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Drag force and transport property of a small cylinder in free molecule flow:
A gas-kinetic theory analysis
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Analytical expressions are derived for aerodynamic drag force on small cylinders in the free molecule flow
using the gas-kinetic theory. The derivation considers the effect of intermolecular interactions between the
cylinder and gas media. Two limiting collision models, specular and diffuse scattering, are investigated in two
limiting cylinder orientations with respect to the drift velocity. The earlier solution of Dahneke [B. E. Dahneke,
J. Aerosol Sci. 4, 147 (1973)] is shown to be a special case of the current expressions in the rigid-body limit of
collision. Drag force expressions are obtained for cylinders that undergo Brownian rotation and for those that
align with the drift velocity. The validity of the theoretical expressions is tested against experimental mobility
data available for carbon nanotubes.
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I. INTRODUCTION

Theory of aerodynamic drag force, diffusivity, and electric
mobility of nanosized slender bodies (NSBs) in a fluid medium
is of interest to a wide range of problems. NSBs may include
long-chain molecules, nanorods, and nanotubes. Applications
range from drag on cylinders or chains of spheres [1], size
classification of fibrous aerosols [2–6], ion mobility of long-
chain molecules and biomolecules [7–9], gas-phase synthesis,
and separation and characterization of nanotubes and nanorods
[10–20], to transport properties of long-chain hydrocarbons in
reacting flows [21–23].

Earlier, Batchelor [24] and Cox [25] treated the drag force
on a slender body in the Stokes flow region and the low-
Reynolds number limit. For a slender body of radius R and
length L (2R � L) undergoing relative motion with a fluid
at a drift velocity V, they showed that the drag force takes the
forms of

F‖ ∼= 2πμL
ln(L/R) − 3/2 + ln 2

V, (1)

and

F⊥ ∼= 4πμL
ln(L/R) − 1/2 + ln 2

V, (2)

for a cylinder aligned parallel (‖) and perpendicular (⊥) to
the drift velocity, respectively. In Eqs. (1) and (2), μ is the
fluid viscosity. The proportionality between the drag force and
velocity may be expressed in terms of the drag coefficient c,
i.e., F = cV . Equations (1) and (2) are applicable in the small
Knudsen number limit, i.e., KnR = λ/R � 1, where λ is the
mean free path of the fluid.

For an NSB or a slender body in the free molecule regime
(KnR = λ/R � 1), expressions for aerodynamic drag were
also available. Notably, Dahneke [26] carried out a gas-kinetic
theory analysis and extended Epstein’s theory for spheres
[27] to bodies of arbitrary shapes. In his analysis, Dahneke
considered rigid-body collision only and treated two types of
momentum transfer, i.e., the diffuse and specular scattering
models as discussed in Millikan [28,29]. In the absence of

dynamic rotational effects, Dahneke’s drag force expression
takes the form of

F = √
2πmgkT

[
ϕ +

(
2 − 6 − π

4
ϕ

)
sin2α

]
NRLV, (3)

where mg is the molecular mass of the gas, k is the Boltzmann
constant, T is the temperature, N is the gas number density,
and ϕ is the momentum accommodation factor (0 � ϕ � 1).
Here the two limiting ϕ values are 0 for specular scattering and
1 for diffuse scattering. In Eq. (3), α specifies the orientation
of the NSB with respect to the drift velocity V (α = 0 for
the cylinder collinear with V and α = π/2 for the cylinder
perpendicular to V). Equation (3) differs from Eqs. (1) and (2)
because of the fundamental difference in the mechanism of
momentum transfer. While in Stokes flow viscous dissipation
of the fluid surrounding the slender body governs the drag,
in the free molecule regime the drag arises from momentum
transfer of direct collisions between the fluid molecules and
the cylinder surface. Figure 1 illustrates the dependency of the
drag coefficient on the radius of cylinders of a constant aspect
ratio L/R. In the Stokes flow regime (KnR � 1), we expect
c/R to be independent of R or the drag force F ∝ R, whereas
in the free molecule regime (KnR � 1), c/R is proportional to
R or F ∝ R2 in the rigid-body limit of collision.

Equation (3) has been the foundation in recent studies
of the transport properties of NSBs. For example, Kim
et al. [14] obtained an orientation-averaged electrical mobility
expression and used it to determine the length of nanowires
from electric mobility measurement. They showed that the
mobility is a strong function of the wire orientation, which
in turn, is dependent on the electric field strength and wire
aspect ratio. Li et al. [30] considered the effect of cylinder
rotation and obtained an expression for the orientation-
averaged drag force from Dahneke’s expressions. Table I
presents several drag force formulations relevant to the current
discussion.

As discussed before, Dahneke’s theory considers rigid-
body collision only, yet the dynamics of collision and the
resulting momentum transfer can be impacted by the potential
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FIG. 1. Schematic illustration of the limiting solutions of spe-
cific drag coefficient (c/L) of cylinders of a constant aspect
ratio L/(2R) � 1. The Batchelor-Cox solution is for Stokes flow
(KnR � 1) and the Dahneke solution is applicable to free molecule
regime (KnR � 1).

energy of interactions between an NSB and the fluid molecules.
In general the potential energy of interactions increases the
collision cross section and hence the drag. The shaded areas of
Fig. 1 depict this effect. Previous studies have shown the effect
of potential interactions to be significant for particles smaller
than 10 nm in diameter [31–33]. For that size range, further
complication may stem from changes in the dominant mode

of molecular scattering. As the particle size is decreased to a
few nanometers the collision evolves from diffuse to specular
scattering [34,35]. In general, diffuse scattering yields a drag
larger than specular scattering (cf. Fig. 1). These peculiarities
ought to be applicable for matters of arbitrary shapes. For
these reasons, Dahneke’s expression can be inadequate when
applied to NSBs as they approach the molecular size in at least
one of its size dimensions.

Gas-phase transport properties have been treated with the
Chapman-Enskog theory with spherical, isotropic potential
functions [36]. For both near-spherical and nonspherical
molecules the potential function of interactions has been
historically described by an isotropic Lennard-Jones (LJ) 12–6
function [37–42]. The validity of this assumption was never
examined in detail for nonspherical molecules. Considering
that the LJ potential parameters used to model the binary
diffusion coefficient are estimated customarily from measured
viscosity [38–41], there is no theoretical reason to believe that
the use of the LJ potential would lead to adequate predictions
for gas diffusivity. Recent molecular dynamics evidence
indeed suggests that the spherical potential assumption can
be inaccurate [43,44].

Recognizing the aforementioned problems, Wong et al.
[45] treated the drag coefficient using axisymmetric potential
and a gas-kinetic theory. Although the treatment was shown
to predict a range of relevant data, it does not converge to
Dahneke’s rigid-body expressions. Specifically, a more precise
treatment of the trajectory of a gas molecule undergoing specu-
lar scattering with the cylinder, as will be adopted here, should

TABLE I. Selected drag force formulations for cylindrical body.

Author(s) Drag force expression Comments

Cox [25] F‖ = 2πμLV [ 1
ln(L/R)−3/2−ln 2 + O{ 1

[ln(L/R)]3 }], Circular cylinder of length L at rest in a uniform

F⊥ = 4πμLV [ 1
ln(L/R)−1/2+ln 2 + O{ 1

[ln(L/R)]3 }]. fluid flow of velocity V. The solution is obtained in

Stokes flows neglecting the inertia effect.

Dahneke [26] F = √
2πmgkT [ϕ + (2 − 6−π

4 ϕ)sin2α]NRLV̄ Drag force on a cylinder in the free molecule regime

= πμL
KnR

[ϕ + (2 − 6−π

4 ϕ)sin2α]V̄ , with rigid-body collision. Mixed scattering is

cd,‖ = πϕμL
KnR

for α = 0 (collinear), expressed by the momentum accommodation
cd,⊥ = (2 − 6−π

4 ϕ) πμL
KnR

for α = π/2 (perpendicular). factor 0 � ϕ � 1, where the two limits are
specular scattering and diffuse scattering, respectively.

Kim et al. [14] F = πμLV̄

KnR
[ϕ + (2 − 6−π

4 ϕ)〈sin2α〉]. An extension of Dahneke’s solution by treating
cylinder rotation; 〈sin2α〉 is the mean of sin2α

which may be determined from the distribution
function of attack angle.

Li et al. [30] F = 3(1/cd,‖ + 2/cd,⊥)−1V̄ for slow Brownian rotation cd,‖ and cd,⊥ are drag coefficients as given by
relative to translational relaxation. Dahneke’s solutions [26].
F = 1

3 (cd,‖ + 2cd,⊥)V̄ for fast Brownian rotation
relative to translational relaxation.

This work F
 = 1
3 {2[ϕcd,⊥ + (1 − ϕ)cs,⊥] + ϕcd,‖}V̄ , F
 and F‖ are drag forces on cylinders in

F‖ = ϕcd,‖V̄ , uniformly random orientation and parallel to
where drift velocity, respectively. The reduced collision

cd,‖ = 4
π

√
2mrkT

π
NLR�

(1,1)∗
d,‖ , integrals �(1,1)∗ accounts for the nonrigid-body effect.

cd,⊥ = 4
π

√
2mrkT

π
NLR�

(1,1)∗
d,⊥ , Their expressions can be found in the text.

cs,⊥ = 4
π

√
2mrkT

π
NLR�(1,1)∗

s .
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lead to zero momentum transfer along the axial direction of
the cylinder and thus reproduce Dahneke’s expression.

In this paper we carried out a comprehensive gas-kinetic
theory analysis for drag force on NSBs in the perfect cylinder
limit with the aspect ratio L/2R � 1. The potential force of
interactions between the fluid molecules and the cylinder is
described by a potential function. We are interested in free
molecule flows with the effective Knudsen number KnR � 1.
Following Epstein [27], we considered specular and diffuse
scattering separately. It has been identified earlier that the
origin of diffuse scattering involves molecular adsorption and
desorption on particle surface [34,35], which is applicable to
NSBs also. Drag force expressions are obtained for cylinders
that undergo Brownian rotation and for those that align with
the drift velocity. The validity of the theoretical expressions
is examined against experimental mobility data available for
carbon nanotubes.

II. GAS-KINETIC THEORY ANALYSIS

In principle, the gas-kinetic theory analysis of drag on a
cylinder is similar to that of spherical particles [31]. Figure 2
shows the coordinate system. A cylinder of radius R and
length L (L/2R � 1) undergoes motion in a fluid with an

FIG. 2. (a) Schematic of the coordinate system; (b) x-z plane
projection of the collision trajectory of the molecule. gx + gz and
g′

x + g′
z are the molecular velocity components in the x-z plane before

and after collision, respectively, and χ is the scattered angle.

instantaneous velocity V. The axis of the cylinder lies along
the y axis, and V is on the y-z plane at the attack angle α.
Fluid molecules of random velocity v collide with a differential
cylinder section of length d� at the relative velocity g = v − V
with the differential collision cross section equal to d�db,
where b is the impact parameter. The velocity vector g may
be defined by the polar angle φ and azimuthal angle θ .
Furthermore, β is the angle between g and the z axis, and
ζ is the angle between g and the y axis.

Gas is assumed to be in local equilibrium and its mass-
center velocity is equal to zero. In this reference frame, the
velocity distribution of the gas molecules is

fv = N

(
mg

2πkT

)3/2

exp

(
−mgv

2

2kT

)
, (4a)

where v is the velocity of gas molecules. There are several
important assumptions worthy of mentioning before we start
our derivation. When the cylinder is moving in a gas, the
drag force is essentially the result of the momentum exchange
between gas molecules and the cylinder upon collisions. The
drift velocity V̄ is the time average of V, which is expected
to be substantially smaller than v or g. The relative velocity g
has the distribution

fg = N

(
mr

2πkT

)3/2

exp

[
−mr (g + V̄)

2

2kT

]
, (4b)

where mr = mgmc/(mg + mc) is the reduced mass with mc

being the mass of the cylinder.

III. SPECULAR SCATTERING

We shall consider first the case in which the collision
between the gas molecule and cylinder is elastic. We neglect
the cylinder-end effect for now and treat only momentum
transfer on the side of the cylinder body. The end effect shall be
discussed later. For a gas molecule moving toward the cylinder
with a relative, incident velocity g and impact parameter b, as
shown in Fig. 2(a), the x-z plane projection of its trajectory
is depicted in Fig. 2(b). Let g′ be the molecular velocity after
the collision, and e is a unit vector of g′ − g. In this plane, we
construct a frame in which axis e3 is parallel to the incident
velocity g, and the axis e2 is normal to both e3 and the axis of
the cylinder.

We treat cylinders with lengths much longer than the range
in which the gas-cylinder interaction takes place. Thus a key
assumption we make here is that the cylinder is infinitely long
(with respect to the local gas-cylinder interaction potential).
This assumption also implies that momentum transfer along
the cylinder axis is negligible, and that g′ − g is equal to the
difference of velocity components in the x-z plane. The above
assumption is consistent with Dahneke’s treatment in the rigid-
body limit, which produces zero drag when V is collinear with
the cylinder axis. The assumption is different from that of
Wong et al. [45] who assumed the momentum exchange to be
always zero in the direction perpendicular to the O′AC plane
as shown in Fig. 2. Such an assumption would lead to nonzero
drag on the cylinder (or a fluid mechanical shear) when the
drift velocity is collinear to the cylinder in the specular limit,
which is not physical.
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The scattering angle χ = χ (g) is given by

χ = π − 2b

∫ ∞

rm

r−2

[
1 − b2

r2
− 2(r)

mr

(
g2

x + g2
z

)]−1/2

dr, (5)

where rm is the closest distance of encounter between the
approaching molecule and the axis of the cylinder. We shall
retain the use of mr here for generality. In Eq. (5), (r) is the
potential function between the molecule and cylinder, which
we assume to be a function of the normal distance r only as
discussed earlier.

In specular elastic collision, the magnitude of gas molecule
velocity is equal before and after collision; i.e., g = g′. The
relative velocity g′ may be given as

g′ = gy + |gx + gz|(cos χe3 − sin χe2). (6)

For a given impact parameter b the differential momentum
transferred to the cylinder from the gas is

p − p′ = mrn(g − g′) = mrn|gx + gz|[(1 − cos χ )e3

+ sin χe2], (7)

in the cross section d�db (Fig. 2) over time dt . Here, � is
the shortest distance from the origin of the coordinate system
to the O′AC plane (Fig. 2). We note that the above equation
shows that momentum transfer occurs only in the x-z plane
as expected, and along the y axis, the momentum transfer and
force are zero. In Eq. (7), n is the number of molecules crossing
d�db over dt ; i.e.,

n = gfgd�dbdt. (8)

Note that upon integration, the term in the e2 direction
vanishes. The total drag is the integral of the force in the e3

direction only over relative velocity dg and collision cross
section d�db; i.e.,

Fs =
∫

g
dFs =

∫
g

p − p′

dt
=

∫
g
mrn|gx + gz|(1 − cos χ)e3dg

=
∫

g

∫ ∞

−∞

∫ L′/2

−L′/2
mrgfg|gx + gz|e3(1 − cos χ)dldbdg.

(9)

Define a collision integral Qs,⊥ = Qs,⊥(g) to be

Qs,⊥ =
∫ ∞

−∞

∫ L′/2

−L′/2
(1 − cos χ )d�db. (10)

Here, the subscript “⊥” indicates that the drift velocity vec-
tor is perpendicular to the cylinder axis. The force expression
becomes

Fs =
∫

g
mrgfg|gx + gz|e3Qs,⊥dg

= mr

∫
g
gfg(gx i + gzk)Qs,⊥dg, (11)

where i and k are the unit vectors along the x and z axes.
In Eq. (10), L′ is the maximum distance beyond which
the potential force of the gas-cylinder interaction becomes
negligible. It is reasonable to argue that L′ is proportional to

the projection of the cylinder length on the plane perpendicular
to g. Thus we can write

L′ = Lw(g,b) sin ζ, (12)

where ζ is the angle between g and the y axis (Fig. 2), and
w(g,b) is some function of g and b which is expected to be
slightly larger than unity. Here we approximate w(g,b) ∼= 1.

Since g � V̄ , the distribution function of g can be written
as

fgdg = N

(
mr

2πkT

)3/2

exp

(
−g2 + V̄ 2 + 2gV̄ cos β

2kT /mr

)
× dgxdgydgz

∼= N

(
mr

2πkT

)3/2

exp

(
−mrg

2

2kT

)

×
(

1 − mrgV̄ cos β

kT

)
dgxdgydgz. (13)

Putting Eq. (13) into Eq. (11), we obtain

Fs = Nmr

(
mr

2πkT

)3/2 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(gx i + gzk)Qs,⊥

× exp

(
−mrg

2

2kT

)(
1 − mrgV̄ cos β

kT

)
dgxdgydgz.

(14)

The first term in 1 − mrgV cos β/kT vanishes upon inte-
gration, and thus

Fs = − mrNV̄

(2π )3/2

(
mr

kT

)5/2 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g2(gx i + gzk)Qs,⊥

× cos β exp

(
−mrg

2

2kT

)
dgxdgydgz. (15)

It may be shown that the integral of the i component is zero,
and the net force is nonzero for the k component or in the z

direction. The coordinate system used has the z component of
the drift velocity (V̄⊥) perpendicular to the cylinder axis. The
corresponding force equation is

Fs = −mrNV̄⊥
(2π )3/2

(
mr

kT

)5/2 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
gg2

zQs,⊥

× exp

(
−mrg

2

2kT

)
dgxdgydgz. (16)

Note that V̄⊥ = V̄ sin α. The above equation may be
expressed in the spherical coordinate as

Fs = −mrNV̄⊥
(2π )3/2

(
mr

kT

)5/2 ∫ ∞

0

∫ 2π

0

∫ π

0
g5Qs,⊥

× exp

(
−mrg

2

2kT

)
cos2φ sin φdφdθdg. (17)

Let γ = g/
√

2kT /mr ; we find the generalized ex-
pression for drag force on a cylinder undergoing drift
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as

Fs = −2NV̄⊥
π

√
2mrkT

π

∫ ∞

0

∫ 2π

0

∫ π

0
γ 5Qs,⊥ exp(−γ 2)

× cos2φ sin φdφdθdγ. (18)

We define here a reduced collision integral as

�
(1,1)∗
s,⊥ = 1

2RL

∫ ∞

0

∫ 2π

0

∫ π

0
γ 5 exp(−γ 2)Qs,⊥

× cos2φ sin φdφdθdγ. (19)

The total force is then

Fs = − 4

π

√
2mrkT

π
�

(1,1)∗
s,⊥ NLRV̄⊥

= − 4

π

√
2mrkT

π
�

(1,1)∗
s,⊥ NLRV̄ sin αk. (20)

Based on Eq. (20), the drag coefficient is thus

cs,⊥ = 4

π

√
2mrkT

π
NLR�

(1,1)∗
s,⊥ . (21)

It may be shown that for a rigid-body collision, �(1,1)∗
s =

π2/2. Noting that mg
∼= mr , the corresponding drag coefficient

is

cs,⊥ = 2
√

2πmgkT NLR, (22)

which is identical to the solution of Dahneke [26]. Hence,
Dahneke’s expression is a special case of the present result.

IV. DIFFUSE SCATTERING

We now consider the case of diffuse scattering where
the molecule “reflects” randomly over the hemisphere above
the plane tangent to the point of contact on the cylinder
surface. The velocity distribution of the reflected molecules
is Maxwellian; i.e.,

f ′
g = 2N ′

(
mr

2πkT

)3/2

exp

(
−mrg

′2

2kT

)
, (23)

where g′ is the velocity of the “reflected” gas molecule. In the
e direction (normal to the side surface of the cylinder), g′ must
be positive (Fig. 2). N ′ represents the number density of the
“reflected” molecules, and its value may be determined from
mass conservation. By assuming that the temperature of the
scattered molecules is equal to that of the incidence, the rate of
incident molecules crossing from the differential cross section
d�db onto a surface element dA on the side of the cylinder
body can be written as

gfgd�db =
∫

g′
(g′ · dA)fg

′dg′. (24)

Combining Eqs. (23) and (24), we obtain

N ′ =
√

πmr

2kT

d�db

dA
gfg. (25)

The momentum of the reflected molecules is

p′ =
∫

g′
mrg′(g′ · dA)f ′dtdg′. (26)

Putting Eqs. (23)–(25) into the above equation, we obtain

p′ = 1

2π

(
mr

kT

)2

fggd�dbdt

∫
g′

g′(g′ · dA)
1

dA

× exp

(
−mrg

′2

2kT

)
dg′. (27)

It can be shown that the integral portion of the above
equation is

√
2(kT )5/2(π/mr )3/2e. Hence

p′ =
√

πkT

2mr

mrgfgd�dbdte, (28)

where e is the unit vector normal to dA. Noting that the force
component in the e2 direction vanishes upon integration, we
write the equation as

Fd =
∫

g
dFd =

∫
g

p − p′

dt
=

∫
g

∫ ∞

−∞

∫ L′/2

−L′/2
mrgfg

×
[

g +
√

πkT

2mr

sin

(
χ

2

)
e3

]
d�dbdg.

(29)

Putting Eq. (4) into Eq. (29) and simplifying, we obtain the
total force to be

Fd = − mrNV̄

(2π )3/2

(
mr

kT

)5/2∫
g

∫ ∞

−∞

∫ L′/2

−L′/2
g2 exp

(
−mrg

2

2kT

)

× cos β

[
g +

√
πkT

2mr

sin

(
χ

2

)
e3

]
d�dbdg. (30)

As shown in Fig. 2, the cylinder axis and drift velocity define
the y-z plane. Momentum exchange normal to this plane is, on
average, zero due to symmetry. Equation (30) may be rewritten
as

Fd = − mrN

(2π )3/2

(
mr

kT

)5/2

×
[

V̄‖
∫

g gg2
y exp

(−mrg
2

2kT

)
Qd,‖dg

+V̄⊥
∫

g gg2
z exp

(−mrg
2

2kT

)
Qd,⊥dg

]
, (31)

where V̄‖ is the drift velocity component parallel to the cylinder
axis, and the collision cross sections are given by

Qd,‖ = 2b0L′. (32)

Qd,⊥ = 2
∫ b0

0

∫ L′/2

−L′/2

{
1+

[
πkT

2mr

(
g2

z + g2
x

)]1/2

sin(χ/2)

}
d�db

+ 2
∫ ∞

b0

∫ L′/2

−L′/2
(1 − cos χ )d�db. (33)

In the above equations we define the critical impact factor
b0 to be a value below which the molecule undergoes contact
collision where diffuse scattering dynamics prevail; when
|b| > b0 the colliding molecule undergoes fly-by collision
without physical contact with the cylinder surface [31].
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Furthermore, Eq. (31) may be written as

Fd = − 4

π

√
2mrkT

π
NLR

(
�

(1,1)∗
d,‖ V̄‖ + �

(1,1)∗
d,⊥ V̄⊥

)
, (34)

where the reduced collision integrals are defined as

�
(1,1)∗
d,‖ = 1

2RL

∫ π

0

∫ 2π

0

∫ π

0
γ 5 exp(−γ 2)

×Qd,‖sin3φsin2θdφdθdγ, (35)

�
(1,1)∗
d,⊥ = 1

2RL

∫ π

0

∫ 2π

0

∫ π

0
γ 5 exp(−γ 2)

×Qd,⊥cos2φ sin φdφdθdγ. (36)

Alternatively the above equation can be written as

Fd = −(cd,‖V̄‖ + cd,⊥V̄⊥), (37)

where the drag coefficients are

cd,‖ = 4

π

√
2mrkT

π
NLR�

(1,1)∗
d,‖ , (38)

cd,⊥ = 4

π

√
2mrkT

π
NLR�

(1,1)∗
d,⊥ . (39)

We note that the current result differs from the earlier
analysis of Wong et al. [45], again because of their assumption
of zero momentum transfer in the direction perpendicular to
the O′AC plane.

V. SCATTERING MODEL

We have discussed the two limiting models of molecular
scattering upon impact with a slender body. Physically the
scattering process falls between the two limits. In an earlier
molecular dynamics (MD) study [34], we explained the origin
of inelastic diffuse scattering to be the result of transient
molecular adsorption and desorption on the particle surface.
The random walk following adsorption and the fact that
desorption is the result of fluctuation cause the gas molecule
to have little to no memory to its incident angle. This
phenomenon occurs when a particle becomes large enough
(typically a few nanometers in radius) and has enough internal
degrees of freedom to accommodate the incident kinetic
energy of the gas molecule. Another factor that contributes
to an increased tendency of molecular adsorption is a reduced
surface curvature as the particle becomes larger, leading to an
increased probability of subsequent bounces and capture of the
gas molecule following the initial impact. The MD simulation
basically explained why molecular collisions are close to
elastic specular (as exemplified by the success of the Chapman-
Enskog theory in explaining molecular transport properties
[36,37]), and Millikan’s observation [28,29] that the drag mea-
sured for his oil droplets (>0.03 μm) is more consistent with
Epstein’s theory of diffuse scattering [27]. In fact, Millikan
proposed that his data were better explained by a 90% diffuse
and 10% specular scattering mix, leading to a net force equal
to F = 0.9Fd + 0.1Fs . Here, the coefficient 0.9 is commonly
known as the momentum accommodation factor [28].

Recognizing that the specular, elastic scattering must
transit into diffuse scattering as a “particle” crosses over a

certain size boundary, the momentum accommodation factor
is, in fact, not a constant. For this reason, we introduced a
momentum accommodation function ϕ [34,35] (0 � ϕ � 1)
and demonstrated the variation of ϕ with respect to particle
size for several particle materials [35]. Following the earlier
approach [32], we write the drag force expression for a cylinder
in a similar manner:

F = ϕFd + (1 − ϕ)Fs . (40)

As in the case of drag on spherical particles, the momentum
accommodation function bears the greatest uncertainty. In
Sec. IX, we shall shed some light on this function using carbon
nanotube as an example.

Combining Eq. (40) with Eqs. (20), (21), and (37), we
obtain

F = −{[ϕcd,⊥ + (1 − ϕ)cs,⊥]V̄⊥ + ϕcd,‖V̄‖}, (41)

where cs,⊥, cd,⊥, and cd,‖ are given by Eqs. (21), (38), and (39),
respectively, in which the collision integrals are reduced to

�(1,1)∗
s = π2/2,

�
(1,1)∗
d,⊥ = π2(6 + π )/16,

�
(1,1)∗
d,‖ = π2/4,

for rigid-body collision. Substituting the above integral values
into Eqs. (22), (38), and (39), expressing the drag force in
terms of viscosity μ = Nmgλ

√
2kT /π and letting mg

∼= mr ,
the force in the rigid-body limit is

F = −πμL
KnR

[
ϕ +

(
2 − 6 − π

4
ϕ

)
sin2α

]
V̄, (42)

a result identical to that given by Dahneke [26].

VI. ROTATION AND CYLINDER ORIENTATION EFFECT

For cylinders with length substantially smaller than the
mean free path of the gas, i.e., KnL = λ/L� 1 and in
absence of a strong external force field that causes alignment of
the cylinder axis with the drift velocity in any direction, the
cylinder is expected to undergo unhindered rotation. Under
this condition the cylinder orientation may be treated by a
uniformly random distribution. As we persistently indicated
in the derivation, the force expressions given thus far are the
instantaneous force. This force does not always align with the
drift velocity. It is clear, however, that the force components
perpendicular to the draft velocity must all vanish after orien-
tation averaging. From Eq. (40), we may write the drag force as

F = −{[ϕcd,⊥ + (1 − ϕ)cs,⊥]sin2α + ϕcd,‖cos2α}V̄. (43)

Averaging over all solid angles (0 � α � π and 0 � ξ �
2π ), we find the average drag force on a freely rotating cylinder
with KnR � KnL � 1 to be

F
 = V̄

4π

∫ 2π

0

∫ π

0
{[ϕcd,⊥+(1−ϕ)ks,⊥]sin2α+ϕcd,‖cos2α}

× sin αdαdξ

= 1

3
{2[ϕcd,⊥ + (1 − ϕ)cs,⊥] + ϕcd,‖}V̄ . (44)
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The above equation can be written equivalently following
Li et al. [30,46] as

F
 = 1
3 (cx + cy + cz)V̄ , (45)

where cx , cy , and cz are the drag-coefficient components along
the x, y, and z axes, respectively:

cx = cz = ϕcd,⊥ + (1 − ϕ)cs,⊥, (46)

cy = ϕcd,‖. (47)

In other words, the total drag force is the sum of contri-
butions along each major axis when the cylinder can undergo
free rotation.

VII. CYLINDER WITH SPHERICAL END CAPS

Almost all nanocylinders have end caps that can be
approximated as half spheres of diameter 2R. Again, in the
limit of KnR � KnL � 1, the drag force may be written as

F
 = 1
3 {8

√
2πmrkT NR2�

(1,1)∗
s/d,sph + 2[ϕcd,⊥ + (1 − ϕ)cs,⊥]

+ϕcd,‖}V̄ , (48)

where the first term represents the drag force on the end cap,
which is equal to that of a sphere. The expressions for �

(1,1)∗
sph,s/d

have been given in Li and Wang [31,32]. Suffice it to note that
if the end-cap effect is considered the overall length of the
cylinder is L+ 2R and the calculation of cd,⊥, cs,⊥, and cd,‖
should use the length of the cylindrical section of the cylinder
(L), and not L+ 2R.

VIII. FICKIAN DIFFUSIVITY OF CHAINLIKE
MOLECULES

Orientation-averaged aerodynamic drag in the form of
Eq. (44) may be recast into Fickian diffusivity in dilute
gases via the Einstein-Smoluchowski relation [47], D =
kT /c. Typical long-chain molecules have lengths substantially
shorter than the mean free path of the gas and can undergo free
rotation in dilute gases. As an example, normal hexadecane
has a length of approximately 2 nm. In comparison the mean
free path of ambient air is around 70 nm.

The diffusion coefficient of a long-chain molecule l in a
dilute bath gas g may be approximated from Eq. (44):

Dl,g = 3kT

2[ϕcd,⊥ + (1 − ϕ)cs,⊥] + ϕcd,‖
. (49)

Following the Chapman-Enskog treatment, we assume
specular collision (ϕ = 0) and obtain

Dl,g = 3kT

2cs,⊥
= 3π

8

√
πkT

2mr

1

NLR�
(1,1)∗
s,⊥

. (50)

The validity of the above equation will be examined in a
separate study [48], but the equation is shown to differ from
the Chapman-Enskog (CE) expression, as expected, since the
CE equation is applicable for spherical potential only.

If the end-cap effect is considered, the diffusion coefficient
takes an expanded form,

Dl,g = 3π

8

√
πkT

2mr

1

NR
(
L�

(1,1)∗
s,⊥ + π2R�

(1,1)∗
s,sph

) . (51)

IX. REDUCED COLLISION INTEGRALS AND ELECTRIC
MOBILITY OF CNTs

In the limiting collision models we have three relevant,
reduced collision integrals as given by Eqs. (19), (35), and (36).
They are dependent on the potential energy of gas-cylinder
interactions. For a given cylinder material and bath molecule,
the reduced collision integrals are a function of the cylinder
radius, as expected. In principle, the integrals approach the
respective values of the rigid-body limit as the cylinder radius
is increased. Conversely, the deviation from the rigid-body
limit increases as the cylinder radius is decreased due to an
enhanced effect of van der Waals interactions on the cross
section relative to the cylinder diameter. This effect is identified
as the nonrigid-body effect towards small cylinder radius as
shown in Fig. 1.

Consider the transport of a carbon nanotube (CNT) in air.
The potential function of interaction has been given by Wong
et al. [45] as

(r∗) = a0R
m+1σ 1−mncε(a1r

∗−n1 − a2r
∗−n2 ), (52)

where σ and ε are the Lennard-Jones (LJ) 12–6 collision
diameter and well depth between carbon and the bath
molecule, respectively; nc is the surface density of carbon

(nc = 0.381 Å
−2

); r∗ is the normalized, shortest distance of
the gas molecule to the CNT surface,

r∗ = (r − R)/σ . (53)

In Eq. (52) the constants are given as a0 = 5.81, m =
−0.86, a1 = 0.635, a2 = 1.63, n1 = 10.1, and n2 = 4.1 [45].
The potential function equation was derived from a sum for the
pairwise interactions of carbons in a CNT with a bath molecule
with the LJ 12–6 potential function. Here, we adopted the
values of Wong et al. for the LJ parameters: σ = 3.576 Å and
ε/k = 58.7 K [45], which were based on the LJ self-collision
parameters of carbon and molecular nitrogen and the mixing
rule σ12 = (σ1 + σ2)/2 and ε12 = (ε1ε2)1/2.

Figure 3 shows the variations of the reduced collision
integrals computed as a function of the cylinder radius
using the above potential function. For all cases the reduced
collision integrals approach their respective, rigid-body limits
at 1/(2R) = 0 or R → ∞ (the open circles of the figure).
Deviations from the rigid-body limits indicate the influence
of the potential force of interaction on the collision cross
section. For small-diameter tubes the nonrigid-body effect is
very significant. Compared to rigid-body collision the collision
cross section is enhanced by as much as a factor of 2 due to the
potential energy of interactions. These observations indicate
a rigid-body approximation can be grossly inaccurate. Addi-
tionally, the reduced collision integral appears to be roughly
linear in 1/R for a wide range of cylinder radii. The intercept
corresponds to the rigid-body limit. The linear dependency
is expected because the difference in the reduced collision
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FIG. 3. Reduced collision integrals (solid lines) as a function
of cylinder radius computed for carbon nanotube and molecular
nitrogen at 298 K. The open circles denote reduced collision integrals
equivalent to rigid-body collision.

integral between nonrigid-body and rigid-body collisions is
proportional to δ/R, where δ measures the increase in the
collision cross section due to the potential force of interaction.
This potential force is local relative to the cylinder size. This
leads to the fact that δ is basically independent of R, and hence,
the linear dependency with respect to 1/R.

The differential mobility analyzer (DMA) is instrumental
to our ability to characterize a wide range of aerosols
of nanomaterials of different shapes and sizes [49]. For
spherical particles in the large Knudsen number limit the
Stokes-Cunningham expression [50,51] is traditionally used
to interpret the mobility data, giving what is known as the
mobility particle diameter,

Dm = q

3πμZ
{1 + Kn[A + B exp(−E/Kn)]}. (54)

Previous studies [31,32] have shown that the above ex-
pression with coefficients A, B, and E fitted to Millikan’s
oil droplet data [28,52,53] gives a reasonably good estimate

for small particle sizes, but owing to its empirical nature,
an extrapolation below the smallest size of Millikan’s oil
droplets can lead to some errors. The problem arises from an
increased effect of potential energy of gas-phase interaction as
the particle approaches the molecular size [35].

Mobility can also provide partial information about the
size of nonspherical nanomaterials of a known shape. Several
studies [12,14,16,20,30,54–57] have reported data of CNT
mobility measured by a DMA, among them the relationship
between the mobility diameter and CNT length is provided for
a given tube diameter. For some of the CNTs, the length and
diameter were determined directly by transmission electronic
microscopy (TEM). These data will be used here to examine
the validity of the current theory.

The mobility of a CNT is influenced by several factors.
They include the orientation of the nanotube with respect to the
electric field and hence the drift velocity, the potential energy
of gas-CNT interactions, and the momentum accommodation
factor. During DMA measurement, CNTs are first charged
(q = ±1). The aerosol is sent into an electric field with strength
ranging from 0.4 to 5 kV/cm. The interaction of the charge
with the electric field and the polarization of the CNT produce
a torque that tends to align it along the direction of the external
electric field. In the DMA, the electric field is parallel to
the drift velocity. Kim et al. [14] calculated the electrostatic
force due to the net charge in the CNT by assuming that the
positive charge is located at the end of the CNT closest to the
negative electrode. The torque is proportional to the length of
the CNT. As for interaction caused by the dielectric charge,
they proposed a complex function of the torque with respect to
the cylinder volume and aspect ratio. The theory predicts that
long CNTs align with the electric field, while short CNTs tend
to assume uniform random orientations. Hence we expect to
observe a transition from randomly distributed orientations to
the collinear orientation at some CNT length. By assuming the
probability of the orientation angle follows a Boltzmann-like
distribution (i.e., Eq. (10) of [14]) and integrating it over all
orientations, we may extend Eq. (44) and write a drag force
that depends on the orientation probability as

Feff = V̄

4π

∫ 2π

0

∫ π

0
{[ϕcd,⊥ + (1 − ϕ)cs,⊥]sin2α

+ϕcd,‖cos2α}Pαdαdξ, (55)

where Pα is given by Eq. (24) of Kim et al. [14]. The
corresponding orientation-averaged electric mobility can be
obtained accordingly:

Zeff = 4πq∫ 2π

0

∫ π

0 {[ϕcd,⊥ + (1 − ϕ)cs,⊥]sin2α + ϕcd,‖cos2α}Pαdαdξ
, (56)

where cs,⊥, cd,‖, and cd,⊥ are given by Eqs. (22), (38), and
(39), respectively. All of these coefficients may be determined
for a tube of radius R and length L, if the potential function
parameters are known, as discussed above for CNTs [Eq. (52)].
Additionally, the distribution function Pα and orientation-
averaged electric mobility is also a function of the electric

mobility and the aspect ratio of the cylinder. The equivalent
mobility diameter of a CNT may be calculated by replacing Z
in Eq. (54) by Zeff .

Figure 4 shows the length-versus-mobility diameter data
of CNTs, all of which are 15 nm in diameter and taken
from several sources [12,30,54,55]. In this set of data, the
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FIG. 4. Length of CNTs 15 nm in diameter as a function
of the mobility diameter measured in air at 1 bar and 298 K.
Symbols: experimental data taken from [12,30,55] (solid symbols:
directly measured; open symbols: from the experimental correlation
between mobility diameter and TEM projected area [55]); solid
lines: theoretical predictions using the momentum accommodation
factor ϕ = 1, in two limiting CNT orientations with respect to the
drift velocity (electric field); dotted lines: theoretical predictions
accounting for orientation angle distribution of the CNT in the electric
field [14].

CNT diameter was determined by TEM, while the length
(L) was estimated from the TEM projected area (Ap) as
L = Ap/(2R). The projected area was obtained from direct
TEM measurement or an empirical correlation developed for
Ap as a function of the mobility diameter Dm [55]. In the figure,
the data corresponding to directly measured projected areas are
marked as solid symbols, and those from the correlation are
marked as open symbols.

The theoretical mobility and thus mobility diameter can
be calculated in two limiting orientations of the CNT with
respect to the direction of the drift velocity. In the collinear
and random orientation limits and neglecting the CNT end
effect, the mobility is given by

Z‖ = q

ϕcd,‖
= 1

ϕ�
(1,1)∗
d,‖

πq

4
√

2mrkT
π

NLR

, (57)

Z
 = 3q

2[ϕcd,⊥ + (1 − ϕ)cs,⊥] + ϕcd,‖

= 1

2[ϕ�
(1,1)∗
d,⊥ + (1−ϕ)�(1,1)∗

s,⊥ ]+ϕ�
(1,1)∗
d,‖

3πq

4
√

2mrkT
π

NLR

.

(58)

The above mobility may be converted to the mobility
diameter via Eq. (54). Also, for a given R value, the tube length
L values may be determined from Eqs. (56) and (57) for the
collinear and random orientations, respectively. As shown in
Fig. 4, the experimental data are bracketed between the theo-

retical values of the two limiting orientations. Here, we used a
momentum accommodation factor of 1.0. We observe here that
the length of the longest CNT shown is outside the collinear
orientation limit. In fact, a ϕ value of 0.85–0.9 can predict that
particular data point rather well. These values are also in line
with what was observed for spherical particles as discussed
in Millikan [29]. Here we shall not adopt a nonunity ϕ value
based on just one data point, except to say that for CNTs
15 nm in diameter, the data clearly show that the momentum
accommodation factor is close to unity. It can be seen from the
figure that the longest tube (L > 1000 nm) is collinear with
the electric field in the DMA (and thus the drift velocity) and
the orientation of the shortest tube (L ∼ 130 nm) is random
and uniformly distributed with respect to the electric field.

CNT lengths between the two limits may be predicted
using Eq. (56) from measured electric mobility (or mobility
diameter) and CNT diameter. The result is shown as the
dotted line in Fig. 4. Clearly, transition from uniform random
orientation to collinear orientation takes place in the length
range shown; the current theory of nanocylinder transport
combined with the orientation distribution function proposed
by Kim et al. [14] reproduce the data satisfactorily in that
length range. This agreement extends to CNTs of different
diameter values. In Fig. 5, we plot the reduced collision
integrals of a series of CNTs 10, 15, and 22 nm in diameter as
a function of their measured lengths. The data are taken from
several relevant sources [12,30,55]. The measured mobility
Z, the length of L, and diameter 2R of each CNT may be
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FIG. 5. Reduced collision integrals derived from the CNT mobil-
ity data for 2R = 10 nm [54] and 2R = 15 and 22 nm [12,30,55] as
a function of the CNT length (symbols). The error bars for 2R = 15
and 22 nm data are taken from the reference sources directly, while
those for 2R = 10 nm are estimated to be 10%, based on a TEM
resolution of 0.5 nm for CNT diameter determination. The theoretical
predictions are shown in the random and collinear orientations of
CNTs with respect to the drift velocity with ϕ = 1 for the momentum
accommodation factor (gray bands). Lines are theoretical predictions
accounting for orientation angle distribution of the CNT in the electric
field [14].
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converted to an experimentally determined reduced collision
integral via

�
(1,1)∗
expt = πq

4
√

2mrkT
π

NLRZ

. (59)

The above experimental collision integral may be compared
to theoretical predictions in the collinear and random orienta-
tion limits (shown as the gray band in Fig. 5):

�
(1,1)∗
eff,‖ = ϕ�

(1,1)∗
d,‖ , (60)

�
(1,1)∗
eff,
 = 2

[
ϕ�

(1,1)∗
d,⊥ + (1 − ϕ)�(1,1)∗

s,⊥
] + ϕ�

(1,1)∗
d,‖ , (61)

with ϕ = 1, as discussed before. Additionally, an effective
reduced collision integral may be defined from Eq. (56)
to account for CNT orientation distributions and thus the
transition from random orientation distribution to collinear
orientation. Clearly, within the range of CNT diameter con-
sidered, the short tubes have randomly distributed orientations
with respect to the drift velocity; the long tubes align with
the drift velocity. Again, the current theory combined with the
orientation distribution function of Kim et al. describes the
experimental data very well.

A previous study [35] indicates that for spherical particles
below 10 nm in particle diameter the momentum accom-
modation ϕ decreases from approximately unity to zero as
the particle size is decreased. That is, the collision becomes
specular as the particle size approaches the molecular size.
As discussed in Li and Wang [32], the transition from
diffuse to specular scattering as the particle approaches the
molecular size is entirely expected. Millikan’s experiments on
oil droplets yielded ϕ = 0.9 for >20 nm droplets; the specular
elastic assumption of the Chapman-Enskog theory is extremely
successful in predicting molecular transport. Thus, between
the size of 20 nm and the molecular size, ϕ must undergo
transition from unity to zero.

It is therefore possible that small-diameter CNTs assume
a substantially smaller value for momentum accommodation.
The mobility diameter (Dm) of small-diameter CNTs (2R <

5 nm) have been studied by Chiang and Sankaran [54]
and Unrau and Axelbaum [57]. In particular, Unrau and
Axelbaum directly measured the length and electric mobility
for several CNTs 2 nm in diameter over a CNT length range
of ∼100–1000 nm. In Fig. 6 we compare the predicted lengths
to the experimental length. Based on Kim’s expression of
the orientation distribution function of CNTs in an electric
field, the CNTs examined should mostly assume random
orientations. As shown in Fig. 6 a momentum accommodation
value of zero gives substantially better prediction of the
data than ϕ = 1. Therefore, in addition to the demonstration

102

103

102 103

φ = 0 with Kim et al.'s 
      orientation distribution
φ = 1 with Kim et al.'s
      orientation distribution
φ = 0 with random orientation

FIG. 6. Comparison of predicted and observed length of CNTs
2 nm in diameter. The experimental data are taken from Unrau and
Axelbaum [57].

that the current theory predicts availlable experimental data
satisfactorily, the results shown in Figs. 4–6 indicate that
the diffuse-to-specular transition occur also for a CNT as its
diameter is reduced from 10 to 2 nm in a manner entirely
consistent with conclusions reached in previous analyses of
spherical particles [32,35].

X. CONCLUSION

We obtained generalized expressions of the aerodynamic
drag force on a cylinder in the free molecule flow with a
consideration of intermolecular interactions. The derivations
are carried out using gas-kinetic theory. Specular and diffuse
scattering are discussed separately and the effect of the orienta-
tion of the cylinder is also considered in detail. The drag forces
for specular and diffuse scattering take the same formulations
although the cross sections are expressed separately. The effect
of gas-cylinder interaction force is embedded in the collision
integrals. The validity of the theoretical expressions is verified
against the experimental mobility data of carbon nanotubes. It
was shown that the potential energy of interactions is critical
to describing the collision cross section and thus the drag on
carbon nanotubes of diameter as large as 20 nm.

ACKNOWLEDGMENTS

The work at Stanford University was supported by the U.S.
Air Force of Scientific Research (AFOSR) under Contracts
No. FA9550-14-1-0235 and No. FA9550-16-1-0051.

[1] G. Kasper, T. Niida, and M. Yang, J. Aerosol Sci. 16, 535 (1985).
[2] P. A. Baron, Ind. Health 39, 39 (2001).

[3] Z. Wang, P. K. Hopke, P. A. Baron, G. Ahmadi, Y. S. Cheng, G. J.
Deye, and W. C. Su, Aerosol Sci. Technol. 39, 1056 (2005).

023102-10

http://dx.doi.org/10.1016/0021-8502(85)90006-0
http://dx.doi.org/10.1016/0021-8502(85)90006-0
http://dx.doi.org/10.1016/0021-8502(85)90006-0
http://dx.doi.org/10.1016/0021-8502(85)90006-0
http://dx.doi.org/10.2486/indhealth.39.39
http://dx.doi.org/10.2486/indhealth.39.39
http://dx.doi.org/10.2486/indhealth.39.39
http://dx.doi.org/10.2486/indhealth.39.39
http://dx.doi.org/10.1080/02786820500380198
http://dx.doi.org/10.1080/02786820500380198
http://dx.doi.org/10.1080/02786820500380198
http://dx.doi.org/10.1080/02786820500380198


DRAG FORCE AND TRANSPORT PROPERTY OF A SMALL . . . PHYSICAL REVIEW E 94, 023102 (2016)

[4] B. T. Chen, H. C. Yeh, and C. H. Hobbs, Aerosol Sci. Technol.
19, 109 (1993).

[5] B. T. Chen, H. C. Yeh, and N. F. Johnson, J. Aerosol Sci. 27, 83
(1996).

[6] G. J. Deye, P. Gao, P. A. Baron, and J. Fernback, Aerosol Sci.
Technol. 30, 420 (1999).

[7] K. B. Shelimov, D. E. Clemmer, R. R. Hudgins, and M. F.
Jarrold, J. Am. Chem. Soc. 119, 2240 (1997).

[8] M. F. Jarrold, Annu. Rev. Phys. Chem. 51, 179 (2000).
[9] D. E. Clemmer and M. F. Jarrold, J. Mass Spectrom. 32, 577

(1997).
[10] M. Dimaki and P. Bøggild, Nanotechnol. 15, 1095 (2004).
[11] B. Edwards, N. Engheta, and S. Evoy, J. Appl. Phys. 102, 024913

(2007).
[12] S. H. Kim and M. R. Zachariah, Nanotechnol. 16, 2149 (2005).
[13] S. H. Kim and M. R. Zachariah, J. Phys. Chem. B 110, 4555

(2006).
[14] S. H. Kim, G. W. Mulholland, and M. R. Zachariah, J. Aerosol

Sci. 38, 823 (2007).
[15] A. D. Maynard, P. A. Baron, M. Foley, A. A. Shvedova, E. R.

Kisin, and V. Castranova, J. Toxicol. Environ. Health, Part A 67,
87 (2004).

[16] A. Moisala, A. G. Nasibulin, S. D. Shandakov, H. Jiang, and
E. I. Kauppinen, Carbon 43, 2066 (2005).

[17] A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L.
Khriachtchev, and E. I. Kauppinen, Chem. Eng. Sci. 61, 4393
(2006).

[18] A. G. Nasibulin, A. Moisala, D. P. Brown, H. Jiang, and E. I.
Kauppinen, Chem. Phys. Lett. 402, 227 (2005).

[19] D. K. Song, I. W. Lenggoro, Y. Hayashi, K. Okuyama, and S. S.
Kim, Langmuir 21, 10375 (2005).

[20] C. J. Unrau, R. L. Axelbaum, P. Biswas, and P. Fraundorf, in
Molecular Building Blocks for Nanotechnology: From Diamon-
doids to Nanoscale Materials and Applications, edited by G. A.
Mansoori, Th. F. George, L. Assoufid, and G. Zhang (Springer,
New York, 2007), p. 212.

[21] A. J. Smallbone, W. Liu, C. K. Law, X. Q. You, and H. Wang,
Proc. Combust. Inst. 32, 1245 (2009).

[22] A. T. Holley, X. Q. You, E. Dames, H. Wang, and F. N.
Egolfopoulos, Proc. Combust. Inst. 32, 1157 (2009).

[23] C. Ji, E. Dames, Y. L. Wang, H. Wang, and F. N. Egolfopoulos,
Combust. Flame 157, 277 (2010).

[24] G. K. Batchelor, J. Fluid Mech. 44, 419 (1970).
[25] R. G. Cox, J. Fluid Mech. 44, 791 (1970).
[26] B. E. Dahneke, J. Aerosol Sci. 4, 147 (1973).
[27] P. S. Epstein, Phys. Rev. 23, 710 (1924).
[28] R. A. Millikan, Phys. Rev. 21, 217 (1923).

[29] R. A. Millikan, Phys. Rev. 22, 1 (1923).
[30] M. Li, G. W. Mulholland, and M. R. Zachariah, Phys. Rev. E 89

022112 (2014).
[31] Z. Li and H. Wang, Phys. Rev. E 68, 061206 (2003).
[32] Z. Li and H. Wang, Phys. Rev. E 68, 061207 (2003).
[33] Z. Li and H. Wang, Phys. Rev. E 70, 021205 (2004).
[34] Z. Li and H. Wang, Phys. Rev. Lett. 95, 014502 (2005).
[35] H. Wang, Ann. N. Y. Acad. Sci. 1161, 484 (2009).
[36] T. G. Cowling and S. Chapman, The Mathematical Theory of

Nonuniform Gases (Cambridge University Press, Cambridge,
1960).

[37] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gasses and Liquids (Wiley, New York, 1954).

[38] T. R. Marrero and E. A. Mason, J. Phys. Chem. Ref. Data 1, 3
(1972).

[39] J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M.
Waldman, J. Phys. Chem. Ref. Data 13, 229 (1984).

[40] A. Boushehri, J. Bzowski, J. Kestin, and E. A. Mason, J. Phys.
Chem. Ref. Data 16, 445 (1987).

[41] J. Bzowski, J. Kestin, E. A. Mason, and F. J. Uribe, J. Phys.
Chem. Ref. Data 19, 1179 (1990).

[42] R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of
Gases and Liquids, 4th Ed. (McGraw-Hill, New York, 1987).

[43] K. Chae, P. Elvati, and A. Violi, J. Phys. Chem. B 115, 500
(2010).

[44] K. Chae and A. Violi, J. Chem. Phys. 134, 044537 (2011).
[45] R. Y. M. Wong, C. Liu, J. Wang, C. Y. H. Chao, and Z. Li, J.

Nanosci. Nanotechnol. 12, 2311 (2012).
[46] M. Li, R. You, G. W. Mulholland, and M. R. Zachariah, Aerosol

Sci. Technol. 47, 1101 (2013).
[47] A. Einstein, Ann. Phys. (Berlin, Ger.) 324, 371 (1906).
[48] C. Liu, W. C. McGivern, J. A. Manion, and H. Wang

(unpublished).
[49] H. G. Scheibel and J. Porstendo, J. Aerosol Sci. 14, 113

(1983).
[50] E. Cunningham, Proc. R. Soc. London, Ser. A 83, 357 (1910).
[51] M. Knudsen and S. Weber, Ann. Phys. (Berlin, Ger.) 341, 981

(1911).
[52] R. A. Millikan, Science, 30, 436 (1910).
[53] R. A. Millikan, Philos. Mag. 34, 1 (1917).
[54] W. H. Chiang and R. M. Sankaran, Diamond Relat. Mater. 18,

946 (2009).
[55] S. H. Kim, G. W. Mulholland, and M. R. Zachariah, Carbon 47,

1297 (2009).
[56] C. J. Unrau, R. L. Axelbaum, P. Biswas, and P. Fraundorf, Proc.

Combust. Inst. 31, 1865 (2007).
[57] C. J. Unrau and R. L. Axelbaum, Carbon 48, 1418 (2010).

023102-11

http://dx.doi.org/10.1080/02786829308959625
http://dx.doi.org/10.1080/02786829308959625
http://dx.doi.org/10.1080/02786829308959625
http://dx.doi.org/10.1080/02786829308959625
http://dx.doi.org/10.1016/0021-8502(95)00537-4
http://dx.doi.org/10.1016/0021-8502(95)00537-4
http://dx.doi.org/10.1016/0021-8502(95)00537-4
http://dx.doi.org/10.1016/0021-8502(95)00537-4
http://dx.doi.org/10.1080/027868299304471
http://dx.doi.org/10.1080/027868299304471
http://dx.doi.org/10.1080/027868299304471
http://dx.doi.org/10.1080/027868299304471
http://dx.doi.org/10.1021/ja9619059
http://dx.doi.org/10.1021/ja9619059
http://dx.doi.org/10.1021/ja9619059
http://dx.doi.org/10.1021/ja9619059
http://dx.doi.org/10.1146/annurev.physchem.51.1.179
http://dx.doi.org/10.1146/annurev.physchem.51.1.179
http://dx.doi.org/10.1146/annurev.physchem.51.1.179
http://dx.doi.org/10.1146/annurev.physchem.51.1.179
http://dx.doi.org/10.1002/(SICI)1096-9888(199706)32:6<577::AID-JMS530>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1096-9888(199706)32:6<577::AID-JMS530>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1096-9888(199706)32:6<577::AID-JMS530>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1096-9888(199706)32:6<577::AID-JMS530>3.0.CO;2-4
http://dx.doi.org/10.1088/0957-4484/15/8/039
http://dx.doi.org/10.1088/0957-4484/15/8/039
http://dx.doi.org/10.1088/0957-4484/15/8/039
http://dx.doi.org/10.1088/0957-4484/15/8/039
http://dx.doi.org/10.1063/1.2753584
http://dx.doi.org/10.1063/1.2753584
http://dx.doi.org/10.1063/1.2753584
http://dx.doi.org/10.1063/1.2753584
http://dx.doi.org/10.1088/0957-4484/16/10/030
http://dx.doi.org/10.1088/0957-4484/16/10/030
http://dx.doi.org/10.1088/0957-4484/16/10/030
http://dx.doi.org/10.1088/0957-4484/16/10/030
http://dx.doi.org/10.1021/jp0541718
http://dx.doi.org/10.1021/jp0541718
http://dx.doi.org/10.1021/jp0541718
http://dx.doi.org/10.1021/jp0541718
http://dx.doi.org/10.1016/j.jaerosci.2007.06.003
http://dx.doi.org/10.1016/j.jaerosci.2007.06.003
http://dx.doi.org/10.1016/j.jaerosci.2007.06.003
http://dx.doi.org/10.1016/j.jaerosci.2007.06.003
http://dx.doi.org/10.1080/15287390490253688
http://dx.doi.org/10.1080/15287390490253688
http://dx.doi.org/10.1080/15287390490253688
http://dx.doi.org/10.1080/15287390490253688
http://dx.doi.org/10.1016/j.carbon.2005.03.012
http://dx.doi.org/10.1016/j.carbon.2005.03.012
http://dx.doi.org/10.1016/j.carbon.2005.03.012
http://dx.doi.org/10.1016/j.carbon.2005.03.012
http://dx.doi.org/10.1016/j.ces.2006.02.020
http://dx.doi.org/10.1016/j.ces.2006.02.020
http://dx.doi.org/10.1016/j.ces.2006.02.020
http://dx.doi.org/10.1016/j.ces.2006.02.020
http://dx.doi.org/10.1016/j.cplett.2004.12.040
http://dx.doi.org/10.1016/j.cplett.2004.12.040
http://dx.doi.org/10.1016/j.cplett.2004.12.040
http://dx.doi.org/10.1016/j.cplett.2004.12.040
http://dx.doi.org/10.1021/la0513196
http://dx.doi.org/10.1021/la0513196
http://dx.doi.org/10.1021/la0513196
http://dx.doi.org/10.1021/la0513196
http://dx.doi.org/10.1016/j.proci.2008.06.213
http://dx.doi.org/10.1016/j.proci.2008.06.213
http://dx.doi.org/10.1016/j.proci.2008.06.213
http://dx.doi.org/10.1016/j.proci.2008.06.213
http://dx.doi.org/10.1016/j.proci.2008.05.067
http://dx.doi.org/10.1016/j.proci.2008.05.067
http://dx.doi.org/10.1016/j.proci.2008.05.067
http://dx.doi.org/10.1016/j.proci.2008.05.067
http://dx.doi.org/10.1016/j.combustflame.2009.06.011
http://dx.doi.org/10.1016/j.combustflame.2009.06.011
http://dx.doi.org/10.1016/j.combustflame.2009.06.011
http://dx.doi.org/10.1016/j.combustflame.2009.06.011
http://dx.doi.org/10.1017/S002211207000191X
http://dx.doi.org/10.1017/S002211207000191X
http://dx.doi.org/10.1017/S002211207000191X
http://dx.doi.org/10.1017/S002211207000191X
http://dx.doi.org/10.1017/S002211207000215X
http://dx.doi.org/10.1017/S002211207000215X
http://dx.doi.org/10.1017/S002211207000215X
http://dx.doi.org/10.1017/S002211207000215X
http://dx.doi.org/10.1016/0021-8502(73)90066-9
http://dx.doi.org/10.1016/0021-8502(73)90066-9
http://dx.doi.org/10.1016/0021-8502(73)90066-9
http://dx.doi.org/10.1016/0021-8502(73)90066-9
http://dx.doi.org/10.1103/PhysRev.23.710
http://dx.doi.org/10.1103/PhysRev.23.710
http://dx.doi.org/10.1103/PhysRev.23.710
http://dx.doi.org/10.1103/PhysRev.23.710
http://dx.doi.org/10.1103/PhysRev.21.217
http://dx.doi.org/10.1103/PhysRev.21.217
http://dx.doi.org/10.1103/PhysRev.21.217
http://dx.doi.org/10.1103/PhysRev.21.217
http://dx.doi.org/10.1103/PhysRev.22.1
http://dx.doi.org/10.1103/PhysRev.22.1
http://dx.doi.org/10.1103/PhysRev.22.1
http://dx.doi.org/10.1103/PhysRev.22.1
http://dx.doi.org/10.1103/PhysRevE.89.022112
http://dx.doi.org/10.1103/PhysRevE.89.022112
http://dx.doi.org/10.1103/PhysRevE.89.022112
http://dx.doi.org/10.1103/PhysRevE.89.022112
http://dx.doi.org/10.1103/PhysRevE.68.061206
http://dx.doi.org/10.1103/PhysRevE.68.061206
http://dx.doi.org/10.1103/PhysRevE.68.061206
http://dx.doi.org/10.1103/PhysRevE.68.061206
http://dx.doi.org/10.1103/PhysRevE.68.061207
http://dx.doi.org/10.1103/PhysRevE.68.061207
http://dx.doi.org/10.1103/PhysRevE.68.061207
http://dx.doi.org/10.1103/PhysRevE.68.061207
http://dx.doi.org/10.1103/PhysRevE.70.021205
http://dx.doi.org/10.1103/PhysRevE.70.021205
http://dx.doi.org/10.1103/PhysRevE.70.021205
http://dx.doi.org/10.1103/PhysRevE.70.021205
http://dx.doi.org/10.1103/PhysRevLett.95.014502
http://dx.doi.org/10.1103/PhysRevLett.95.014502
http://dx.doi.org/10.1103/PhysRevLett.95.014502
http://dx.doi.org/10.1103/PhysRevLett.95.014502
http://dx.doi.org/10.1111/j.1749-6632.2008.04319.x
http://dx.doi.org/10.1111/j.1749-6632.2008.04319.x
http://dx.doi.org/10.1111/j.1749-6632.2008.04319.x
http://dx.doi.org/10.1111/j.1749-6632.2008.04319.x
http://dx.doi.org/10.1063/1.3253094
http://dx.doi.org/10.1063/1.3253094
http://dx.doi.org/10.1063/1.3253094
http://dx.doi.org/10.1063/1.3253094
http://dx.doi.org/10.1063/1.555703
http://dx.doi.org/10.1063/1.555703
http://dx.doi.org/10.1063/1.555703
http://dx.doi.org/10.1063/1.555703
http://dx.doi.org/10.1063/1.555800
http://dx.doi.org/10.1063/1.555800
http://dx.doi.org/10.1063/1.555800
http://dx.doi.org/10.1063/1.555800
http://dx.doi.org/10.1063/1.555867
http://dx.doi.org/10.1063/1.555867
http://dx.doi.org/10.1063/1.555867
http://dx.doi.org/10.1063/1.555867
http://dx.doi.org/10.1021/jp109042q
http://dx.doi.org/10.1021/jp109042q
http://dx.doi.org/10.1021/jp109042q
http://dx.doi.org/10.1021/jp109042q
http://dx.doi.org/10.1063/1.3512918
http://dx.doi.org/10.1063/1.3512918
http://dx.doi.org/10.1063/1.3512918
http://dx.doi.org/10.1063/1.3512918
http://dx.doi.org/10.1080/02786826.2013.819565
http://dx.doi.org/10.1080/02786826.2013.819565
http://dx.doi.org/10.1080/02786826.2013.819565
http://dx.doi.org/10.1080/02786826.2013.819565
http://dx.doi.org/10.1002/andp.19063240208
http://dx.doi.org/10.1002/andp.19063240208
http://dx.doi.org/10.1002/andp.19063240208
http://dx.doi.org/10.1002/andp.19063240208
http://dx.doi.org/10.1016/0021-8502(83)90035-6
http://dx.doi.org/10.1016/0021-8502(83)90035-6
http://dx.doi.org/10.1016/0021-8502(83)90035-6
http://dx.doi.org/10.1016/0021-8502(83)90035-6
http://dx.doi.org/10.1098/rspa.1910.0024
http://dx.doi.org/10.1098/rspa.1910.0024
http://dx.doi.org/10.1098/rspa.1910.0024
http://dx.doi.org/10.1098/rspa.1910.0024
http://dx.doi.org/10.1002/andp.19113411506
http://dx.doi.org/10.1002/andp.19113411506
http://dx.doi.org/10.1002/andp.19113411506
http://dx.doi.org/10.1002/andp.19113411506
http://dx.doi.org/10.1126/science.32.822.436
http://dx.doi.org/10.1126/science.32.822.436
http://dx.doi.org/10.1126/science.32.822.436
http://dx.doi.org/10.1126/science.32.822.436
http://dx.doi.org/10.1080/14786440708635672
http://dx.doi.org/10.1080/14786440708635672
http://dx.doi.org/10.1080/14786440708635672
http://dx.doi.org/10.1080/14786440708635672
http://dx.doi.org/10.1016/j.diamond.2009.01.010
http://dx.doi.org/10.1016/j.diamond.2009.01.010
http://dx.doi.org/10.1016/j.diamond.2009.01.010
http://dx.doi.org/10.1016/j.diamond.2009.01.010
http://dx.doi.org/10.1016/j.carbon.2009.01.011
http://dx.doi.org/10.1016/j.carbon.2009.01.011
http://dx.doi.org/10.1016/j.carbon.2009.01.011
http://dx.doi.org/10.1016/j.carbon.2009.01.011
http://dx.doi.org/10.1016/j.proci.2006.08.009
http://dx.doi.org/10.1016/j.proci.2006.08.009
http://dx.doi.org/10.1016/j.proci.2006.08.009
http://dx.doi.org/10.1016/j.proci.2006.08.009
http://dx.doi.org/10.1016/j.carbon.2009.12.034
http://dx.doi.org/10.1016/j.carbon.2009.12.034
http://dx.doi.org/10.1016/j.carbon.2009.12.034
http://dx.doi.org/10.1016/j.carbon.2009.12.034



