numerical predictions illustrated from the inset plots, it can be
inferred that the rate of increase in D∗ is highest for ψ = 0 and
lowest for ψ = π/2. We attribute this tendency to the duration
in which unidirectional momentum is transferred from the
moving wall to the inertia driven spreading droplet within its
crashing time. An increase in this duration of unidirectional
momentum transfer escalates droplet spreading along the

FIG. 7. Interface profiles of the impacting droplet for (a) sine, (b) triangle, and (c) square wave forms of the oscillating substrate with
UA = 0.15 and ω̄ = 1.0 at T ∗ = 4.0.
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FIG. 8. Temporal evolution of the normalized contact width for different phase angles (ψ) at ω̄ = 1.0 for two oscillation amplitudes:
(a) UA = 0.125 and (b) UA = 0.15.

oscillating direction. The cases with ψ = π/4 and 3π/4 have
the same duration of unidirectional momentum transfer. As
such we observe that, although evolution rate D∗ for ψ = 3π/4
is initially higher than that with ψ = π/4, a reversal in this
trend is noticed as time proceeds. This evolution trend in
D∗ around the region surrounding the maximum spread is
amplified as UA is increased.

We next investigate the cases wherein the oscillation
amplitude is fixed at UA = 0.1 while two different frequencies
are considered. Figure 9 shows the temporal evolution of D∗
for different phase angles with (a) ω̄ = 0.5 and (b) ω̄ = 1.5.
For ω̄ = 0.5 and ψ = 0, the commencement of the second
half of the oscillation cycle begins at T ∗ = 2.0. Hence, for the

cases with ψ = 0 and π/4, there is a unidirectional momentum
transfer from the wall to the impinging droplet even beyond
its crashing time when it undergoes recoiling. We observe
rebound suppression for both these cases with the evolution
rate of D∗ for ψ = 0 being higher than that with ψ = π/4
as shown in Fig. 9(a). This again can be attributed to the
increase in the duration of unidirectional momentum transfer
as discussed previously. For the remaining phase angles we
observe droplet rebound. In either of these cases, the wall
begins the second half of the oscillation cycle just after or
within its crashing time corresponding to ψ = π/2 and 3π/4,
respectively. For the case with the increased frequency of
ω̄ = 1.5, we observe D∗ being independent of ψ , leading to
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FIG. 9. Temporal evolution of the normalized contact width for different phase angles (ψ) with oscillation frequency
(a) ω̄ = 0.5 and (b) ω̄ = 1.5 at UA = 0.1.
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FIG. 10. Temporal evolution of impacting droplet (a) T ∗ = 2.74, (b) T ∗ = 4.11, (c) T ∗ = 6.17, and (d) T ∗ = 8.91 for UA = 0.05 (top row)
and UA = 0.15 (bottom row) on a surface with ω̄ = 1.0.

droplet rebound. We consider ψ = 0 for the remaining sections
considered in this study.

C. Effect of oscillation amplitude and frequency

To investigate the effect of the amplitude of the oscillating
substrate on the impact behavior, we fix the oscillation
frequency ω̄ and the substrate contact angle to be 1 and
140◦, respectively. Figure 10 displays the shape of the droplet
at different time instants for UA = 0.05 (top row) and 0.15
(bottom row).

The tangential momentum imparted by the moving sub-
strate to the droplet liquid leads to greater elongation of the
recoiling droplet along the direction of the wall oscillations.
This elongation of the recoiling droplet increases with an
increase in UA as observed from the droplet shapes at T ∗ =
2.74. The droplet deformation is characterized by regions of
varying local curvature along the drop surface. The magnitude
of these local curvatures increases with an increase in UA as
observed from the droplet shapes at T ∗ = 4.11. The competing
influence of the restoring effects of the Laplace pressure to
minimize the surface area and the inertial forces inside the
droplet supplemented by the momentum transferred by the
moving substrate result in the generation of capillary waves

along the droplet surface. For UA = 0.05, the droplet shape
evolves into a columnlike structure (T ∗ = 6.17) and eventually
lifts off the substrate. After it rebounds, the droplet evolves
into a top-heavy mushroom shape as shown at R∗ = 8.91.
However, for UA = 0.15, we notice that the droplet recoils
and continues oscillating on the substrate. Hence, for the case
with UA = 0.15, the droplet rebound is suppressed.

We next investigate the effect of oscillation frequency (ω̄)
of the moving surface on the morphology of the impacting
droplet. The oscillation amplitude (UA) is set to be 0.10 for
the cases considered in this subsection. Figure 11 shows the
time sequence of the impact process for ω̄ = 0.5 (top row)
and ω̄ = 1.5 (bottom row). The time taken by the impacting
droplet to spread to its maximum diameter τmax is on the
order of (2R/Uo), whereas the time corresponding to the
oscillation time period for ω̄ = 0.5 is 4τmax. This implies that
the direction of momentum transfer between the wall and the
droplet does not change during the inertial spreading phase
as well as the early recoiling stage of the impact sequence.
This results in asymmetric droplet spreading, leading to a
greater accumulation of fluid inside the rim, which spreads
along the direction of the wall motion. As the droplet attains
its maximum spread diameter at the time τmax, the surface
tension forces begin to dominate, and the droplet begins to

FIG. 11. Temporal evolution of impacting droplet at (a) T ∗ = 3.08, (b) T ∗ = 5.14, (c) T ∗ = 6.85, and (d) T ∗ = 10.28 for ω̄ = 0.5 (top
row) and ω̄ = 1.5 (bottom row) on a surface with UA = 0.10.
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recoil. However, since the direction of the moving wall remains
unchanged until T ∗ = 2τmax, the asymmetry in the shape of
the recoiling droplet is promoted with the fluid inside the
droplet migrating from the downstream side towards the left
rim. After time T ∗ = 2τmax, there is a reversal in the direction
of the wall motion. The direction of flow near the base of
the droplet changes due to this reversal in the direction of the
wall motion, leading to accumulation of the liquid inside the
right rim. Owing to the inertia attained by the droplet liquid
due to the initial wall movement, the direction fluid in the
upper part of the droplet does not change during this cycle
of wall motion. The height of the left rim increases as the
droplet continues to recoil. This results in the formation of
an asymmetric two lobed droplet morphology as observed at
T ∗ = 5.14. The two lobes merge together under the influence
of surface tension effects as the droplet completely recoils
and oscillates on the surface. When ω̄ is increased to 1.5, we
observe capillary waves traveling along the droplet surface due
to the interactions between the surface tension forces and the
momentum transferred by the oscillating substrate. Unlike the
case with ω̄ = 0.5, the droplet does not undergo large surface
deformations along the direction of the oscillating wall and
eventually rebounds off the surface.

Figures 12(a) and 12(b) illustrate the temporal evolution
of the spread factor for different oscillation amplitudes and
frequencies, respectively. After the initial increase in D∗ due
to inertial spreading, it is observed that D∗ decreases as time
progresses. For UA = 0.05 and 0.10, the droplet rebound is
observed as D∗ approaches zero. It may be noted that the
detachment time of the droplet increases with an increase
in UA. The evolution of the spread factor for UA = 0.15
indicates rebound suppression as D∗ increases after reaching
its minimum spread around T ∗ = 10.0. Figure 12(b) illustrates
the temporal evolution of the spread factor which reiterates the
observations found from the time resolved images in Fig. 11.
The evolution of D∗ increases with the decrease in ω̄. As ω̄

increases, the time taken by the droplet to lift-off the substrate
decreases.

To further characterize the behavior of the impacting droplet
on oscillating substrates, we monitor the displacement of the
X center of mass (�Xc.m.) of the droplet system from its
initial position. The instantaneous X center of mass Xc.m. of
the droplet is calculated by simple averaging over the entire
domain enclosed by the interface,

Xc.m. =
∫
Vdrop

x dV∫
Vdrop

dV
, (26)

where Vdrop encloses the region of the density (ρ) greater than
the mean density [ρ∗ = 0.5(ρl + ρg)]. Figure 13 shows the
time evolution of �Xc.m. of the droplet for different values
of oscillation amplitudes and frequencies. We notice that, in
Fig. 13(a), there is a large shift in the position of the X center
of mass of the droplet system during the first cycle of the
wall oscillation. During the initial inertial spreading phase of
the impact process, the droplet covers a larger contact area
of the moving substrate. Hence, the tangential momentum
transferred to the droplet liquid is higher resulting in a larger
shift in the X center of mass of the droplet system during
the initial cycles of the wall oscillations. As UA increases,
the tangential momentum transferred to the impacting droplet
increases, leading to an increase in �Xc.m.. As time proceeds,
the droplet begins to recoil, and the contact area decreases
resulting in smaller fluctuations in �Xc.m.. A smooth and linear
variation in �Xc.m. is observed for UA = 0.05 and 0.10 at later
stages of impact due to the droplet rebound.

It is observed that at later times, for the case with UA =
0.15, �Xc.m. grows in magnitude as the droplet translates
on the oscillating substrate. We may attribute such a shift in
�Xc.m. due to the combined interactions of the swaying motion
of the oscillating free surface of the droplet and spreading of
the droplet contact line. It is to be noted that the interactions
between these two effects leading to the observed translation
are triggered for a higher UA. A recent study by Benilov
and Billingham [43] demonstrated the interactions between
the swaying and the spreading modes, which controlled the
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FIG. 12. Temporal evolution of the normalized contact width for different wall oscillation (a) amplitudes and (b) frequencies.
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FIG. 13. Temporal evolution of the normalized shift in the X center of mass of the impacting droplet for different wall oscillation
(a) amplitudes and (b) frequencies.

motion of liquid drops placed on an inclined plane oscillating
vertically. They concluded that both modes were needed to
make the drop climb uphill and the effect is strongest when
they are in phase with each other. Whereas in their work [43],
the direction in which the drop moves was determined by
the specifics of the interaction between the two modes, in the
present study the direction of shift is governed by the direction
of the wall movement during the inertial spreading. The
asymmetry introduced in the droplet shape during this period
essentially determines the direction of this shift. Similar to the
oscillatory nature of the mean velocity of the drop observed
in Ref. [43], the temporal evolution of �Xc.m. for UA = 0.15
exhibits an oscillatory nature in the present investigation.

The increased duration of unidirectional momentum trans-
fer from the wall to the droplet in one direction for ω̄ = 0.5
induces sufficient asymmetry in the droplet shape. This leads
to a significant shift in the X center of mass of the droplet as
seen from Fig. 13(b). As the wall reverses its direction and
the liquid begins to accumulate in the right rim, a small rise
in �Xc.m. is observed. At this stage of the impact process,
the droplet is divided into two regions. A rising upper left
region of the recoiling droplet comprising the large left rim
and a region close to the wall including the smaller right rim.
As the wall undergoes subsequent cycles of oscillations, the
coupled interactions between the oscillating lower region and
the surface tension driven recoiling upper region results in
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FIG. 14. Temporal evolution of the AR of the contact area for different wall oscillation (a) amplitudes and (b) frequencies.
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FIG. 15. Temporal evolution of the nonaxial distribution of the kinetic energy (η) for different wall oscillation
(a) amplitudes and (b) frequencies.

a further shift in �Xc.m.. This lateral shifting of the droplet
from its initial location for the case with ω̄ = 0.5 compared to
the other two cases is attributed to the induced asymmetry in
droplet shape due to the unidirectional transfer of momentum
from the wall during the inertial spreading and the early
retraction phase of the impact process.

Figure 14 illustrates the temporal evolution of the aspect ra-
tio of the contact area given by AR = (Rx/Ry). For UA = 0.05,
we observe that AR nearly stays close to 1.0 during its impact
process until it lifts off the surface. The aspect ratio close to
1.0 implies that the contact line is circular in shape and it
retracts with the peripheral forces along the contact line nearly
acting uniformly towards its center. With an increase in UA,
we observe an increase in the evolution AR, which indicates
slender and more elongated contact line shapes. Such shapes
break the symmetry in the retraction process in comparison to
a circular contact line. For UA = 0.15, a sharp increment in
the maximum value of the AR is observed. Unlike the other
two cases considered, we observe a gradual rise in the AR
after the droplet undergoes retraction. However, a decreasing
trend in the evolution of the AR is noted for increasing
oscillation frequencies as observed in Fig. 14(b). This is
attributed to the unidirectional deformation of the contact line
for lower ω̄ leading to elongated and slender shaped contact
areas.

When a drop impacts on a solid surface, the initial kinetic
energy of the droplet is converted into the surface energy
of the spreading droplet, and a part of it dissipates due to
viscous resistance. After reaching its maximum spread, the
droplet undergoes recoiling during which the surface energy
is converted back into the kinetic energy. When the surface
is stationary, the kinetic energy is transferred primarily along
the symmetry axis (Z axis), leading to droplet rebound. The
presence of wall oscillations breaks down this symmetry in the
distribution of the kinetic energy. The momentum transferred
by the substrate leads to greater droplet deformation along
the direction of the wall oscillations. This leads to greater

distribution of the kinetic energy along the principal X axis
compared to the symmetric Z axis.

Figure 15 shows the nonaxial distribution of the kinetic
energy (η) [44] defined as the ratio of the nonaxial kinetic
energy to the total KE for different oscillation amplitudes,

η =
∫
V drop(1/2)ρ

(
u2

x + u2
y

)
dV∫

V drop(1/2)ρ
(
u2

x + u2
y + u2

z

)
dV

, (27)

where ux, uy , and uz are the x, y, and z components,
respectively, of the velocity. Owing to the diffuse nature of the
interface, oscillations are observed in the temporal distribution
of η during the initial stages of impact. Therefore, to filter
these oscillations, we plot the average values of η taken in an
interval of every 200 time steps. It is apparent from Fig. 15(a)
that the break down in the symmetric distribution of kinetic
energy depends on the oscillation amplitude. When a droplet
rebounds off the substrate, we notice a gradual decrease in
η with time. However, for UA = 0.15, we observe most of
the kinetic energy of the droplet system distributed along
the planar axes. Similarly, we observe significant transfer
of the droplet kinetic energy across the planar axes after
T ∗ = 5.0 for the case with ω̄ = 0.5 in Fig. 15(b), during
which the droplet undergoes lateral shifting. This reduces
the kinetic energy transferred along the symmetric z axis
and prevents droplet rebound unlike the other two cases
considered.

A series of computations for different oscillation ampli-
tudes and frequencies has been performed to construct a
phase diagram of the amplitude versus frequency as shown in
Fig 16(a). The phase diagram presents two regimes, namely,
droplet rebound and suppression for Re = 600 and We = 51.2.
It is observed that, although high values of frequency ω̄ and
low amplitude UA favor the occurrence of droplet rebound,
the converse is true for droplet deposition. As discussed
previously, this behavior is attributed to the transfer of the
initial kinetic energy along the planar axes for higher UA and
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FIG. 16. Phase diagram for droplet rebound suppression: (a) oscillation amplitude versus frequency ω̄ − UA, (b) scaled diagram ω̄-(ω̄/UA)
for the droplet rebound and deposition regimes. The ◦ and � symbols represent rebound and deposition regimes, respectively.

lower ω̄ leading to droplet deposition. Hence, an optimum
choice of ω̄ and UA can result in different outcomes of the
impact process. It can be observed from the regime map as
shown in Fig. 16(a) that a nearly linear trend close to the
transition region between the two regimes exists. To further
elucidate this trend along the transition region, we scale ω̄ with
the oscillation amplitude UA and plot a different scaled flow
regime map (ω̄ versus ω̄/UA) as shown in Fig. 16(b). This
leads to the rescaling of the frequency using the oscillating
speed instead of on the initial impact speed of the impinging
droplet. The figure clearly illustrates the linear trend along the
transition region. A best fit curve is plotted in the regime map
separating the rebound and deposition modes, which is given
by the following linear relationship:

ω̄/UA = Mω̄ + C, (28)

where the slope coefficient is M = 3 and the intercept is
C = 4.2.

VI. KINEMATICS AND ENERGETICS
OF REBOUND SUPPRESSION

In order to elucidate the essential mechanism of rebound
suppression of a droplet subjected to wall oscillation, we
compare the instantaneous velocity field inside the droplet
along the symmetry plane between a nonoscillating and an
oscillating surface. Figure 17 illustrates these flow fields inside
the drop with the left and the right columns corresponding to
the nonoscillating and the oscillating cases, respectively. The
oscillation amplitude and frequency for the case considered
in this section are set to be 0.15 and 1.0, respectively. In
general, the process of normal drop impact on a stationary
solid surface can be classified into three stages: symmetric
inertial spreading, recoiling, and attainment of equilibrium
configuration. The presence of an oscillating surface translates
the symmetric inertial spreading stage into asymmetric inertial
spreading. This asymmetric behavior is attributed to the
accumulation of the droplet liquid inside the inertia driven

spreading rim moving in phase with the oscillating wall.
Once the drop attains its maximum spread, the role of
the wall oscillation becomes significant in determining the
impact outcome. When the droplet begins to recoil for the
nonoscillating case, the liquid inside the peripheral rims is
directed upward towards the central axis of symmetry. This
behavior is illustrated from the velocity field inside the drop
as shown in Fig. 17(a) at T ∗ = 4.104 and 5.814. This stage
constitutes the recoiling phase of the impact process. We notice
that during this phase the magnitude of velocity field near the
base of the droplet is relatively low compared to the motion of
the bulk fluid in the upper region, which leads to its vertical
elongation. The drop continues to elongate and detaches from
the surface resulting in rebound. As the drop is airborne, we
observed intense recoiling of the trailing end of the drop, which
is depicted from the velocity field in this region as shown
at T ∗ = 8.892. The presence of wall oscillations along the
direction normal to the impact line breaks the uprising central
symmetry of the flow field during the recoiling phase, which is
observed for the nonoscillating situation. The high momentum
fluid in contact with the oscillating wall, resulting due to the
no-slip condition, is observed from the velocity field shown in
Fig. 17(b) and transfers this momentum to the adjoining bulk
droplet fluid. This leads to the movement of the droplet liquid
transversely along the oscillating direction and restricts its
bulk uprising, thereby breaking the uprising central symmetry
of Fig. 17(a). The velocity field inside the bulk region of the
drop at T ∗ = 5.814 is in line with this observation. Due to this
transverse movement of the bulk fluid and under the influence
of the restoring effects of surface tension forces, the receding
phase is characterized by the generation of waves along the
droplet surface. Hence, we assign this stage of the impact
process as recoiling with surface waves. It can be concluded
that the primary cause of rebound suppression is related to the
interference of the sideways motion in the droplet interior.
This in turn breaks the uprising symmetry in the velocity
distribution as observed for the nonoscillating case. Finally,
as the drop recoils and attains a spherical configuration,
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FIG. 17. Instantaneous velocity field inside the droplet along the symmetry plane at (i) T ∗ = 4.104, (ii) T ∗ = 5.814, and (iii) T ∗ = 8.892
for (a) the nonoscillating and (b) the oscillating cases with UA = 0.15 and ω̄ = 1.0.

we observe that only the region close to the wall is driven
by the high momentum fluid in contrast to its bulk. This
leads to the final oscillatory equilibrium phase of the impact
process.

To further quantify the above discussed mechanism for
rebound suppression, we monitor the axial kinetic energy
coefficients given as follows:

ηi =
[ ∫

V drop(1/2)ρ
(
u2

i

)
dV

]
oscillating[ ∫

V drop(1/2)ρ
(
u2

i

)
dV

]
nonoscillating

, (29)

where i corresponds to the principal coordinate axis along
the X, Y , and Z directions. Figure 18 illustrates the temporal
evolution of ηi along the three directions. The observations
clearly indicate that the major portion of the kinetic energy is
transferred along the X axis, followed by the Y and Z axes.
As time proceeds, we notice a sharp rise in ηx and ηy between
T ∗ = 6 and 9. During this period the drop undergoes vigorous
recoiling. A part of this excess kinetic energy is converted
into surface waves traveling its surface, whereas some part the
kinetic energy is dissipated due to the viscous effects. This can
be attributed from the temporal evolution surface energy (Ese)
as shown in Fig. 19. The surface energy is obtained from the
free-energy density model employed in our simulations,

E∗
S =

∫
V

(Eo + κ|∇ρ|2)dV, (30)

where Eo = β(ρ − ρsat
v )2(ρ − ρsat

l )2. The figure clearly illus-
trates the increase in surface energy of the droplet impinging

on an oscillating surface in comparison with a nonoscillating
surface. The droplet impacting on the nonoscillating case
continues its vertical elongation and eventually rebounds off
the surface. This implies that most of the kinetic energy for
this case is transferred along the Z axis instead of the other two
principal axes. The temporal evolution of ηz clearly indicates
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FIG. 18. Temporal evolution of the ratio of kinetic energy
of the droplet along the principal axes between oscillating and
nonoscillating walls.
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the suppression of kinetic energy transfer along the Z direction
with ηZ being less than 1 for most of the impact duration.

VII. CONCLUSIONS

We have performed a three-dimensional numerical investi-
gation on the impact dynamics of a droplet on an oscillating
solid surface. A high-density ratio based phase field lattice
Boltzmann method was employed in conjunction with a
geometric based contact line formulation for the moving
contact line. This paper proposed a method to suppress the
drop rebound by substrate oscillation normal to the impact
direction. The wave nature of the oscillating surface was

observed to play a significant role on the impact behavior
and rebound suppression. Of the various tested wave forms
in the current study, we observed that the square wave form
promotes a greater amount of drop rebound suppression. It
is found that, for cases with low oscillation frequencies, the
phase of the oscillation wall influenced the impact outcome.
A systematic numerical study demonstrated the dominant
effect of oscillation amplitude and frequency for mitigating
droplet rebound. Droplet rebound suppression was found
to be generally favored by high oscillation amplitudes and
low frequencies. For a given range of oscillation amplitude
and frequency, a phase diagram has been constructed which
summarizes the impact outcome in the form of droplet rebound
and deposition regimes. Reconstructing the phase diagram
with a scaled oscillation amplitude clearly indicates a linear
trend in the transition region between the two regimes. Low
frequency oscillations coupled with high amplitudes resulted
in the lateral shifting of the droplet from its impact position.
The interplay of the inertial time scale and the oscillation
time period played a major role in lateral shifting of droplet
impacting on the solid wall. Although the current simulation
results present a method for drop rebound suppression, the
flow regimes described in this paper need to be confirmed
by experiments. The effect of gravity has been neglected
in this study, which will induce additional dynamics for
large impinging droplets. Thus further research remains to
be explored on this topic of droplet rebound suppression.
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[7] R. D. Narhe, W. González-Vinas, and D. A. Beysens, Water con-
densation on zinc surfaces treated by chemical bath deposition,
Appl. Surf. Sci. 256, 4930 (2010).

[8] W. M. Grissom and F. A. Wierum, Liquid spray cooling
of a heated surface, Int. J. Heat Mass Transf. 24, 261
(1981).

[9] D. Soltman and V. Subramanian, Inkjet-printed line morpholo-
gies and temperature control of the coffee ring effect, Langmuir
24, 2224 (2008).

[10] S. D. Aziz and S. Chandra, Impact, recoil and splashing of
molten metal droplets, Int. J. Heat Mass Transf. 43, 2841 (2000).

[11] W. Wirth, S. Storp, and W. Jacobsen, Mechanisms controlling
leaf retention of agricultural spray solutions, Pestic. Sci. 33, 411
(1991).

[12] V. Bergeon, D. Bonn, J. Y. Martin, and L. Vovelle, Controlling
droplet deposition with polymer additives, Nature (London) 45,
772 (2000).

[13] M. Aytouna, D. Bartolo, G. Wegdam, D. Bonn, and S. Rafai,
Impact dynamics of surfactant laden drops: Dynamic surface
tension effects, Exp. Fluids 48, 49 (2010).

[14] W. Deng and A. Gomez, The role of electric charge in
microdroplets impacting on conducting surfaces, Phys. Fluids
22, 051703 (2010).

023108-15

http://dx.doi.org/10.1146/annurev.fluid.38.050304.092144
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092144
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092144
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092144
http://dx.doi.org/10.1016/0169-5983(93)90106-K
http://dx.doi.org/10.1016/0169-5983(93)90106-K
http://dx.doi.org/10.1016/0169-5983(93)90106-K
http://dx.doi.org/10.1016/0169-5983(93)90106-K
http://dx.doi.org/10.1615/AtomizSpr.v11.i2.40
http://dx.doi.org/10.1615/AtomizSpr.v11.i2.40
http://dx.doi.org/10.1615/AtomizSpr.v11.i2.40
http://dx.doi.org/10.1615/AtomizSpr.v11.i2.40
http://dx.doi.org/10.1073/pnas.1210770110
http://dx.doi.org/10.1073/pnas.1210770110
http://dx.doi.org/10.1073/pnas.1210770110
http://dx.doi.org/10.1073/pnas.1210770110
http://dx.doi.org/10.1103/PhysRevLett.103.184501
http://dx.doi.org/10.1103/PhysRevLett.103.184501
http://dx.doi.org/10.1103/PhysRevLett.103.184501
http://dx.doi.org/10.1103/PhysRevLett.103.184501
http://dx.doi.org/10.1021/la304264g
http://dx.doi.org/10.1021/la304264g
http://dx.doi.org/10.1021/la304264g
http://dx.doi.org/10.1021/la304264g
http://dx.doi.org/10.1016/j.apsusc.2010.03.004
http://dx.doi.org/10.1016/j.apsusc.2010.03.004
http://dx.doi.org/10.1016/j.apsusc.2010.03.004
http://dx.doi.org/10.1016/j.apsusc.2010.03.004
http://dx.doi.org/10.1016/0017-9310(81)90034-X
http://dx.doi.org/10.1016/0017-9310(81)90034-X
http://dx.doi.org/10.1016/0017-9310(81)90034-X
http://dx.doi.org/10.1016/0017-9310(81)90034-X
http://dx.doi.org/10.1021/la7026847
http://dx.doi.org/10.1021/la7026847
http://dx.doi.org/10.1021/la7026847
http://dx.doi.org/10.1021/la7026847
http://dx.doi.org/10.1016/S0017-9310(99)00350-6
http://dx.doi.org/10.1016/S0017-9310(99)00350-6
http://dx.doi.org/10.1016/S0017-9310(99)00350-6
http://dx.doi.org/10.1016/S0017-9310(99)00350-6
http://dx.doi.org/10.1002/ps.2780330403
http://dx.doi.org/10.1002/ps.2780330403
http://dx.doi.org/10.1002/ps.2780330403
http://dx.doi.org/10.1002/ps.2780330403
http://dx.doi.org/10.1038/35015525
http://dx.doi.org/10.1038/35015525
http://dx.doi.org/10.1038/35015525
http://dx.doi.org/10.1038/35015525
http://dx.doi.org/10.1007/s00348-009-0703-9
http://dx.doi.org/10.1007/s00348-009-0703-9
http://dx.doi.org/10.1007/s00348-009-0703-9
http://dx.doi.org/10.1007/s00348-009-0703-9
http://dx.doi.org/10.1063/1.3431739
http://dx.doi.org/10.1063/1.3431739
http://dx.doi.org/10.1063/1.3431739
http://dx.doi.org/10.1063/1.3431739


RAMAN, JAIMAN, SUI, LEE, AND LOW PHYSICAL REVIEW E 94, 023108 (2016)

[15] S. Mangili, C. Antonini, M. Marengoa, and A. Amirfazli,
Understanding the drop impact phenomenon on soft pdms
substrates, Soft Matter 8, 10045 (2012).

[16] C. Antonini, F. Villa, I. Bernagozzi, A. Amirfazli, and M.
Marengo, Drop rebound after impact: The role of the receding
contact angle, Langmuir 29, 16045 (2013).

[17] K. A. Raman, R. K. Jaiman, T. S. Lee, and H. T. Low, Lattice
boltzmann simulations of droplet impact onto surfaces with
varying wettabilities, Int. J. Heat Mass Transf. 95, 336 (2016).

[18] P. K. Unnikrishnan, V. Vaikuntanathan, and D. Sivakumar,
Impact dynamics of high weber number drops on chemically
modified metallic surfaces, Colloids Surf., A 459, 109 (2014).

[19] S. Yun, J. Hong, and K. H. Kang, Suppressing drop rebound
by electrically driven shape distortion, Phys. Rev. E 87, 033010
(2013).

[20] H. J. Lee and H. Y. Kim, Control of drop rebound with solid
target motion, Phys. Fluids 16, 10 (2004).

[21] Li-Shi Luo, Theory of the lattice Boltzmann method: Lattice
Boltzmann models for nonideal gases, Phys. Rev. E 62, 4982
(2000).

[22] S. Chen and G. Doolen, Lattice boltzmann method for fluid
flows, Annu. Rev. Fluid Mech. 30, 329 (1998).

[23] K. Sun, M. Jia, and T. Wang, Numerical investigation of head-on
droplet collision with lattice boltzmann method, Int. J. Heat
Mass Transf. 58, 260 (2013).

[24] S. Zhao, A. Riaud, G. Luo, Y. Jin, and Y. Cheng, Simulation
of liquid mixing inside micro-droplets by a lattice boltzmann
method, Chem. Eng. Sci. 28, 118 (2015).

[25] A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti,
Lattice boltzmann model of immiscible fluids, Phys. Rev. A 43,
4320 (1991).

[26] D. H. Rothman and J. M. Keller, Immiscible cellular-automaton
fluids, J. Stat. Phys. 52, 1119 (1988).

[27] X. Shan and H. Chen, Lattice boltzmann for simulating flows
with multiple phases and components, Phys. Rev. E 47, 1815
(1993).

[28] M. R. Swift, W. R. Osborn, and J. M. Yeomans, Lattice
boltzmann for simulations for liquid-gas and binary fluid
systems, Phys. Rev. E 54, 5041 (1996).

[29] X. He, X. Shan, and R. Zhang, A lattice boltzmann scheme for
incompressible multiphase flow and its application insimulation
of rayleigh taylor instability, J. Comput. Phys. 152, 642 (1999).

[30] T. Lee and C. L. Lin, A stable discretization of the lattice
boltzmann equation for simulation of incompressible two-phase
flows at high density ratio, J. Comput. Phys. 206, 16 (2005).

[31] D. Jamet, O. Lebaigue, N. Coutris, and J. M. Delhaye, The
second gradient method for the direct numerical simulation of
liquid vapor flows with phase change, J. Comput. Phys. 169,
624 (2001).

[32] P. Lallemand and L. S. Luo, Lattice boltzmann method for
moving boundaries, J. Comput. Phys. 184, 406 (2003).

[33] K. A. Raman, R. K. Jaiman, T. S. Lee, and H. T. Low, Lattice
boltzmann study on the dynamics of successive droplets impact
on a solid surface, Chem. Eng. Sci. 145, 181 (2016).

[34] H. Ding and P. D. M. Spelt, Wetting condition in diffuse interface
simulations of contact line motion, Phys. Rev. E 75, 046708
(2007).

[35] L. Wang, H. Huang, and X. Y. Lu, Scheme for contact angle and
its hysteresis in a multiphase lattice boltzmann method, Phys.
Rev. E 87, 013301 (2013).

[36] E. B. Dussan, V, On the spreading of liquids on solid surfaces:
Static and dynamic contact lines, Annu. Rev. Fluid Mech. 11,
371 (1979).

[37] Y. Sui, H. Ding, and P. D. M. Spelt, Numerical simulations of
flows with moving contact lines, Annu. Rev. Fluid Mech. 46, 97
(2014).

[38] A. Asai, M. Shioya, S. Hirasawa, and T. Okazaki, Impact of an
ink drop on paper, J. Imaging Sci. Technol. 37, 205 (1993).

[39] M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, and J. Mostaghimi,
Capillary effects during droplet impact on a solid surface, Phys.
Fluids 8, 650 (1996).

[40] B. L. Scheller and D. W. Bousfield, Newtonian drop impact with
a solid surface, AIChE 41, 1357 (1995).

[41] H. Dong, W. W. Carr, D. G. Bucknall, and J. F. Morris,
Temporally-resolved inkjet drop impaction on surfaces, AIChE
53, 2606 (2007).

[42] L. Dong, A. Chaudhury, and M. K. Chaudhury, Lateral vibration
of a water drop and its motion on a vibrating surface, Eur. Phys.
J. E 21, 231 (2006).

[43] E. S. Benilov and J. Billingham, Drops climbing uphill on an
oscillating substrate, J. Fluid Mech. 674, 93 (2011).

[44] S. Yun and G. Lim, Ellipsoidal drop impact on a solid
surface for rebound suppression, J. Fluid Mech. 752, 266
(2014).

023108-16

http://dx.doi.org/10.1039/c2sm26049b
http://dx.doi.org/10.1039/c2sm26049b
http://dx.doi.org/10.1039/c2sm26049b
http://dx.doi.org/10.1039/c2sm26049b
http://dx.doi.org/10.1021/la4012372
http://dx.doi.org/10.1021/la4012372
http://dx.doi.org/10.1021/la4012372
http://dx.doi.org/10.1021/la4012372
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.11.088
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.11.088
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.11.088
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.11.088
http://dx.doi.org/10.1016/j.colsurfa.2014.06.027
http://dx.doi.org/10.1016/j.colsurfa.2014.06.027
http://dx.doi.org/10.1016/j.colsurfa.2014.06.027
http://dx.doi.org/10.1016/j.colsurfa.2014.06.027
http://dx.doi.org/10.1103/PhysRevE.87.033010
http://dx.doi.org/10.1103/PhysRevE.87.033010
http://dx.doi.org/10.1103/PhysRevE.87.033010
http://dx.doi.org/10.1103/PhysRevE.87.033010
http://dx.doi.org/10.1063/1.1763925
http://dx.doi.org/10.1063/1.1763925
http://dx.doi.org/10.1063/1.1763925
http://dx.doi.org/10.1063/1.1763925
http://dx.doi.org/10.1103/PhysRevE.62.4982
http://dx.doi.org/10.1103/PhysRevE.62.4982
http://dx.doi.org/10.1103/PhysRevE.62.4982
http://dx.doi.org/10.1103/PhysRevE.62.4982
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.014
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.014
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.014
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.014
http://dx.doi.org/10.1103/PhysRevA.43.4320
http://dx.doi.org/10.1103/PhysRevA.43.4320
http://dx.doi.org/10.1103/PhysRevA.43.4320
http://dx.doi.org/10.1103/PhysRevA.43.4320
http://dx.doi.org/10.1007/BF01019743
http://dx.doi.org/10.1007/BF01019743
http://dx.doi.org/10.1007/BF01019743
http://dx.doi.org/10.1007/BF01019743
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.54.5041
http://dx.doi.org/10.1103/PhysRevE.54.5041
http://dx.doi.org/10.1103/PhysRevE.54.5041
http://dx.doi.org/10.1103/PhysRevE.54.5041
http://dx.doi.org/10.1006/jcph.1999.6257
http://dx.doi.org/10.1006/jcph.1999.6257
http://dx.doi.org/10.1006/jcph.1999.6257
http://dx.doi.org/10.1006/jcph.1999.6257
http://dx.doi.org/10.1016/j.jcp.2004.12.001
http://dx.doi.org/10.1016/j.jcp.2004.12.001
http://dx.doi.org/10.1016/j.jcp.2004.12.001
http://dx.doi.org/10.1016/j.jcp.2004.12.001
http://dx.doi.org/10.1006/jcph.2000.6692
http://dx.doi.org/10.1006/jcph.2000.6692
http://dx.doi.org/10.1006/jcph.2000.6692
http://dx.doi.org/10.1006/jcph.2000.6692
http://dx.doi.org/10.1016/S0021-9991(02)00022-0
http://dx.doi.org/10.1016/S0021-9991(02)00022-0
http://dx.doi.org/10.1016/S0021-9991(02)00022-0
http://dx.doi.org/10.1016/S0021-9991(02)00022-0
http://dx.doi.org/10.1016/j.ces.2016.02.017
http://dx.doi.org/10.1016/j.ces.2016.02.017
http://dx.doi.org/10.1016/j.ces.2016.02.017
http://dx.doi.org/10.1016/j.ces.2016.02.017
http://dx.doi.org/10.1103/PhysRevE.75.046708
http://dx.doi.org/10.1103/PhysRevE.75.046708
http://dx.doi.org/10.1103/PhysRevE.75.046708
http://dx.doi.org/10.1103/PhysRevE.75.046708
http://dx.doi.org/10.1103/PhysRevE.87.013301
http://dx.doi.org/10.1103/PhysRevE.87.013301
http://dx.doi.org/10.1103/PhysRevE.87.013301
http://dx.doi.org/10.1103/PhysRevE.87.013301
http://dx.doi.org/10.1146/annurev.fl.11.010179.002103
http://dx.doi.org/10.1146/annurev.fl.11.010179.002103
http://dx.doi.org/10.1146/annurev.fl.11.010179.002103
http://dx.doi.org/10.1146/annurev.fl.11.010179.002103
http://dx.doi.org/10.1146/annurev-fluid-010313-141338
http://dx.doi.org/10.1146/annurev-fluid-010313-141338
http://dx.doi.org/10.1146/annurev-fluid-010313-141338
http://dx.doi.org/10.1146/annurev-fluid-010313-141338
http://dx.doi.org/10.1063/1.868850
http://dx.doi.org/10.1063/1.868850
http://dx.doi.org/10.1063/1.868850
http://dx.doi.org/10.1063/1.868850
http://dx.doi.org/10.1002/aic.690410602
http://dx.doi.org/10.1002/aic.690410602
http://dx.doi.org/10.1002/aic.690410602
http://dx.doi.org/10.1002/aic.690410602
http://dx.doi.org/10.1002/aic.11283
http://dx.doi.org/10.1002/aic.11283
http://dx.doi.org/10.1002/aic.11283
http://dx.doi.org/10.1002/aic.11283
http://dx.doi.org/10.1140/epje/i2006-10063-7
http://dx.doi.org/10.1140/epje/i2006-10063-7
http://dx.doi.org/10.1140/epje/i2006-10063-7
http://dx.doi.org/10.1140/epje/i2006-10063-7
http://dx.doi.org/10.1017/S0022112010006452
http://dx.doi.org/10.1017/S0022112010006452
http://dx.doi.org/10.1017/S0022112010006452
http://dx.doi.org/10.1017/S0022112010006452
http://dx.doi.org/10.1017/jfm.2014.332
http://dx.doi.org/10.1017/jfm.2014.332
http://dx.doi.org/10.1017/jfm.2014.332
http://dx.doi.org/10.1017/jfm.2014.332



