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Finite-wavelength surface-tension-driven instabilities in soft solids, including instability
in a cylindrical channel through an elastic solid
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We deploy linear stability analysis to find the threshold wavelength (λ) and surface tension (γ ) of Rayleigh-
Plateau type “peristaltic” instabilities in incompressible neo-Hookean solids in a range of cylindrical geometries
with radius R0. First we consider a solid cylinder, and recover the well-known, infinite-wavelength instability for
γ � 6μR0, where μ is the solid’s shear modulus. Second, we consider a volume-conserving (e.g., fluid filled and
sealed) cylindrical cavity through an infinite solid, and demonstrate infinite-wavelength instability for γ � 2μR0.
Third, we consider a solid cylinder embedded in a different infinite solid, and find a finite-wavelength instability
with λ ∝ R0, at surface tension γ ∝ μR0, where the constants depend on the two solids’ modulus ratio. Finally,
we consider an empty cylindrical channel (or filled with expellable fluid) through an infinite solid, and find an
instability with finite wavelength, λ ≈ 2R0, for γ � 2.543 . . . μR0. Using finite-strain numerics, we show such
a channel jumps at instability to a highly peristaltic state, likely precipitating it’s blockage or failure. We argue
that finite wavelengths are generic for elastocapillary instabilities, with the simple cylinder’s infinite wavelength
being the exception rather than the rule.
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I. INTRODUCTION

We are used to surface tension influencing the shape of
fluids: it makes droplets round, fashions menisci, and breaks
apart fluid columns via the Rayleigh-Plateau instability [1].
Conventionally we do not think of surface tension as sculpting
solids, and with good reason: a solid’s surface tension, γ ,
can only compete against its elastic shear modulus, μ, at
length scales comparable to or below the solid’s elastocapillary
length scale, lcap = γ /μ, which, for most crystalline solids, is
subangstrom. However, in suitably soft solids, such as gels
and biological tissues, lcap can be microns or even millimeters,
making surface-tension-driven distortions important in many
biological contexts and readily accessible in laboratories
[2]. Recent work has highlighted “peristaltic” surface-tension
instabilities in soft solid cylinders [3–8], elastocapillary mod-
ifications to the theory of wetting [9–11], capillarity-driven
bending of wet elastic rods and sheets [12–14], and the
inhibitory role of surface tension in elastic creasing [15–17]
and cavitation [18]. Elastic analogs of other traditional fluid
instabilities, including Saffman-Taylor fingering [19–22] and
Rayleigh-Taylor fingering [23,24], have also recently been
reported.

The small soft structures in which elastocapillary effects
are important abound in biology. For example, competition
between elasticity and surface tension is well documented
in pulmonary airways [25], which are only able to inflate
when surface tension is reduced by pulmonary surfactant prior
to birth [26]. Furthermore, a growing number of biological
organs, including villi [27,28] and the mammalian brain
[29,30], are now understood to be sculpted into their complex
shapes by elastic instabilities [31–35]. Since developing organs
(and tumors) are small and soft, surface tension must also shape
organs [36,37], making elastocapillary effects an essential
component of a mechanical theory of morphogenesis.

The canonical example of surface-tension-driven instability
in solids is the Rayleigh-Plateau instability in soft-solid

cylinders [4–8], seen in Fig. 1. As in liquids, the instability
originates in the geometric fact that a volume preserving
peristaltic undulation with wavelength λ along a cylinder
of radius R0 reduces its surface area provided λ > 2πR0.
If R0 � lcap the resultant saving in surface energy exceeds
the elastic energy, so the cylinder is unstable. Previous
groups have observed this behavior [5], predicted its onset
[4,5], considered stretched cylinders [6], and calculated the
high-amplitude behavior of the instability [7,8]. However, all
these treatments contain a common surprise: the instability
is governed by two length scales, R0 and lcap, which are
comparable around threshold, so one expects λ ∼ R0 ∼ lcap.
Instead, the first unstable mode has infinite wavelength. We
consider four geometries: a solid cylinder, an incompressible
(e.g., fluid filled) cylindrical cavity in a bulk solid, a solid
cylinder within a bulk solid, and a hollow cylindrical cavity
in a bulk elastic solid. In the latter two cases, we discover
peristaltic instabilities with λ ∼ lcap, demonstrating that the
long-wavelength instability in cylinders is an anomaly rather
than a signature of elastocapillary instabilities. Since all
four systems are described by the same two length scales,
the finite λ is not explicable as long-wavelength behavior
trivially curtailed by a new length scale (such as a finite
length or finite outer radius), but rather is a reversion to the
λ ∼ R0 ∼ lcap behavior one might have anticipated in all four
cases.

Our search for finite-wavelength solid Rayleigh-Plateau
instabilities is further motivated by the existence of
finite-wavelength instabilities in other areas of elasticity
[21,23,38,39]. The full spectrum of wavelengths is seen in
the compressive folding of a growing or swelling elastic layer
adhered to an infinite elastic substrate [40–42]. If the layer is
stiff, it folds with long but finite wavelength [43], attaining the
λ → ∞ Euler buckling limit when the substrate’s modulus
becomes negligible. In the opposite limit, if the layer has a
modulus comparable to [35,44] or much lower than [15,16]
the substrate’s, the layer undergoes the zero-wavelength Biot
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FIG. 1. Solid elastic cylinders undergo a peristaltic instability if
surface tension, γ , is sufficient. Top: Experiment in gels from [5].
Bottom: Schematic of the instability.

surface instability [45], leading to the formation of cusped
folds known as creases or sulci [34,46]. These instabilities,
like the solid Rayleigh-Plateau instabilities discussed here,
are governed by a biharmonic (or similar) bulk equation
augmented by boundary conditions at the interfaces. However,
there is no obvious mapping between the sets of the problems,
and the underlying physics is quite different—compressive
folding increases the boundary’s area to release compression,
whereas Rayleigh-Plateau instabilities are driven by area
reduction—so direct calculation in the Rayleigh-Plateau cases
is necessary.

Beyond the issue of finite vs infinite wavelength, the
final (compressible) cavity geometry explored here mimics
channels through soft materials such as capillaries, airways,
and those used in microfluidics. For this reason, we verify
and extend this result by using finite elements to compute the
high-amplitude behavior of this instability. We discover that it
is strongly subcritical (like Rayleigh-Plateau in solid cylinders
[8]), with the channel jumping to an undulating state with
very high strains and apparent channel closure. This suggests
that experiencing the instability would be catastrophic for a
fluid bearing channel’s function, leading directly to blockage
and/or material failure. Thus our result gives the lower limit for
the radius of an unreinforced channel through a solid before
surface tension precipitates its collapse.

II. INSTABILITY IN A SOLID CYLINDER

We first consider a long incompressible neo-Hookean
cylinder with shear modulus μ, surface tension γ , and length
L, initially occupying R < R0 in an (R,θ,Z) cylindrical
coordinate system, as sketched in Fig. 1. For peristaltic
deformations (R,θ,Z) is displaced to the final state coordinates
(r,θ,z), so the deformation gradient is

F =
⎛
⎝ ∂r

∂R

∣∣
Z

0 ∂r
∂Z

∣∣
R

0 r/R 0
∂z
∂R

∣∣
Z

0 ∂z
∂Z

∣∣
R

⎞
⎠. (1)

The total elastic energy of the cylinder is given by

Eel =
∫ L

0

∫ R0

0

1

2
μ[Tr(FFT ) − 3]2πRdRdZ, (2)

while the surface energy is given by

Es = γ

∫ L

0
2πr(R0,z)

√
1 +

(
∂r(R0,z)

∂z

)2

dz (3)

and Det(F ) = 1 encodes incompressibility. Following Ben-
Amar [6] we represent the deformation in mixed coordinates,
specifying r(R,z) and Z(R,z). These mixed coordinates allow
us to evaluate the final state surface energy Es directly
without requiring F−T as one would working in normal
fully reference state coordinates. Furthermore, they also allow
us to implement full rather than linearized incompressibility
[6,15,47–50]: in this representation the deformation gradient
is

F =
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and although this is rather more complicated than the
standard representation, its determinant is simply Det(F ) =
r ∂r

∂R
|z/(R ∂Z

∂z
|R), so we can enforce Det(F ) = 1 by introducing

the mixed-coordinate streamline function �(R,z) and setting

Z = 1

R

∂�

∂R

∣∣∣∣
z

, r2 = 2
∂�

∂z

∣∣∣∣
R

. (5)

Setting � = 1
2R2z gives the undeformed state, so we examine

the stability of this state to infinitesimal peristaltic distortions
with wave number k by considering

� = 1
2R2z + εRf (R) sin(kz)/k (6)

such that, to leading order, the cylinder adopts the profile
r(R0,z) = R0 + εf (R0) cos(kz). Expanding Es to quadratic
order in ε and conducting the z integral yields the consequent
surface energy,

Es = γ

(
2πR0L + ε2 πf (R0)2L

2R0

(
k2R2

0 − 1
))

. (7)

We immediately see the geometric origin of the instability:
the peristaltic shape change reduces the cylinder’s area if k <

1/R0 and increases it if k > 1/R0, with longer wavelengths
(k → 0) providing the biggest reduction.

Similarly, the linearized deformation gradient is

F=I+ε

⎛
⎝ f ′ cos kz 0 −kf sin kz

0 f cos kz

R
0(

f

R2 − f ′
R

− f ′′) sin kz
k

0 −(
f

R
+ f ′) cos kz

⎞
⎠.

(8)

Substituting this into (2), expanding to quadratic order and
conducting the z integral (neglecting the higher-order differ-
ence between dZ and dz) reveals the consequent elastic energy
is

Eel = ε2
∫ R0

0

πLμ

2k2R3
[R4f ′′2+ 2R3f ′f ′′ + R2(4k2R2 + 1)f ′2

× 2Rf [R(k2R2 − 1)f ′]′ + (k2R2 + 1)2f 2]dR. (9)
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Minimizing Eel + Es with respect to variations of f yields
a biharmoniclike fourth-order elastic equation [5]

L2[f ] = 0 with L = ∂2

∂R2
+ 1

R

∂

∂R
− 1

R2
− k2, (10)

with two natural boundary conditions, equivalent to imposing
zero normal and shear stress on the boundary:

R2
0f

′′ + R0f
′ + (

k2R2
0 − 1

)
f = 0, (11)

R3
0f

′′′+ 3R2
0f

′′− 3k2R3
0f

′ = γ

μR0
k2R2

0

(
k2R2

0 −1
)
f. (12)

The bulk equation, (10), is solved by a sum of four modified
Bessel functions,

f = c1I1(kR) + c2kRI2(kR) + c3K1(kR) + c4kRK2(kR),

(13)

but for a cylinder we require c3 = c4 = 0, so that f (0) =
f ′(0) = 0 to ensure finite deformation (FzR) at R = 0. Impos-
ing the first boundary condition requires

c1 =
[

1 − kR0I0(kR0)

I1(kR0)

]
c2, (14)

while the second boundary condition yields the minimum γ

for instability:

γc = 2μR0

1 − k2R2
0

[
−(

1 + k2R2
0

) + k2R2
0
I0(kR0)2

I1(kR0)2

]
. (15)

As always with linear-stability analysis, this solution marks the
point where the ε2 term in the total energy is zero, segregating
stable cases (positive coefficient) and unstable cases (negative
coefficient). Figure 2 shows this critical surface tension as
a function of the wave number. As expected, the threshold
surface tension diverges as kR0 → 1. In agreement with
previous studies [4–6], we find the long-wavelength (k = 0)
mode becomes unstable first at γc = 6μR0. The negative
γc for kR0 > 1 indicates that instability only occurs with a
sufficiently negative surface tension—i.e., an energy reduction
for creating surface—impossible for a fluid, since such a fluid
would simply vaporize, but possible for an active solid such
as a spontaneously folding epithelial sheet [51]. Far above
threshold many modes are unstable, and previous authors [4]
have argued that due to rate effects such as viscosity, the

FIG. 2. Critical surface tension as a function of k for a solid
cylinder. The first unstable mode has infinite wavelength.

fastest growing mode may well have finite wavelength, much
like in fluids. However, close to threshold such rate effects
can only choose between the very-long-wavelength modes
that are unstable, so, at least in this region, the instability
is unambiguously long wavelength.

III. INCOMPRESSIBLE CYLINDRICAL CAVITY

We next consider a cylindrical cavity, with radius R0,
running through an infinite incompressible elastic solid. The
cavity’s surface energy is still Eq. (3) so, as in the solid-cylinder
case, peristaltic undulations with k < 1/R0 will cause its area
to decrease, implying sufficient surface tension will destabilize
the cavity as sketched in Fig. 3. The elastic energy density
is the same as before, but now integrated from R0 to ∞.
We first consider a cavity that preserves its volume, either
by being filled with an incompressible fluid, or because the
incompressible bulk solid is clamped at infinity. In this case,
prior to instability there is no deformation so, at instability,
the elastic fields must still satisfy Eq. (10), and thus still be
Eq. (13). However the cavity geometry requires c1 = c2 = 0,
so that the displacement decays as R → ∞, reducing the
solution to

f = c3K1(kR) + c4kRK2(kR). (16)

The boundary conditions at R = R0 are almost those in the
cylindrical case [Eqs. (11) and (12)], except that, since R0 is
now the lower limit of the elastic energy integral the elastic
contributions flip sign. Equation (11) simply flips sign entirely,
and is thus unchanged, requiring

c3 = −
[

1 + kR0K0(kR0)

K1(kR0)

]
c4. (17)

However, the second boundary condition changes to

−R3
0f

′′′− 3R2
0f

′′+ 3k2R3
0f

′ = γ

μR0
k2R2

0

(
k2R2

0 − 1
)
f,

(18)
from which we deduce the critical γ for instability is

γc = 2μR0

1 − k2R2
0

(
1 + k2R2

0 − k2R2
0
K0(kR0)2

K1(kR0)2

)
. (19)

We plot this critical surface tension as a function of wavelength
in Fig. 4. As expected, sufficient surface tension will generate
instability for any peristaltic undulation with k < 1/R0. As
before, the first unstable mode is the long-wavelength k → 0
mode, but instability now occurs for γ>2μR0, just one-third

Z z

R r

FIG. 3. Surface-tension-driven peristaltic instability in a cylindri-
cal cavity, radius R0, through an infinite elastic solid.
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FIG. 4. Critical surface tension as a function of k for an
incompressible cylindrical cavity. The first unstable mode again has
infinite wavelength.

of the surface tension required to destabilize a solid
cylinder.

IV. CONCENTRIC CYLINDERS

We next consider a solid cylinder with modulus μi running
through an infinite solid with modulus μo. The two solids are
materially connected, but the interface has a surface energy
γ . Again the surface energy is Eq. (3), but the elastic energy
now is the sum of contributions from the cylinder and the
bulk. Prior to instability, incompressibility guarantees there
is no displacement, so the elastic fields for the instability
are once again described by Eq. (10), and thus of the
form

f =
{
c1I1(kR) + c2kRI2(kR), R < R0

c3K1(kR) + c4kRK2(kR), R > R0.
(20)

Material continuity requires continuity of Z(R,z) and
r(R,z), and hence [[f ]] = 0 and [[(Rf )′]] = 0, where we
define [[	]] = 	(R+

0 ) − 	(R−
0 ) as the jump in 	 over the

R0 interface. In full these two conditions are

c1I1(kR0)+c2kR0I2(kR0)= c3K1(kR0)+c4kR0K2(kR0),

c1I0(kR0)+c2kR0I1(kR0)= c3K0(kR0)+c4kR0K1(kR0).

(21)

Finally, the two natural boundary conditions, equivalent to
requiring mechanical equilibrium in the radial and normal
directions on the boundary, are

[[μ(R2f ′′ + Rf ′ + (k2R2 − 1)f )]] = 0,

[[μ(R3f ′′′+ 3R2f ′′− 3k2R3f ′)]] = γ

R
k2R2(k2R2−1), (22)

where

μ =
{
μi, R < R0

μo, R > R0.
(23)

The four algebraic equations (21) and (22) are linear in the
ci and γ , so it is easy to solve them for c1, c2, c3, and the
critical surface tension for instability, γc, as in the previous
cases. However, since the resulting expression is very long for
arbitary μi , μo, we display here only the result for the special
case, μi = μo = μ, which gives

γc = 2μ

k
(
k2R2

0 − 1
)
[I0(kR0)K1(kR0) − I1(kR0)K2(kR0)]

.

(24)

As seen in Fig. 5(a) the surface tension required for instability
diverges as kR0 → 1, in accordance with the previous two
cases. However, now the critical surface tension also diverges
in the long-wavelength limit kR0 → 0, whereas in the previous
two cases this limit is the first unstable mode. Rather, in
the case of concentric cylinders with equal modulus, the first
unstable mode has kR0 = 0.561992 · · · , and consequently a
finite wavelength λ ≈ 11R0. The wave number and surface
tension of the first unstable mode are shown as a function
of modulus ratio in Figs. 5(b) and 5(c). In general, the first
unstable mode remains at finite wavelength provided both μi

and μo are finite, and remains in the range 11 < λ/R0 < 25
over five magnitudes of modulus ratios.

V. SQUEEZABLE CAVITY

Finally, we return to a long cylindrical cavity in a bulk
elastic solid, as in Sec. III, but no longer require that the cavity
conserve its volume, instead imagining that it is completely
empty, or filled with a fluid that can be squeezed out. In
this case, even when surface tension is insufficient to cause
a peristaltic instability, it will cause the radius of the cavity

FIG. 5. Peristaltic instability in a solid cylinder of modulus μi through a bulk solid with modulus μo. (a) Critical surface tension for
instability for concentric cylinders with μi = μo. The first unstable mode has finite wavelength with kR0 = 0.561992 . . .. (b) Surface tension
for first instability as a function of modulus ratio. (c) First unstable wavelength as a function of modulus ratio.
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to decrease, reducing its surface area and its volume. There
is only one deformation that is purely radial, independent of

z and volume conserving in the solid, r =
√

R2 − αR2
0 or,

equivalently,

�(R,z) = 1
2

(
R2 − αR2

0

)
z, (25)

where the dimensionless parameter, 0 < α < 1, describes the
degree of contraction, with α = 1 indicating the cavity has
completely closed. This deformation leads to a surface energy

Es = γL2πR0

√
1 − α (26)

and an elastic energy

Eel = μπR2
0Lα ln (1 − α)−1/2. (27)

Minimizing Eel + Es with respect to α, we find that the surface
tension required to produce a given α is

γ

μR0
= α − (1 − α) ln(1 − α)

2
√

1 − α
, (28)

a continuous and monotonic relationship, with α = 0 when
there is no surface tension, and α → 1 (i.e., full closure of the
cavity) as γ → ∞.

We next add an infinitesimal peristaltic perturbation to this
base state:

�(R,z) = 1
2

(
R2 − αR2

0

)
z + εg(R) sin(kz), (29)

which generates the following leading order corrections to the
surface energy:

δEs = ε2 γLπk2g(R0)2

2
[
(1 − α)3/2R3

0

] [
(1 − α)k2R2

0 − 1
]
. (30)

This correction is negative (i.e., the perturbation reduces area)
if k < 1/(R0

√
1 − α) since the base deformation leads to a

reduction of the cavity’s radius to R0
√

1 − α. With the aid of
a computer algebra package, it is also possible to evaluate the

correction to the elastic energy:

δEel =
∫ ∞

R0

ε2 πLμ

2R3r6
{R2r6g′′2 + r4g′2[k2R2(3R2 + r2) + r2]

+ 2k2r2g[R4r2g′′ + R(−3R4 − R2r2 + r4)g′]

− 2Rr6g′g′′ + g2(k4R4r4 + 4k2R6)}, (31)

where we use r =
√

R2 − R2
0α to denote the base-state radius

of material originally at R. Minimizing the total energy
variationally with respect to g(R) requires

R3r4g(4) − 2R2r4g(3) − Rr2g′′[k2R2(R2 + r2) − 3r2]

+ g′[k2R2(2R4 − R2r2 + r4) − 3r4]

+ k2Rg[R4(k2r2 − 2) + 2r4] = 0 (32)

in the bulk and the natural boundary conditions

(α − 1)(g′ − R0g
′′) + k2R0g = 0, (33)

(α2 − 2)k2R2
0g + (α − 1)

[
(α − 3)k2R2

0 + 1 − α
]
g′

+ (α − 1)2R0
(
g′′ − R0g

(3)
)

= γ

μR0

√
1 − αk2R2

0

[
(α − 1)k2R2

0 + 1
]
g (34)

on the inner R0 surface. The final two boundary conditions
are simply that g(R) and g′(R) tend to zero as R → ∞, so
the displacements vanish at infinity. The above system of
equations do not admit an analytic solution, but we are able
to solve them numerically using the MATLAB routine bvp4c, to
find the threshold surface tension required to trigger instability
at each wavelength, which we plot in Fig. 6(a). Minimizing
over wavelengths, we see that the first unstable mode has
kR0 = 3.145 . . . and is triggered when γ ≈ 2.543 . . . μR0.

Since this geometry directly mimics a microfluidic channel
through a soft solid, we verify and extend our threshold result
via cylindrically symmetric large-strain finite-element simula-
tion (details in the Appendix) Figure 6(b) shows the minimum
radius of the channel, Rmin, as surface tension is increased.

FIG. 6. (a) Critical surface tension as a function of the axial wave number for a squeezed cavity: the threshold surface tension is minimized
at γc ≈ 2.543 . . . μR0 by kR0 = 3.145 . . .. (b) Finite element analysis of the squeezed cavity instability. The minimum (final state) radius of
the cavity, Rmin, falls as γ is increased. As shown in the insets on the right, for γ below threshold, the radius contracts homogeneously along
the whole channel as described by Eq. (28). At threshold, the instability proceeds subcritically and the system jumps to a highly peristaltic
state with a zero (or almost zero) minimum radius. Inset color indicates isotropic stress (dark red, <−1.25μ; dark blue, >1.25μ) and the lines
indicate every eighth mesh line.
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Before threshold the channel contracts homogeneously so its
radius (Rmin) falls but the channel remains cylindrical. The
simulation points are in excellent agreement with the solid
theoretical curve derived from Eq. (28). At threshold, the
instability occurs with the expected wavelength and γ , and the
channel jumps subcritically to a highly deformed peristaltic
state with a negligible minimum radius, effectively closing the
channel. In our simulations the peristaltic deformation closed
the channel to within 0.01R0, a length scale commensurate
with our mesh, and generated compressive stresses >100μ at
the inner radius. This suggests that, within the neo-Hookean
cylindrically symmetric framework, the channel probably
closes completely; this is plausible since the inward capillary
stress, γ /R, grows as material moves inward, while the neo-
Hookean constitutive law has no strain-stiffening behavior.
Of course, in real materials divergent elastic stresses are
impossible, so real channels will avoid them by plastic
deformation, fracture, strain stiffening, or breaking cylindrical
symmetry. However, suffering the instability is assured to be
a dramatic subcritical event leading to almost or complete
channel closure, so we propose that R0 = 0.393 . . . γ /μ is
the smallest possible radius for an unreinforced open channel
through an elastic solid.

VI. CONCLUSIONS

The main result of this paper is that the infinite-wavelength
surface-tension-driven instability of a soft incompressible
cylinder is an anomaly; we should normally expect such
instabilities in soft solids to have, at threshold, wavelengths
λ ∼ lcap. To demonstrate this, we have calculated the thresh-
old wavelength for two new geometries with cylindrical
symmetry—a solid cylinder embedded in a bulk solid, and
a cylindrical cavity through a bulk neo-Hookean solid—
and shown that, in both cases, the instability does indeed
proceed with λ ∼ lcap. We anticipate these geometries will find
direct relevance in biology since filaments and pipes through
soft-solid tissues abound in physiology, are sculpted during
development, and fail during disease.

There remains the question of why the simple cylinder
and the incompressible cylindrical cavity produce infinite-
wavelength instabilities. Looking at the surface energy for
a peristaltic distortion, Eq. (7), we see that surface tension
certainly favors long-wavelength instabilities: the smaller k is,
the more surface energy is reduced for a given amplitude. We
would normally expect distortions with infinite or vanishing
wavelength to generate infinite shears, and hence to be
suppressed elastically, and indeed if we look at the form
of the peristaltic deformation gradient, Eq. (8), we see that
the r − z component diverges at short wavelengths, and
the z − r component diverges at long wavelengths, so we
generally expect an intermediate wavelength to be preferred.
However, the z − r shears can also be suppressed, even at
long wavelength and finite amplitude, if f

R2 − f ′
R

−f ′′ = 0,
requiring

f (R) = c1
R

R0
+ c2

R0

R
, (35)

and hence ẑ displacements

uz ≡ z − Z = −ε
2c1

kR0
sin(kz). (36)

The first of these solutions (c1) generates the long-wavelength
solution for the simple cylinder, and the second (c2) generates
the analogous solution for the incompressible cavity. The
solutions have markedly different character. The c2 cavity so-
lution has Z = z and is thus a plane-strain solution associated
with radial displacements of the form uR ∼ 1/R, which do
decay as R → ∞ but are nevertheless able to bring volume in
from infinity since RuR remains finite. The c1 solid cylinder
solution is associated with diverging z displacements (though
not shears) as k → 0, which are generated because the cylinder
breaks into long regions which alternate between getting
thinner and longer and getting fatter and shorter, generating
big longitudinal displacements. Clearly these two solutions,
with such different uz, are not kinematically compatible with
each other, so it is no surprise that when we consider a solid
cylinder through a bulk solid these solutions are not accessed
and the instability has finite wavelength.

More generally, a full solution to a fourth-order elasticity
problem requires four boundary conditions, and thus a solution
with four constants of integration. Here we only have two
compatible with long-wavelength instabilities, so we gener-
ally expect surface-tension instabilities, even in cylindrical
geometries, to not be described by this simple form, and thus
have finite wavelength.
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APPENDIX: DETAILS OF NUMERICAL SIMULATIONS

Our simulations use an explicit finite-element method,
based on the same code used in [30] and [35]. Since the
problem has cylindrical symmetry, we construct the body from
constant-strain triangular elements in the r-z plane, each of
which represents a triangularly cross-sectioned torus of the
elastic body. The triangles form a rectangular mesh spanning
from the inner radius, R0, to an outer radius of 30R0 and
from z = 0 to z = λ = 1.99 . . . R0, with periodicity enforced
in the z direction. The mesh contains around 21 000 nodes,
and spans z in 121 equally spaced segments, while in the radial
direction it coarsens from a spacing of R0/6400 at the inner
boundary to a spacing of 1.5R0 at the outer boundary. Each
triangle is assigned a compressible neo-Hookean elastic energy
(within a quasi-incompressible nodal pressure formulation)
with a bulk modulus K = 2 × 103μ. The force on each node
is calculated as the gradient of the total energy with respect to
nodal position, including surface energy at the inner surface,
and the nodes are moved according to damped Newtonian
dynamics. Surface tension was increased sufficiently slowly as
to be quasistatic, so although the simulation uses Newtonian
dynamics, the states reported are converged energy minima.
The good agreement between the predicted and observed
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threshold γ (error in threshold <0.2%) for instability suggests
the outer radius is large enough, the bulk modulus high enough,
and the mesh fine enough to mimic an incompressible infinite

continuum material. The extremely fine mesh at the inner
boundary is required to capture the extreme strain gradients at
the inner points of the peristaltic state.

[1] J. W. Strutt (Lord Rayleigh), Proc. London Math. Soc. 10, 4
(1878).

[2] B. Roman and J. Bico, J. Phys.: Condens. Matter 22, 493101
(2010).

[3] E. S. Matsuo and T. Tanaka, Nature (London) 358, 482 (1992).
[4] B. Barriere, K. Sekimoto, and L. Leibler, J. Chem. Phys. 105,

1735 (1996).
[5] S. Mora, T. Phou, J.-M. Fromental, L. M. Pismen, and

Y. Pomeau, Phys. Rev. Lett. 105, 214301 (2010).
[6] P. Ciarletta and M. Ben Amar, Soft Matter 8, 1760 (2012).
[7] M. Taffetani and P. Ciarletta, J. Mech. Phys. Solids 81, 91

(2015).
[8] M. Taffetani and P. Ciarletta, Phys. Rev. E 91, 032413 (2015).
[9] R. W. Style, R. Boltyanskiy, Y. Che, J. S. Wettlaufer, L. A.

Wilen, and E. R. Dufresne, Phys. Rev. Lett. 110, 066103 (2013).
[10] R. W. Style, C. Hyland, R. Boltyanskiy, J. S. Wettlaufer, and

E. R. Dufresne, Nat. Commun. 4, 2728 (2013).
[11] R. W. Style, Y. Che, S. J. Park, B. M. Weon, J. H. Je, C. Hyland,

G. K. German, M. P. Power, L. A. Wilen, J. S. Wettlaufer et al.,
Proc. Natl. Acad. Sci. USA 110, 12541 (2013).

[12] J. Bico, B. Roman, L. Moulin, and A. Boudaoud, Nature
(London) 432, 690 (2004).

[13] H.-Y. Kim and L. Mahadevan, J. Fluid Mech. 548, 141 (2006).
[14] S. Mora, C. Maurini, T. Phou, J.-M. Fromental, B. Audoly, and

Y. Pomeau, Phys. Rev. Lett. 111, 114301 (2013).
[15] M. B. Amar and P. Ciarletta, J. Mech. Phys. Solids 58, 935

(2010).
[16] J. Yoon, J. Kim, and R. C. Hayward, Soft Matter 6, 5807

(2010).
[17] S. Mora, M. Abkarian, H. Tabuteau, and Y. Pomeau, Soft Matter

7, 10612 (2011).
[18] A. Gent, Rubber Chem. Technol. 63, 49 (1990).
[19] K. R. Shull, C. M. Flanigan, and A. J. Crosby, Phys. Rev. Lett.

84, 3057 (2000).
[20] B. Saintyves, O. Dauchot, and E. Bouchaud, Phys. Rev. Lett.

111, 047801 (2013).
[21] J. S. Biggins, B. Saintyves, Z. Wei, E. Bouchaud, and L.

Mahadevan, Proc. Natl. Acad. Sci. USA 110, 12545 (2013).
[22] J. S. Biggins, Z. Wei, and L. Mahadevan, Europhys. Lett. 110,

34001 (2015).
[23] S. Mora, T. Phou, J.-M. Fromental, and Y. Pomeau, Phys. Rev.

Lett. 113, 178301 (2014).
[24] X. Liang and S. Cai, Appl. Phys. Lett. 106, 041907 (2015).
[25] A. L. Hazel and M. Heil, Proc. R. Soc. London, Ser. A 461,

1847 (2005).
[26] M. E. Avery and J. Mead, AMA J. Dis. Child. 97, 517 (1959).

[27] A. E. Shyer, T. Tallinen, N. L. Nerurkar, Z. Wei, E. S. Gil,
D. L. Kaplan, C. J. Tabin, and L. Mahadevan, Science 342, 212
(2013).

[28] E. Hannezo, J. Prost, and J.-F. Joanny, Phys. Rev. Lett. 107,
078104 (2011).

[29] R. Toro and Y. Burnod, Cereb. Cortex 15, 1900 (2005).
[30] T. Tallinen, J. Y. Chung, J. S. Biggins, and L. Mahadevan, Proc.

Natl. Acad. Sci. USA 111, 12667 (2014).
[31] J. Bard and A. Ross, Dev. Biol. 92, 87 (1982).
[32] T. Savin, N. A. Kurpios, A. E. Shyer, P. Florescu, H. Liang, L.

Mahadevan, and C. J. Tabin, Nature (London) 476, 57 (2011).
[33] B. Li, Y.-P. Cao, X.-Q. Feng, and H. Gao, J. Mech. Phys. Solids

59, 758 (2011).
[34] T. Tallinen, J. S. Biggins, and L. Mahadevan, Phys. Rev. Lett.

110, 024302 (2013).
[35] T. Tallinen and J. S. Biggins, Phys. Rev. E 92, 022720 (2015).
[36] E. Hannezo, J. Prost, and J.-F. Joanny, Phys. Rev. Lett. 109,

018101 (2012).
[37] J. Dervaux, Y. Couder, M.-A. Guedeau-Boudeville, and M. Ben

Amar, Phys. Rev. Lett. 107, 018103 (2011).
[38] E. Cerda and L. Mahadevan, Phys. Rev. Lett. 90, 074302 (2003).
[39] J. Dervaux and M. B. Amar, J. Mech. Phys. Solids 59, 538

(2011).
[40] Z. Cai and Y. Fu, Proc. R. Soc. London, Ser. A 455, 3285 (1999).
[41] Y. Cao and J. W. Hutchinson, J. Appl. Mech. 79, 031019 (2012).
[42] Y. Cao and J. W. Hutchinson, Proc. R. Soc. London, Ser. A 468,

94 (2012).
[43] H. G. Allen, Analysis and Design of Structural Sandwich Panels:

The Commonwealth and International Library: Structures and
Solid Body Mechanics Division (Pergamon, New York, 1969).

[44] S. Budday, E. Kuhl, and J. W. Hutchinson, Philos. Mag. 95,
3208 (2015).

[45] M. Biot, Mechanics of Incremental Deformations: Theory of
Elasticity and Viscoelasticity of Initially Stressed Solids and Flu-
ids, Including Thermodynamic Foundations and Applications to
Finite Strain (John Wiley & Sons, New York, 1965).

[46] E. Hohlfeld and L. Mahadevan, Phys. Rev. Lett. 106, 105702
(2011).

[47] M. Carroll, J. Elast. 88, 1 (2007).
[48] P. Ciarletta and M. Ben Amar, Mech. Res. Commun. 42, 68

(2012).
[49] J. S. Biggins, Z. Wei, and L. Mahadevan, Europhys. Lett. 108,

64001 (2014).
[50] J. S. Biggins, Z. Wei, and L. Mahadevan, arXiv:1407.1405.
[51] V. Fleury and R. Gordon, in Origin(s) of Design in Nature

(Springer, New York, 2012), pp. 385–428.

023107-7

http://dx.doi.org/10.1088/0953-8984/22/49/493101
http://dx.doi.org/10.1088/0953-8984/22/49/493101
http://dx.doi.org/10.1088/0953-8984/22/49/493101
http://dx.doi.org/10.1088/0953-8984/22/49/493101
http://dx.doi.org/10.1038/358482a0
http://dx.doi.org/10.1038/358482a0
http://dx.doi.org/10.1038/358482a0
http://dx.doi.org/10.1038/358482a0
http://dx.doi.org/10.1063/1.472544
http://dx.doi.org/10.1063/1.472544
http://dx.doi.org/10.1063/1.472544
http://dx.doi.org/10.1063/1.472544
http://dx.doi.org/10.1103/PhysRevLett.105.214301
http://dx.doi.org/10.1103/PhysRevLett.105.214301
http://dx.doi.org/10.1103/PhysRevLett.105.214301
http://dx.doi.org/10.1103/PhysRevLett.105.214301
http://dx.doi.org/10.1039/c2sm06851f
http://dx.doi.org/10.1039/c2sm06851f
http://dx.doi.org/10.1039/c2sm06851f
http://dx.doi.org/10.1039/c2sm06851f
http://dx.doi.org/10.1016/j.jmps.2015.05.002
http://dx.doi.org/10.1016/j.jmps.2015.05.002
http://dx.doi.org/10.1016/j.jmps.2015.05.002
http://dx.doi.org/10.1016/j.jmps.2015.05.002
http://dx.doi.org/10.1103/PhysRevE.91.032413
http://dx.doi.org/10.1103/PhysRevE.91.032413
http://dx.doi.org/10.1103/PhysRevE.91.032413
http://dx.doi.org/10.1103/PhysRevE.91.032413
http://dx.doi.org/10.1103/PhysRevLett.110.066103
http://dx.doi.org/10.1103/PhysRevLett.110.066103
http://dx.doi.org/10.1103/PhysRevLett.110.066103
http://dx.doi.org/10.1103/PhysRevLett.110.066103
http://dx.doi.org/10.1038/ncomms3728
http://dx.doi.org/10.1038/ncomms3728
http://dx.doi.org/10.1038/ncomms3728
http://dx.doi.org/10.1038/ncomms3728
http://dx.doi.org/10.1073/pnas.1307122110
http://dx.doi.org/10.1073/pnas.1307122110
http://dx.doi.org/10.1073/pnas.1307122110
http://dx.doi.org/10.1073/pnas.1307122110
http://dx.doi.org/10.1038/432690a
http://dx.doi.org/10.1038/432690a
http://dx.doi.org/10.1038/432690a
http://dx.doi.org/10.1038/432690a
http://dx.doi.org/10.1017/S0022112005007718
http://dx.doi.org/10.1017/S0022112005007718
http://dx.doi.org/10.1017/S0022112005007718
http://dx.doi.org/10.1017/S0022112005007718
http://dx.doi.org/10.1103/PhysRevLett.111.114301
http://dx.doi.org/10.1103/PhysRevLett.111.114301
http://dx.doi.org/10.1103/PhysRevLett.111.114301
http://dx.doi.org/10.1103/PhysRevLett.111.114301
http://dx.doi.org/10.1016/j.jmps.2010.05.002
http://dx.doi.org/10.1016/j.jmps.2010.05.002
http://dx.doi.org/10.1016/j.jmps.2010.05.002
http://dx.doi.org/10.1016/j.jmps.2010.05.002
http://dx.doi.org/10.1039/c0sm00372g
http://dx.doi.org/10.1039/c0sm00372g
http://dx.doi.org/10.1039/c0sm00372g
http://dx.doi.org/10.1039/c0sm00372g
http://dx.doi.org/10.1039/c1sm06051a
http://dx.doi.org/10.1039/c1sm06051a
http://dx.doi.org/10.1039/c1sm06051a
http://dx.doi.org/10.1039/c1sm06051a
http://dx.doi.org/10.5254/1.3538266
http://dx.doi.org/10.5254/1.3538266
http://dx.doi.org/10.5254/1.3538266
http://dx.doi.org/10.5254/1.3538266
http://dx.doi.org/10.1103/PhysRevLett.84.3057
http://dx.doi.org/10.1103/PhysRevLett.84.3057
http://dx.doi.org/10.1103/PhysRevLett.84.3057
http://dx.doi.org/10.1103/PhysRevLett.84.3057
http://dx.doi.org/10.1103/PhysRevLett.111.047801
http://dx.doi.org/10.1103/PhysRevLett.111.047801
http://dx.doi.org/10.1103/PhysRevLett.111.047801
http://dx.doi.org/10.1103/PhysRevLett.111.047801
http://dx.doi.org/10.1073/pnas.1302269110
http://dx.doi.org/10.1073/pnas.1302269110
http://dx.doi.org/10.1073/pnas.1302269110
http://dx.doi.org/10.1073/pnas.1302269110
http://dx.doi.org/10.1209/0295-5075/110/34001
http://dx.doi.org/10.1209/0295-5075/110/34001
http://dx.doi.org/10.1209/0295-5075/110/34001
http://dx.doi.org/10.1209/0295-5075/110/34001
http://dx.doi.org/10.1103/PhysRevLett.113.178301
http://dx.doi.org/10.1103/PhysRevLett.113.178301
http://dx.doi.org/10.1103/PhysRevLett.113.178301
http://dx.doi.org/10.1103/PhysRevLett.113.178301
http://dx.doi.org/10.1063/1.4906933
http://dx.doi.org/10.1063/1.4906933
http://dx.doi.org/10.1063/1.4906933
http://dx.doi.org/10.1063/1.4906933
http://dx.doi.org/10.1098/rspa.2005.1453
http://dx.doi.org/10.1098/rspa.2005.1453
http://dx.doi.org/10.1098/rspa.2005.1453
http://dx.doi.org/10.1098/rspa.2005.1453
http://dx.doi.org/10.1001/archpedi.1959.02070010519001
http://dx.doi.org/10.1001/archpedi.1959.02070010519001
http://dx.doi.org/10.1001/archpedi.1959.02070010519001
http://dx.doi.org/10.1001/archpedi.1959.02070010519001
http://dx.doi.org/10.1126/science.1238842
http://dx.doi.org/10.1126/science.1238842
http://dx.doi.org/10.1126/science.1238842
http://dx.doi.org/10.1126/science.1238842
http://dx.doi.org/10.1103/PhysRevLett.107.078104
http://dx.doi.org/10.1103/PhysRevLett.107.078104
http://dx.doi.org/10.1103/PhysRevLett.107.078104
http://dx.doi.org/10.1103/PhysRevLett.107.078104
http://dx.doi.org/10.1093/cercor/bhi068
http://dx.doi.org/10.1093/cercor/bhi068
http://dx.doi.org/10.1093/cercor/bhi068
http://dx.doi.org/10.1093/cercor/bhi068
http://dx.doi.org/10.1073/pnas.1406015111
http://dx.doi.org/10.1073/pnas.1406015111
http://dx.doi.org/10.1073/pnas.1406015111
http://dx.doi.org/10.1073/pnas.1406015111
http://dx.doi.org/10.1016/0012-1606(82)90153-1
http://dx.doi.org/10.1016/0012-1606(82)90153-1
http://dx.doi.org/10.1016/0012-1606(82)90153-1
http://dx.doi.org/10.1016/0012-1606(82)90153-1
http://dx.doi.org/10.1038/nature10277
http://dx.doi.org/10.1038/nature10277
http://dx.doi.org/10.1038/nature10277
http://dx.doi.org/10.1038/nature10277
http://dx.doi.org/10.1016/j.jmps.2011.01.010
http://dx.doi.org/10.1016/j.jmps.2011.01.010
http://dx.doi.org/10.1016/j.jmps.2011.01.010
http://dx.doi.org/10.1016/j.jmps.2011.01.010
http://dx.doi.org/10.1103/PhysRevLett.110.024302
http://dx.doi.org/10.1103/PhysRevLett.110.024302
http://dx.doi.org/10.1103/PhysRevLett.110.024302
http://dx.doi.org/10.1103/PhysRevLett.110.024302
http://dx.doi.org/10.1103/PhysRevE.92.022720
http://dx.doi.org/10.1103/PhysRevE.92.022720
http://dx.doi.org/10.1103/PhysRevE.92.022720
http://dx.doi.org/10.1103/PhysRevE.92.022720
http://dx.doi.org/10.1103/PhysRevLett.109.018101
http://dx.doi.org/10.1103/PhysRevLett.109.018101
http://dx.doi.org/10.1103/PhysRevLett.109.018101
http://dx.doi.org/10.1103/PhysRevLett.109.018101
http://dx.doi.org/10.1103/PhysRevLett.107.018103
http://dx.doi.org/10.1103/PhysRevLett.107.018103
http://dx.doi.org/10.1103/PhysRevLett.107.018103
http://dx.doi.org/10.1103/PhysRevLett.107.018103
http://dx.doi.org/10.1103/PhysRevLett.90.074302
http://dx.doi.org/10.1103/PhysRevLett.90.074302
http://dx.doi.org/10.1103/PhysRevLett.90.074302
http://dx.doi.org/10.1103/PhysRevLett.90.074302
http://dx.doi.org/10.1016/j.jmps.2010.12.015
http://dx.doi.org/10.1016/j.jmps.2010.12.015
http://dx.doi.org/10.1016/j.jmps.2010.12.015
http://dx.doi.org/10.1016/j.jmps.2010.12.015
http://dx.doi.org/10.1098/rspa.1999.0451
http://dx.doi.org/10.1098/rspa.1999.0451
http://dx.doi.org/10.1098/rspa.1999.0451
http://dx.doi.org/10.1098/rspa.1999.0451
http://dx.doi.org/10.1115/1.4005960
http://dx.doi.org/10.1115/1.4005960
http://dx.doi.org/10.1115/1.4005960
http://dx.doi.org/10.1115/1.4005960
http://dx.doi.org/10.1098/rspa.2011.0384
http://dx.doi.org/10.1098/rspa.2011.0384
http://dx.doi.org/10.1098/rspa.2011.0384
http://dx.doi.org/10.1098/rspa.2011.0384
http://dx.doi.org/10.1080/14786435.2015.1014443
http://dx.doi.org/10.1080/14786435.2015.1014443
http://dx.doi.org/10.1080/14786435.2015.1014443
http://dx.doi.org/10.1080/14786435.2015.1014443
http://dx.doi.org/10.1103/PhysRevLett.106.105702
http://dx.doi.org/10.1103/PhysRevLett.106.105702
http://dx.doi.org/10.1103/PhysRevLett.106.105702
http://dx.doi.org/10.1103/PhysRevLett.106.105702
http://dx.doi.org/10.1007/s10659-006-9084-y
http://dx.doi.org/10.1007/s10659-006-9084-y
http://dx.doi.org/10.1007/s10659-006-9084-y
http://dx.doi.org/10.1007/s10659-006-9084-y
http://dx.doi.org/10.1016/j.mechrescom.2011.12.001
http://dx.doi.org/10.1016/j.mechrescom.2011.12.001
http://dx.doi.org/10.1016/j.mechrescom.2011.12.001
http://dx.doi.org/10.1016/j.mechrescom.2011.12.001
http://dx.doi.org/10.1209/0295-5075/108/64001
http://dx.doi.org/10.1209/0295-5075/108/64001
http://dx.doi.org/10.1209/0295-5075/108/64001
http://dx.doi.org/10.1209/0295-5075/108/64001
http://arxiv.org/abs/arXiv:1407.1405



