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One possibility to adjust material properties to a specific need is to embed units of one substance into a
matrix of another substance. Even materials that are readily tunable during operation can be generated in this
way. In (visco)elastic substances, both the matrix material as well as the inclusions and/or their immediate
environment can be dynamically deformed. If the typical dynamic response time of the inclusions and their
surroundings approach the macroscopic response time, their deformation processes need to be included into a
dynamic macroscopic characterization. Along these lines, we present a hydrodynamic description of (visco)elastic
composite materials. For this purpose, additional strain variables reflect the state of the inclusions and their
immediate environment. These additional strain variables in general are not set by a coarse-grained macroscopic
displacement field. Apart from that, during our derivation, we also include the macroscopic variables of relative
translations and relative rotations that were previously introduced in different contexts. As a central point, our
approach reveals and classifies the importance of a macroscopic variable termed relative strains. We analyze two
simplified minimal example geometries as an illustration.
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I. INTRODUCTION

Concrete is regarded as the most-used fabricated material on
earth [1]. It is a composite material that consists of particulate
inclusion material stuck together by a cement matrix [1,2].
A carefully selected choice of the inclusions serves to adjust
the material properties to the current need. The amount of
possible combinations appears vast. For instance, concrete
reinforcement using vegetable fibers is discussed, motivated
for instance by environmental reasons [3]. The same principles
of generating composite materials of new adjusted properties
can of course be transferred to different classes of substances.
For example, flexible polymer materials can be reinforced
using carbon nanotubes [4]. In a further step, inclusions may
be added that can be selectively addressed by external fields
to reversibly adjust the material properties during operation.
Examples are magnetic colloidal particles in a gel matrix,
which allows one to control the elastic properties by external
magnetic fields [5–7].

Our focus in this paper is mainly on elastic and viscoelas-
tic (quasi)static and dynamic properties of such composite
materials, ignoring at this time electric and magnetic field
effects. Yet, couplings to other variables are taken into
account. For this purpose, we use and extend a macroscopic
hydrodynamic approach that is based on symmetry arguments
[8,9]. Strictly speaking, this hydrodynamic framework applies
to macroscopic variables that do not relax in the spatially
homogeneous limit. This is true for quantities characterized
by local conservation laws, e.g., mass, momentum, and energy
[10–12], as well as for variables describing spontaneously
broken continuous symmetries, such as the nematic director in
nematic liquid crystals [11,13]. In addition to that, relaxation
processes described by other variables and degrees of freedom
may reach time scales comparable to the hydrodynamic one.
Then, they may influence or interfere with the macroscopic
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dynamics. In such situations, they should be included on a
symmetry basis into the macroscopic description as so-called
slowly relaxing variables [9].

In this study, we consider materials composed of more or
less elastic or viscoelastic inclusions embedded in an elastic or
viscoelastic matrix. At first glance, it seems a little contradic-
tory that the dynamics of small embedded inclusions should
reach the macroscopic time scales of the overall material.
Yet, for instance in polymeric materials, such situations are
conceivable. For example, a matrix of permanently crosslinked
polymers can respond in a relatively quick and elastic way
[14,15]. In contrast to that, the relaxation of nonpermanently
crosslinked but strongly entangled polymer inclusions may
reach macroscopic time scales [15–17]. Likewise, our theory
should be applicable to describe dynamic aspects of different
kinds of interpenetrating polymer networks [18–21].

Below, we will distinguish between three instances of
(visco)elastic strain deformation that we here refer to in the
following way: the matrix, the inclusions, and a coupling
zone between the two. An inspiration to include an additional
coupling zone separately came from an experimental obser-
vation on magnetic elastomers, i.e., rigid magnetic colloidal
particles embedded in a crosslinked polymer matrix [5–7].
From x-ray microtomographic investigations, it was concluded
that the polymer in the close vicinity of the particles got
significantly less crosslinked [22]. Also the opposite case of a
stiffer immediate particle environment can be observed [23].
Such deviations from the bulk properties can be described
by including coupling zones. Coming back to our introductory
example, coupling zones are likewise encountered in concrete.
Here, the cement matrix in the direct vicinity of the inclusions
is observed to show a porosity different from its bulk value [2].

Other systems that explicitly show the structure referred
to above are block copolymer melts and solutions in their
microphase-separated states [24–28]. Linear triblock copoly-
mers are made of linear polymer chains that exhibit three
different blocks. These blocks can feature different chemical
properties [25,27,29]. Under microphase separation, blocks

2470-0045/2016/94(2)/023003(15) 023003-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.023003


ANDREAS M. MENZEL PHYSICAL REVIEW E 94, 023003 (2016)

of identical chemical nature tend to gather and to avoid the
other blocks. However, a macroscopic phase separation is
not possible. On each chain, the different blocks are linked
to each other at their ends. From this frustration, regularly
arranged domains of the dimension of the block size result.
In fact, in a certain microphase-separated state, a continuous
matrix can be formed by the blocks on one end of the linear
chains. The blocks on the other end of the polymer chains
can be regularly arranged within this matrix in the form of
spherical inclusions. Finally, the central blocks on the polymer
chains can compose shells around these inclusions, coupling
the inclusions to the matrix [25]. Due to different chemical
properties of the different blocks, the three zones can feature
different elastic and relaxation behaviors. These and further
microphase-separated states [6,24–29], e.g., regular lamellar
phases, of these and other materials may likewise be covered
by variants of our description.

In part, these are very specific systems. Yet, our approach
is based on symmetry arguments and can be transferred to
any other material featuring similar prerequisites. If one of
the three levels mentioned above does not play a role for the
macroscopic system dynamics, e.g., strain deformations of
rigid inclusions, its influence can simply be discarded.

Thus, as a central point of our description, the different
components do not have to deform in the same way, but may
deform differently with respect to each other. This leads to
relative strains between the different components. As we will
demonstrate towards the end, the whole theory can be set up by
initially using relative strains as macroscopic variables instead
of different strains for different components. In this way,
relative strains are introduced as a macroscopic variable. They
complement two previous hydrodynamic concepts introduced
in different contexts: on the one hand relative translations,
applied in the context of incommensurate smectic phases and
chiral smectic polymers [30,31]; on the other hand relative
rotations, introduced to characterize nematic and cholesteric
liquid crystalline elastomers [32–35], the rheology of smec-
tic liquid crystals [36–38], uniaxial magnetic gels [39,40],
ferronematic and ferrocholesteric elastomers [41,42], and the
behavior of active components in a gel-like environment [43].
Relative translations and rotations have their meaning also in
the present context, so we will include them into our approach.

We proceed in the following way. First, in Sec. II, we intro-
duce the set of variables that we use specifically to characterize
the state of (visco)elastic composite materials. The resulting
thermodynamic relations are presented in Sec. III. Next, we
set up the static part of our macroscopic approach in Sec. IV.
After that, in Sec. V, the dynamic equations are derived. Then,
in Sec. VI, we demonstrate that the hydrodynamic-like theory
is in accord with introducing and systematically using relative
strains as a macroscopic variable. For illustration, we address
some reduced minimum examples of applying the theory in
Sec. VII, where also limitations of our approach are addressed.
We insert a discussion in Sec. VIII, before we conclude in
Sec. IX.

II. MACROSCOPIC VARIABLES

When setting up the theory, we first encounter the hy-
drodynamic variables already familiar from the macroscopic
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FIG. 1. Illustration of relative translations. Dotted lines mark the
initial state of the system. When the surrounding matrix is displaced
in a way uma different from the displacements of the inclusions uin,
a relative translation urel = uma − uin results.

description of simple fluids [12]. We will include them below.
In the following, we first outline additional, possibly slowly
relaxing variables characteristic of (visco)elastic composite
materials.

A relatively intuitive variable is relative translations; see
Fig. 1. Typically, in linear elasticity theory, distortions of a
material are described using the displacement field u(r,t) for
the volume elements at positions r. Here, we may introduce
a macroscopic displacement field to characterize local dis-
placements of the matrix, uma(r,t). However, the inclusions
for some reason (see, e.g., the discussion in Sec. VIII) may
be displaced in a different way, captured by a different field
uin(r,t). If uma(r,t) �= 0 and uin(r,t) �= 0, but both compo-
nents are displaced in the same way, energetic contributions
do not arise. In contrast to that, local differences between both
displacements, i.e., relative translations urel(r,t) = uma(r,t) −
uin(r,t), typically cost energy. For instance, the matrix material
around the inclusions is distorted when making place for
relative translations of the inclusions. If relaxation processes
of such relative translations are slow, it is justified to include
them as macroscopic variables into our dynamic description.
It should be noted that uin(r,t) must be perceived as a local
average over all inclusions within the volume element at
position r. In the following, the positional dependence will
not be made explicit anymore.

A similar situation arises for relative rotations, as depicted
in Fig. 2. Rotations can be described by antisymmetric tensors
that contain the information on the rotation axis and magnitude.
We express local matrix rotations by an antisymmetric tensor
�ma and rotations of the inclusions by an antisymmetric tensor
�in. Here, the same reasoning as for relative translations arises.
If the inclusions are rotated in a way different from their sur-
rounding environment, relative rotations �rel = �ma − �in

arise. If, for instance, matrix material is adsorbed on or linked
to the inclusion surfaces, this leads to distortions of the matrix
surrounding the inclusions and thus costs energy. Again, if
corresponding relaxation processes are slow, relative rotations
ought to be included as a macroscopic variable in a dynamic
description.

We remark on an additional conceptual point. Local
rotations of the matrix can in principle be expressed by the local
matrix displacement field, i.e., �ma = [∇uma − (∇uma)T ]/2,
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FIG. 2. Illustration of relative rotations. Again, dotted lines mark
the initial state. Rotating the matrix in a way �ma different from
the rotations of the inclusions �in leads to relative rotations �rel =
�ma − �in.

where the superscript T marks the transpose. In contrast to
that, �in cannot in general be obtained from a corresponding
macroscopic displacement field. This is because each inclusion
may rotate around its individual axis, instead of all inclusions
within a volume element rotating together around a common
axis in a rigid-body configuration. Therefore, �in is obtained
by averaging all rotation tensors for all inclusions within a
local volume element of the material.

Finally, we come to the strain variables. Here, a concep-
tual difference arises when compared to the two previous
situations. (Quasi)static translations and rotations can only
contribute to the energy of the system when different com-
ponents are translated or rotated relatively to each other.
This is not the case for strain deformations. Straining one
individual component by itself in general already costs energy.
If the relaxation of the strain is slow enough, a corresponding
macroscopic variable ought to be included into our dynamic
description.

As motivated in Sec. I, we distinguish between three
different zones within the materials; see Fig. 3. Naturally, the
inclusions (in) are embedded in the surrounding matrix (ma).
In addition to that, we resolve the effect of an explicit coupling
zone (co) connecting these two components. These coupling

in

co

ma

FIG. 3. Illustration of the three zones that we distinguish in view
of strain deformations: the embedding matrix material (ma), coupling
zones (co) that directly surround the inclusions and couple them to
the matrix, as well as the inclusions (in) themselves.

in
co

ma

FIG. 4. Illustration of the three zones ma, co, and in in a strained
state. As depicted here, the three zones may deform in different ways.
However, the deformation of each zone by itself already costs energy.
Therefore, three strain variables Uma , Uco, and Uin are introduced.

zones may be intentionally fabricated [44,45] or they may
arise during the manufacturing process if the matrix material
on the inclusion surfaces behaves differently from the bulk of
the matrix [2,22,23].

When straining the material, e.g., when pulling on the
matrix from outside, the different components may be strained
in different ways; see Fig. 4. This is most conceivable when we
think of rigid inclusions that remain basically unstrained and
then pull on the matrix from outside. Then the coupling zone
must deform in yet another way to accommodate the presence
of the nondeformable inclusions within the macroscopically
deformed matrix. From this consideration, it also becomes
clear that the coupling zones do not necessarily need to consist
of a different kind of material. Instead, they can equally well
serve as a simple concept to include strain inhomogeneities on
the mesoscopic level into the overall macroscopic description,
if necessary.

As a consequence, we include three separate symmetric
strain tensors Uma , Uco, and Uin into our macroscopic theory.
The matrix strain tensor may possibly be derived from the
matrix displacement field Uma = [∇uma + (∇uma)T ]/2 in
the linear regime. However, we remark that for polymers
[31,46,47] and viscoelastic materials in general [48,49] this
approach may already be questioned. In the present case,
this approach is not appropriate anymore for our coupling
zones and inclusions, if they are mesoscopically localized. One
would, in that approach, first locally average the displacements
to obtain the displacement field and then, from that displace-
ment field, derive the strain tensor. However, for instance
during a symmetric strain deformation, the displacements
already vanish when averaged over one single mesoscopic
inclusion; see further Fig. 5. Therefore, during a coarse-
graining procedure underlying our macroscopic description, it
is not mesoscopic displacement fields but directly the strains of
the inclusions that must be averaged. The macroscopic variable
Uin must be obtained by averaging over the strain tensors for
all inclusions within the corresponding volume element. The
same applies for the coupling zones.

At first glance, one might wonder, whether a description in
terms of an additional strain tensor for the coupling zone is
really necessary, when relative translations are already taken
into account. However, it is readily seen that qualitatively
different situations are addressed by these different variables.
Consider, for instance, in Fig. 3 the rigid inclusion shifted to
the left by some external force, while the matrix is kept at rest.
This corresponds to a relative translation. Then the coupling
zone needs to be compressed left to the inclusion, while it
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FIG. 5. The deformation of each inclusion can be described by an
individual strain tensor. Then, the macroscopic variable Uin must be
obtained by averaging over all individual strain tensors for inclusions
located within a corresponding volume element. In contrast to that,
first averaging mesoscopic displacement fields for the inclusions
leads to erroneous results. For instance, that part of the mesoscopic
displacement field describing the strain deformations (indicated by
the arrows) averaged over only one inclusion vanishes for symmetric
strains. The same may apply by averaging over different inclusions,
for instance those parts located within the black box.

gets expanded on the right side when the inclusion pulls on it.
In contrast to that, the symmetric macroscopic strain tensors
describe symmetric situations, as depicted in Fig. 4. There,
such left-right asymmetries cannot occur. The whole coupling
zone can either be stretched or dilated along the horizontal
principal axes. In other words, the macroscopic strain variables
do not resolve locally inhomogeneous deformations within a
single inclusion or coupling zone.

In summary, we will work with the three macroscopic strain
variables Uma , Uco, and Uin. As we will demonstrate in Sec. VI,
instead of explicitly working with different strain tensors, it is
possible to use only one absolute strain variable, e.g., Uma , and
then introduce relative strains as macroscopic variables. Such
an approach supplements the concepts of relative translations
and relative rotations outlined above.

III. THERMODYNAMIC RELATIONS

As a first step, we specify the functional dependence of the
total energy E of the system, which needs to be an extensive
variable [50,51]:

E = E(M,V,G,S,Mc,MUma,MUco,MUin,Murel ,M�rel).

(1)

Here, M marks the total mass, V the total volume, G the total
momentum, and S the total entropy of the system, while c

sets the concentration of inclusions. The other variables were
introduced in Sec. II.

To connect to a local hydrodynamic field description, the
energy density ε = E/V , mass density ρ = M/V , momentum
density g = G/V , and entropy density σ = S/V are intro-
duced. Conjugate variables are defined as

μ = ∂E

∂M
, (2)

p = − ∂E

∂V
, (3)

vi = ∂E

∂Gi

, (4)

T = ∂E

∂S
, (5)

μ′
c = ∂E

∂(Mc)
, (6)

�x
ij

′ = ∂E

∂
(
MUx

ij

) , (7)

wrel
i

′ = ∂E

∂
(
Murel

i

) , (8)

Wrel
ij

′ = − ∂E

∂
(
M�rel

ij

) , (9)

with μ the chemical potential; p the pressure; v the velocity;
T the temperature; μ′

c a relative chemical potential for the
inclusions; �x ′ elastic stresses, where x ∈ {ma,co,in}; wrel ′

and Wrel ′ the conjugates to the relative translations and relative
rotations, respectively. Since Ux is symmetric, so must be �x ′

(x ∈ {ma,co,in}). Likewise, since �rel is antisymmetric, so
must be Wrel ′.

Next, we calculate the differential of E = εV using
Eqs. (1)–(9). Collecting, on the one hand, terms in dV and, on
the other hand, terms in V , we obtain

ε = μ̄ρ − p + v · g + T σ (10)

and the Gibbs relation

dε = μ̄dρ + v · dg + T dσ + μcdc +
∑

x

�x : dUx

+ wrel · durel + Wrel : d�rel , (11)

where x ∈ {ma,co,in}. Here, we have defined

μ̄ = μ + μ′
cc +

∑
x

�x ′ : Ux

+ wrel ′ · urel + Wrel ′ : �rel (12)

and

μc = μ′
cρ, (13)

�x = �x ′
ρ, (14)

wrel = wrel ′ρ, (15)

Wrel = Wrel ′ρ, (16)

with x ∈ {ma,co,in}. Similarly, combining the above rela-
tions, we find for the differential of the pressure

dp = ρdμ̄ + g · dv + σdT − μcdc −
∑

x

�x : dUx

− wrel · durel − Wrel : d�rel . (17)

Finally, we note that ε is a scalar and therefore must be
invariant under rigid rotations of the whole system. From
Eq. (11), this leads to the condition

2
∑

x

Ux
ik�

x
kj + urel

i wrel
j + 2�rel

ik Wrel
kj

= 2
∑

x

Ux
jk�

x
ki + urel

j wrel
i + 2�rel

jk Wrel
ki , (18)
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where summation over repeated indices is implied throughout.
We will make use of this relation later to symmetrize the stress
tensor.

The basic assumption of hydrodynamics is that the above
thermodynamic relations still apply locally at each space and
time point (r,t) when the system is moderately driven out of
equilibrium [9,10,52].

IV. STATICS

To establish the static part of the theory, we first derive
an expression for the energy density ε. For this purpose, we
combine our macroscopic variables by symmetry arguments
to corresponding contributions,

ε = 1

2ρ2κρ

(δρ)2 + T

2CV

(δσ )2 + γ

2
(δc)2 + 1

ραS

(δρ)(δσ )

+ βρ(δρ)(δc) + βσ (δσ )(δc) + 1

2ρ
gigi

+
∑

x

[
χ

x,ρ

ij Ux
ij (δρ) + χ

x,σ
ij Ux

ij (δσ ) + χ
x,c
ij Ux

ij (δc)
]

+ 1

2

∑
x

cx
ijklU

x
ijU

x
kl + 1

2

∑
x,y;x �=y

c
x,y

ijklU
x
ijU

y

kl

+ 1

2
diju

rel
i urel

j + 1

2
Dijkl�

rel
ij �rel

kl , (19)

where we have implicitly defined c
y,x

ijkl = c
x,y

ijkl (x,y ∈
{ma,co,in}).

Here, we only consider terms up to quadratic order,
in accord with our overall scope of a linearized dynamic
description. The parameter κρ denotes the compressibility, CV

the specific heat, αS a volume expansion coefficient, while
γ , βρ , and βσ are similar coefficients related to changes in
concentration [9]. Next, the coefficients χ

x,ρ

ij , χ
x,σ
ij , and χ

x,c
ij

describe the coupling of the strains of the different components
to variations in density, entropy, and concentration, respec-
tively. Deformation energies of the different components are
characterized by cx

ijkl [53], where here couplings between the
strains of different components are possible as given by c

x,y

ijkl .
Finally, dij and Dijkl quantify the energetic contributions of
relative translations and relative rotations, respectively.

Confining ourselves for simplicity and brevity to isotropic
systems in the present approach, we expand the listed material
tensors as

χ
x,ρ

ij = χx,ρδij , (20)

χ
x,σ
ij = χx,σ δij , (21)

χ
x,c
ij = χx,cδij , (22)

cx
ijkl = 1

2cx
1 (δikδjl + δilδjk) + cx

2δij δkl, (23)

c
x,y

ijkl = 1
2c

x,y

1 (δikδjl + δilδjk) + c
x,y

2 δij δkl, (24)

dij = dδij , (25)

Dijkl = 1
2Dεrij εrkl = 1

2D(δikδjl − δilδjk), (26)

where δij marks the Kronecker delta and εijk the Levi-Civita
tensor.

In principle, also terms coupling �rel to δρ, δc, δσ , and Ux

(x ∈ {ma,co,in}) are allowed by symmetry. However, since
�rel is antisymmetric (and Ux is symmetric), they vanish.

Following Eqs. (11) and (19), we find for the conjugate
variables

μ̄ = ∂ε

∂ρ
= 1

ρ2κρ

(δρ) + 1

ραS

(δσ ) + βρ(δc)

+
∑

x

χx,ρUx
ii , (27)

T = ∂ε

∂σ
= T

CV

(δσ ) + 1

ραS

(δρ) + βσ (δc)

+
∑

x

χx,σUx
ii , (28)

μc = ∂ε

∂c
= γ (δc) + βρ(δρ) + βσ (δσ )

+
∑

x

χx,cUx
ii , (29)

vi = ∂ε

∂gi

= 1

ρ
gi, (30)

�x
ij = ∂ε

∂Ux
ij

= cx
ijklU

x
kl +

∑
y;y �=x

c
x,y

ijklU
y

kl

+ χx,ρδij (δρ) + χx,σ δij (δσ ) + χx,cδij (δc),

(31)

wrel
i = ∂ε

∂urel
i

= d urel
i , (32)

Wrel
ij = − ∂ε

∂�rel
ij

= − D �rel
ij , (33)

where not all tensors have been expanded in favor of brevity.

V. DYNAMICS

In the next step, we turn to the dynamics of the system. For
this purpose, currents g = ρv, jσ , jc, σ , and jε are introduced
in the context of conservation laws and quasicurrents Yx (x ∈
{ma,co,in}), q, and Q in the remaining cases:

∂tρ + ∇iρvi = 0, (34)

∂tσ + ∇iσ vi + ∇ij
σ
i = R

T
, (35)

∂tc + vi∇ic + ∇ij
c
i = 0, (36)

∂tgi + ∇j givj + ∇j σij = 0, (37)

∂tε + ∇i[(ε + p)vi] + ∇ij
ε
i = 0, (38)

∂tU
x
ij + vk∇kU

x
ij + Y x

ij = 0, (39)

∂tu
rel
i + vj∇ju

rel
i + qi = 0, (40)

∂t�
rel
ij + vk∇k�

rel
ij + Qij = 0. (41)
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R denotes the entropy production rate, where we require R = 0
for reversible and R > 0 for irreversible processes. Since the
energy density is related to the other variables by the Gibbs
relation Eq. (11), we do not need to explicitly keep track of
the energy conservation law in the following [51].

Inserting these equations into the Gibbs relation Eq. (11),
we find

R = − jσ
i ∇iT − jc

i ∇iμc − σ ′
ij∇j vi

+
∑

x

�x
ijY

x
ji + wrel

i qi + Wrel
ij Qji, (42)

except for a divergence term that does not need to be considered
in the following [51]. In this context, using Eq. (10), we have
defined

σij = σ ′
ij + pδij . (43)

Equation (42) identifies the generalized forces ∇T , ∇μc, ∇v,
�x (x ∈ {ma,co,in}), wrel , and Wrel .

Next, we split our currents into reversible and dissipative
parts,

jσ
i = j

σ,rev
i + j

σ,dis
i , (44)

jc
i = j

c,rev
i + j

c,dis
i , (45)

σ ′
ij = σ ′ rev

ij + σ ′ dis
ij , (46)

Y x
ij = Y

x,rev
ij + Y

x,dis
ij , (47)

qi = qrev
i + qdis

i , (48)

Qij = Qrev
ij + Qdis

ij , (49)

where the reversible currents need to respect R = 0 when
inserted into Eq. (42), while the dissipative parts must satisfy
R � 0.

A. Reversible dynamics

The reversible parts of the currents are constructed by
symmetry arguments from the generalized forces. For macro-
scopic variables that are even (odd) under time reversal, the
corresponding reversible currents must be odd (even) [9].

We first list our results and then add some explanations:

j
σ,rev
i = 0, (50)

j
c,rev
i = 0, (51)

σ ′ rev
ij = a

[
2
∑

x

Ux
ik�

x
kj + urel

i wrel
j + 2�rel

ik Wrel
kj

]

−
∑

x

bx�x
ij , (52)

Y
x,rev
ij = a

[
Ux

ik(∇j vk) + Ux
jk(∇ivk)

] − bxAij , (53)

qrev
i = a urel

j (∇ivj ), (54)

Qrev
ij = a

[
�rel

ik (∇j vk) − �rel
jk (∇ivk)

]
. (55)

In the derivation of the above expressions, we used that Ux

and �x are symmetric (x ∈ {ma,co,in}), whereas �rel and
Wrel are antisymmetric. Moreover, to maintain the symmetry
of Ux , only symmetrized terms may enter the right-hand side of
Eq. (53). Therefore, we here need to include the symmetrized
velocity gradient tensor A, where

Aij = (∇ivj + ∇j vi)/2. (56)

Similarly, the antisymmetry of �rel must be maintained.
Therefore the right-hand side of Eq. (55) must be antisym-
metric and Aij may not enter.

Our scope is to present the linearized part of the theory.
Nevertheless, we have added some of the possible nonlinear
couplings in Eqs. (52)–(55). The nonlinear coupling terms
Ux

ik�
x
kj in σ ′ rev

ij as well as (Ux
ik∇j vk + Ux

jk∇ivk) in Y
x,rev
ij

(x ∈ {ma,co,in}) are included to connect with a previous
systematic, symmetry-based, and generalized nonlinear ap-
proach to one-component viscoelastic systems [46–49,54,55].
There, they resulted from the requirement that the physics be
independent of the orientation of the system (as long as external
fields are absent or likewise reoriented) [48,49,55]. For
a = 1, the form ∂tU

x
ij + vk∇kU

x
ij + Ux

ik(∇j vk) + Ux
jk(∇ivk)

resulting from Eqs. (39) and (53) is typically referred to as the
lower convected derivative [54,55].

In parallel to Eq. (53) and in view of angular momentum
conservation, corresponding nonlinear terms were likewise
included in Eqs. (54) and (55). At first glance, these nonlinear
contributions could enter with a different coupling coefficient
in each equation. Here, we set them identical to satisfy the
requirement that angular momentum be conserved. For this
purpose, it must be possible to formulate the stress tensor in
a symmetric form [8]. Equation (18) is applied to this end. It
requires the same coefficient, called a in the above expressions,
on all these terms. After symmetrization, the reversible part of
the stress tensor reads

σ ′ rev
ij = a

[ ∑
x

(
Ux

ik�
x
kj + Ux

jk�
x
ki

) + 1

2

(
urel

i wrel
j + urel

j wrel
i

)

+ �rel
ik Wrel

kj + �rel
jk Wrel

ki

]
−

∑
x

bx�x
ij . (57)

In Refs. [48] and [49], for a one-component system, it
was demonstrated by explicit calculation that a = 1 and
the corresponding bx = 1, based on symmetry arguments.
The calculation assumes that a displacement field exists. In
our minimal examples below, we only consider the linear
contributions. There we set all bx equal and scale them out
or we set some of them to zero when at one point we decouple
the system.

We remark that an additional antisymmetric contribution
f Rij in Eq. (55), with Rij = (∇ivj − ∇j vi)/2, would main-
tain the antisymmetric nature of �rel . However, this implies
an antisymmetric contribution f Wij to σ ′ rev

ij that may enable
changes in angular momentum. Such a situation appears
plausible when, for instance, rotational torques are applied
on anisotropic inclusions by external fields; see also the
discussion in Sec. VIII. If relative rotations cost energy, such
torques will be transmitted to the whole material and induce
rotational motion.
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B. Dissipative dynamics

Finally, the dissipative parts of the currents are obtained
by first expanding the entropy production rate R into the
generalized forces. Using symmetry arguments, we obtain

2R = κij (∇iT )(∇j T ) + Dij (∇iμc)(∇jμc)

+ 2D
(T )
ij (∇iT )(∇jμc) + νijkl(∇ivj )(∇kvl)

+
∑

x

ζ x
ijkl�

x
ij�

x
kl +

∑
x,y;x �=y

ζ
x,y

ijkl�
x
ij�

y

kl

+ ξ rel
ij wrel

i wrel
j + 2ξ

rel,T
ij wrel

i (∇j T )

+ 2ξ
rel,c
ij wrel

i (∇jμc) + υijklW
rel
ij Wrel

kl . (58)

In this expression, the coefficients κij are related to heat
conduction [9], Dij and D

(T )
ij describe diffusion and ther-

modiffusion [9,56–60], respectively, while νijkl comprise the
viscosities [9]. Next, the coefficients ζ x

ijkl include irreversible
relaxation processes of strains [51,61], e.g., due to disen-
tanglement of intertwined high-molecular-weight polymer
chains [16,17]. In our three-component system, couplings
between the stresses of the different components are possible,
represented by the coefficients ζ

x,y

ijkl . Dissipative relaxation of
relative translations may occur as described by the coefficients
ξ rel
ij , where couplings to temperature and concentration gradi-

ents are possible as given by ξ
rel,T
ij and ξ

rel,c
ij . Finally, potential

dissipative relaxation of relative rotations is characterized by
υijkl in the present framework.

As before, considering for simplicity an isotropic system,
the coefficient tensors are expanded as

κij = κδij , (59)

Dij = Dδij , (60)

D
(T )
ij = D(T )δij , (61)

νijkl = 1
2ν1(δikδjl + δilδjk) + ν2δij δkl, (62)

ζ x
ijkl = 1

2ζ x
1 (δikδjl + δilδjk) + ζ x

2 δij δkl, (63)

ζ
x,y

ijkl = 1
2ζ

x,y

1 (δikδjl + δilδjk) + ζ
x,y

2 δij δkl, (64)

ξ rel
ij = ξ relδij , (65)

ξ
rel,T
ij = ξ rel,T δij , (66)

ξ
rel,c
ij = ξ rel,cδij , (67)

υijkl = 1
2υ εrij εrkl = 1

2υ(δikδjl − δilδjk). (68)

In principle, couplings between Wrel and �x (x ∈
{ma,co,in}) would be allowed by symmetry in Eq. (58). Yet,
since Wrel is antisymmetric and the �x are symmetric, these
terms vanish.

Systematically taking derivatives of R with respect to the
generalized forces as prescribed by Eq. (42), we find for the
dissipative parts of the currents

j
σ,dis
i = − ∂R

∂(∇iT )

= − κ(∇iT ) − D(T )(∇iμc) − ξ rel,T wrel
i , (69)

j
c,dis
i = − ∂R

∂(∇iμc)

= − D(∇iμc) − D(T )(∇iT ) − ξ rel,cwrel
i , (70)

σ ′ dis
ij = − ∂R

∂(∇j vi)
= − νijkl(∇kvl), (71)

Y
x,dis
ij = ∂R

∂�x
ij

= ζ x
ijkl�

x
kl +

∑
y;y �=x

ζ
x,y

ijkl�
y

kl, (72)

qdis
i = ∂R

∂wrel
i

= ξ relwrel
i + ξ rel,T (∇iT ) + ξ rel,c(∇iμc), (73)

Qdis
ij = − ∂R

∂Wrel
ij

= − υ Wrel
ij . (74)

Again, in favor of brevity not all tensors have been expanded.
This list of dissipative currents completes our macroscopic
description.

VI. RELATIVE STRAINS

Let us now come back to our claim that the theory can be
formulated using as macroscopic variables the relative strains
between the components. For brevity, let us here only consider
a matrix component and inclusions, neglecting the influence
of the coupling zones. That is, in the above description all
variables carrying the superscript co are set to zero.

We start from the pure strain part εstr in the energy density
ε in Eq. (19),

εstr = 1
2cma

ijklU
ma
ij Uma

kl + 1
2cin

ijklU
in
ij U in

kl + c
ma,in
ijkl Uma

ij U in
kl ,

(75)
and rewrite it as

ε̃str = 1
2cijklU

ma
ij Uma

kl + 1
2D

(1)
ijklU

rel
ij Urel

kl + D
(2)
ijklU

ma
ij Urel

kl .

(76)

In this context we have defined the variable of relative strains

Urel = Uma − Uin (77)

as well as the coefficient tensors

cijkl = cma
ijkl + 2c

ma,in
ijkl + cin

ijkl, (78)

D
(1)
ijkl = cin

ijkl, (79)

D
(2)
ijkl = − (cma,in

ijkl + cin
ijkl). (80)
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From Eq. (76) we infer one important difference between these
macroscopic variables of relative strains and the previously
introduced variables of relative translations [30,31] and rel-
ative rotations [32–43]. In the latter cases, only the relative
translations and relative rotations between the two components
cost energy. However, when considering strains, already the
deformation of one of the components by itself contributes
to the energy density. This is why, in addition to the relative
strains between the components, we also find one absolute
strain variable in Eq. (76), here chosen to be Uma .

Equation (77) sets the concept. The objective of the whole
remaining section is to demonstrate that instead of initially
using the absolute strains Uma and Uin as macroscopic
variables, one could have equally proceeded by building the
theory on Uma and Urel . For this purpose, we reformulate all
remaining corresponding expressions accordingly.

First, let us rewrite the couplings of Uma and Uin to the
scalars δρ, δσ , and δc in Eq. (19) as

ε̃χ =
∑

z∈{ρ,σ,c}

[
χ̃

ma,z
ij Uma

ij (δz) + χ̃
rel,z
ij Urel

ij (δz)
]
, (81)

where we have defined

χ̃
ma,z
ij = χ

ma,z
ij + χ

in,z
ij , (82)

χ̃
rel,z
ij = − χ

in,z
ij , (83)

with z ∈ {ρ,σ,c}.
Turning now to the conjugate variables, we expand

χ̃
ma,z
ij = χ̃ma,zδij , (84)

χ̃
rel,z
ij = χ̃ rel,zδij , (85)

in analogy to Eqs. (20)–(22), where again z ∈ {ρ,σ,c}. As a
consequence, the strain-dependent parts in μ̄, T , and μc now
read

μ̄χ,str = χ̃ma,ρUma
ii + χ̃ rel,ρUrel

ii , (86)

T χ,str = χ̃ma,σUma
ii + χ̃ rel,σ Urel

ii , (87)

μχ,str
c = χ̃ma,cUma

ii + χ̃ rel,cUrel
ii . (88)

The conjugate variables to the absolute and relative strains
Uma and Urel , respectively, are now obtained from Eqs. (76)
and (81) as

�̃ma
ij = ∂(ε̃str + ε̃χ )

∂Uma
ij

= cijklU
ma
kl + D

(2)
ijklU

rel
kl +

∑
z∈{ρ,σ,c}

χ̃
ma,z
ij (δz)

= (
cma
ijkl + c

ma,in
ijkl

)
Uma

kl + (
c
ma,in
ijkl + cin

ijkl

)
Uin

kl

+
∑

z∈{ρ,σ,c}

[
χ

ma,z
ij (δz) + χ

in,z
ij (δz)

]

= �ma
ij + �in

ij , (89)

�̃rel
ij = ∂(ε̃str + ε̃χ )

∂Urel
ij

= D
(1)
ijklU

rel
kl + D

(2)
ijklU

ma
kl +

∑
z∈{ρ,σ,c}

χ̃
rel,z
ij (δz)

= − c
ma,in
ijkl Uma

kl − cin
ijklU

in
kl −

∑
z∈{ρ,σ,c}

χ
in,z
ij (δz)

= − �in
ij , (90)

where we used Eqs. (77)–(80), (82), and (83) to connect to the
previous expressions in Eq. (31).

The dynamics for Uma and Urel is directly obtained from
Eqs. (39) as the equation for Uma and by subtracting from it
the equation for Uin, respectively:

∂tU
ma
ij + vk∇kU

ma
ij + Yma

ij = 0, (91)

∂tU
rel
ij + vk∇kU

rel
ij + Y rel

ij = 0. (92)

Here, we introduced

Yrel = Yma − Yin, (93)

where for the reversible part it directly follows via the
corresponding subtraction in Eqs. (53) that

Y rel,rev = a
[
Urel

ik (∇j vk) + Urel
jk (∇ivk)

] − brelAij , (94)

with

brel = bma − bin. (95)

Concerning the corresponding reversible parts of the stress
components σ ′ rev

ij in Eq. (57), it is straightforward to show
that

a
[
Uma

ik �ma
kj + Uma

jk �ma
ki + Uin

ik �in
kj + Uin

jk�
in
ki

]
− bma�ma

ij − bin�in
ij

= a
[
Uma

ik �̃ma
kj + Uma

jk �̃ma
ki + Urel

ik �̃rel
kj + Urel

jk �̃rel
ki

]
− bma�̃ma

ij − brel�̃rel
ij . (96)

Therefore, the stress tensor is consistently insensitive to
whether we use as macroscopic variables Uma and Uin with
the conjugate variables �ma and �in, or rather Uma and Urel

with the conjugate variables �̃
ma

and �̃
rel

.
Finally, we must check whether also the dissipative parts

of the quasicurrents comply with Eqs. (91)–(93). For this
purpose, similarly to reconsidering the strain-dependent part of
the energy density as in Eq. (76), we rewrite the �-dependent
part of the entropy production rate R in Eq. (58) as

2R̃� = ζ̃ ma
ijkl�̃

ma
ij �̃ma

kl + 2ζ̃
ma,rel
ijkl �̃ma

ij �̃rel
kl + ζ̃ rel

ijkl�̃
rel
ij �̃rel

kl .

(97)
From this expression, we indeed find

Y
ma,dis
ij = ∂R̃�

∂�̃ma
ij

= ζ̃ ma
ijkl�̃

ma
kl + ζ̃

ma,rel
ijkl �̃rel

kl

= ζma
ijkl�

ma
kl + ζ

ma,in
ijkl �in

kl = Y
ma,dis
ij , (98)
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Y
rel,dis
ij = ∂R̃�

∂�̃rel
ij

= ζ̃
ma,rel
ijkl �̃ma

kl + ζ̃ rel
ijkl�̃

rel
kl

= ζma
ijkl�

ma
kl + ζ

ma,in
ijkl �in

kl − ζ
ma,in
ijkl �ma

kl − ζ in
ijkl�

in
kl

= Y
ma,dis
ij − Y

in,dis
ij , (99)

in agreement with Eq. (93), where we compared with Eqs. (72)
in both cases. The following relations between the coefficient
tensors result from these comparisons:

ζ̃ ma
ijkl = ζma

ijkl, (100)

ζ̃
ma,rel
ijkl = ζma

ijkl − ζ
ma,in
ijkl , (101)

ζ̃ rel
ijkl = ζma

ijkl − 2ζ
ma,in
ijkl + ζ in

ijkl . (102)

In summary, our analysis in this section demonstrates that
relative strains can be introduced and used as appropriate
macroscopic variables. Instead of building our symmetry-
based description on solely the absolute strains, involving
relative strains is an equally valid approach. That is, working
with the macroscopic variables Uma and Urel instead of Uma

and Uin throughout our derivation in Secs. III–V leads to
an equivalent formulation of the theory. Depending on the
situation, it can be more intuitive to describe effects that
directly originate from strain differences between individual
components using the variables of relative strains. In this
way, we have amended the sequence of relative macroscopic
variables, i.e., relative translations and relative rotations, by yet
another member in the form of relative strains, with differences
as mentioned below Eq. (80).

VII. MINIMAL EXAMPLES

To illustrate the background of our description, we consider
in the following two minimal example geometries. For this
purpose, we concentrate on the central part of our theory, which
is the coupling between different strain fields and possible
relative strains between them.

For simplicity, we confine ourselves to linear terms. We
neglect changes in density, entropy, and concentration; i.e., we
set δρ = δσ = δc = 0. Moreover, we consider all components
of the material to conserve their volume. Thus Ux

ii = 0 (x ∈
{ma,co,in}) and ∇ · v = 0. Under all these assumptions, we
neglect relative translations urel and relative rotations �rel ,
and we focus on the strain variables Ux .

A. Uniaxial extension for elastic matrix, viscoelastic coupling
zones, and rigid inclusions

As a first example we address the situation outlined already
above and observed in recent experiments [22]. An elastic
permanently crosslinked polymer matrix contains embedded
rigid colloidal particles. Due to their rigidity, we do not take
into account the strains Uin of these inclusions as a slowly
relaxing macroscopic variable. That is, we confine ourselves
to the strains Uma and Uco. In the situation of Ref. [22],
it was observed experimentally that the strain deformations
of the coupling zones surrounding the inclusions were not
completely reversible.

x̂

ẑ

ŷ

v(r)

FIG. 6. Illustration of our first minimal example geometry: a
spatially homogeneous uniaxial extension along the x direction.
The deformation is driven by a volume-conserving flow field v(r)
as indicated by the arrows and given by Eq. (103). To preserve its
volume, the system must contract from the sides, i.e., along the y and
z directions.

For simplicity, we consider spatially homogeneous uniaxial
extensions along the x direction of our Cartesian coordinate
system, see Fig. 6, imposed by a corresponding velocity field
of the type

v(r) =

⎛
⎜⎝

A(t)x

− 1
2A(t)y

− 1
2A(t)z

⎞
⎟⎠. (103)

A(t) sets the time-dependent amplitude of the flow field. To
preserve its volume, the system must contract from the sides,
leading to the contributions along the y and z directions.

We assume both matrix and coupling zones to deform in-
stantaneously with our imposed flow fields, i.e., bma �= 0 �= bco

in Eqs. (53). In both cases, this leads to stresses �x = cx
1 Ux , see

Eqs. (23) and (31), where we only consider elastic coefficients
cx

1 �= 0 (x ∈ {ma,co}). The matrix can only react reversibly
and elastically to the externally imposed deformations, ζma

1 =
0, whereas the stresses within the less crosslinked coupling
zones can decay through irreversible rearrangements, e.g.,
disentanglements; thus ζ co

1 �= 0 in Eqs. (63) and (72).
Under all these assumptions, the remaining dynamic equa-

tions under consideration resulting from Eqs. (39) read

∂tUma = bmaA, (104)

∂tUco = bcoA − cco
1 ζ co

1 Uco, (105)

where

A =

⎛
⎜⎝

A(t) 0 0

0 − 1
2A(t) 0

0 0 − 1
2A(t)

⎞
⎟⎠. (106)

The stress σ ′ resulting via Eq. (57) from the described
deformations reads

σ ′ = − bma�ma − bco�co − ν1A. (107)

This is the stress exerted by the system. In other words, the
applied stress necessary to achieve the deformations is −σ ′.

For simplicity, we here set cco
1 = cma

1 as well as bco = bma ,
and we measure all times in units of 1/cma

1 ζma
1 , the velocity

amplitude A(t) in units of cma
1 ζma

1 /bma , the stress σ ′ in units
of cma

1 bma , as well as the viscosity ν1 in units of (bma)2/ζma
1 .
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FIG. 7. Results for the uniaxial extension illustrated in Fig. 6.
A velocity field v(r) [see Fig. 6 and Eq. (103)] is applied with an
amplitude A(t) as displayed in panel (a) showing two opposite rect-
angular pulses. (b) The matrix deformation is completely reversible;
see Eq. (109). (c) In contrast to that, exponential relaxation of the
strain takes place in the coupling zones, see Eq. (110), leading to
the inverted strain upon the impact of the sudden inverted pulse of
deformation. (d) From the different behaviors of the two components,
relative strains Urel = Uma − Uco arise between them. (e) Likewise,
the signs of the stresses change upon the inverse second pulse, leading
to oppositely oriented external forces necessary to keep the system
in its prescribed state. If the viscosity ν1 is nonzero (here ν1 = 0.05),
additional stresses result for nonvanishing velocities v(r). The vertical
dashed lines mark the times tp after which the first pulse ends, T/2
when the second pulse is switched on, and T/2 + tp after which the
second pulse ends.

We start our considerations at time t = 0 and impose two
rectangular pulses onto the velocity amplitude,

A(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A, 0 � t < tp,

0, tp � t < 1
2T ,

−A, 1
2T � t < 1

2T + tp,

0, 1
2T + tp � t,

(108)

with A the constant amplitude, tp the duration of each pulse,
and T/2 the time between the onsets of the two pulses; see
also Fig. 7(a).

For the time intervals given in Eq. (108) and using our
rescaled units, we obtain, respectively,

Uma
xx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

At,

Atp,

A
(

1
2T + tp − t

)
,

0,

(109)

together with

Uco
xx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(1 − e−t ),

A
(
e−(t−tp) − e−t

)
,

A
(
e−(t−tp) − e−t − 1 + e−(t− 1

2 T )
)
,

A
(
e−(t−tp) − e−t − e−[t−( 1

2 T +tp)] + e−(t− 1
2 T )

)
.

(110)

These quantities, together with the resulting relative strain
Urel

xx = Uma
xx − Uco

xx and the stress components σ ′
xx , are plotted

in Figs. 7(b)–7(e). Corresponding expressions for the y and z

directions follow with A replaced by −A/2.
The results depicted in Figs. 7(b)–7(e) allow a very illustra-

tive interpretation. When the material is deformed due to the
imposed velocity field, both matrix and coupling zones directly
and instantaneously deform accordingly. The matrix reacts
in a completely elastic and reversible way. That is, its strain
deformation can only be reversed by imposing the inverse
velocity field during the second, inverse pulse [Fig. 7(b)]. In
contrast to that, the strain of the coupling zones decays via
irreversible processes [Fig. 7(c)], e.g., via disentanglement
of polymer chains. This leads to relative strains between the
two components [Fig. 7(d)] and reduces the necessary stress to
keep the whole material in the overall strained state [Fig. 7(e)].
When the strain of the matrix is reversed during the second,
inverse pulse, the coupling zones have to some extent already
relaxed their initial strain deformation. Then, the inverse pulse
that reverses and releases the matrix strain leads to an effective
compression of the coupling zones [Fig. 7(c)]. We remark
that the relative strain between the two components remains
approximately constant during this short pulse [Fig. 7(d)].
The compressed coupling zones are now opposed to the
strain-released state of the matrix. Thus the overall stress
switches its sign [Fig. 7(e)]. A compressive stress is necessary
to keep the overall material in the state of released matrix
strain. Afterwards, this stress again decays due to the decay of
strain in the coupling zones [Fig. 7(c)].

As demonstrated in Sec. VI, approaching the situation
either via Uma and Uco [Figs. 7(b) and 7(c)] or via Uma

and Urel [Figs. 7(b) and 7(d)] is completely equivalent. In
some respects, the description using relative strains is more
illustrative. The relative strains simply decay too slowly
to change significantly while the inverse pulse is applied
[Fig. 7(d)]. This is why the less stretched coupling zones
are driven into the compressed state. Afterwards, the relative
strains slowly relax.

B. Poiseuille flow for (visco)elastic composite materials

As a second minimal example, we consider the geometry of
a Poiseuille channel geometry; see Fig. 8. There, the material
is confined between two parallel plates of separation distance
Dch. The plates are oriented with their normals along the
z direction of our Cartesian coordinate system. Vanishing
velocity (v = 0) is imposed on the plate surfaces, that is, for
z = ±Dch/2. In contrast to that, we assume the system to be
effectively confined in the y direction by rigid walls that allow
slippage (v �= 0) on their surfaces without any friction. Along
the x direction, which will be our flow direction, the system is
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x̂

ẑ

ŷ

v(r)

Dch

FIG. 8. Illustration of our second minimal example geometry: a
Poiseuille channel flow. Two parallel plates are separated by a distance
Dch. The inner surfaces of these plates are located at z = ±Dch/2.
On these plate surfaces, we impose v = 0. In contrast to that, free
slippage is allowed on confining plates with normals along the y

direction. A flow v(r) is excited, possibly by an externally applied
pressure gradient parallel to the x direction.

of significantly larger dimension than Dch. Boundary effects
at the channel ends will not be taken into account.

Overall, with all these assumptions, the flow of the material
is considered to be confined to the x direction, spatially
homogeneous in x and y directions. That is, v(r,t) = vx(z,t)x̂.
Next, we apply from outside a time-dependent pressure
gradient (∇p)(t) = (∂xp)(t)x̂ along the channel parallel to the
x direction. Under our assumptions, this pressure gradient shall
be spatially homogeneous within our material. Alternatively,
one may think of a spatially homogeneous gravitational bulk
volume force. Its influence on the material can be switched by
turning the system in the gravitational field. As a consequence,
the only components of the strain tensors to be taken into
account are the Ur

xz = Ur
zx shear components (r ∈ {ma,co,in};

to avoid confusion with the spatial coordinates we here switch
to superscripts r and s).

Using our assumptions and simplifications, we infer the
dynamic equations for the velocity vx and shear strains Ur

zx

from Eqs. (23), (24), (31), (37), (39), (43), (46), (47), (53), (57),
(62)–(64), (71), and (72). Let us first briefly address the case of
ζ r

1 = ζ
r,s
1 = 0. That is, there are no irreversible contributions

to the strain deformations via the dissipative quasicurrents in
Eqs. (72).

Measuring time in units of ν1/c
ma
1 , space in units of

ν1/
√

ρcma
1 , velocity in units of

√
cma

1 /
√

ρbma , pressure in units

of cma
1 /bma , as well as c

r(,s)
1 and br in units of cma

1 /(bma)2 and
bma , respectively, and as a consequence stresses �r in units of
cma

1 /(bma)2, we find the dynamic equations

∂tvx = − ∂xp +
∑

r

br∂z�
r
zx + 1

2
∂2
z vx, (111)

∂tU
r
zx = 1

2br∂zvx, (112)

where

�r
zx = cr

1U
r
zx +

∑
s �=r

c
r,s
1 Us

zx, (113)

bma = cma
1 = 1, and r,s ∈ {ma,co,in}.

Figure 9 illustrates the process of suddenly switching
on an external pressure gradient ∂xp = −0.1 at time t =
0 in a system previously at rest. For simplicity, we here
set in this qualitative demonstration cr

1 = 1 = br and c
r,s
1 =

0 (r,s ∈ {ma,co,in}), which is why the strain curves for

FIG. 9. Response of the system illustrated in Fig. 8 to an external
pressure gradient ∂xp = −0.1 suddenly switched on at t = 0. The
strain deformations are completely reversible in this case, i.e., ζ r

1 =
ζ

r,s
1 = 0, such that the system is described by Eqs. (111)–(113). For

simplicity, we set cr
1 = 1 = br and c

r,s
1 = 0 (r,s ∈ {ma,co,in}). (a)

Time evolution of the quantities v̄x(t) and Ū r
zx(t) averaged across

the channel as described in the text. The spatial profiles for vx(z,t)
and Ur

zx(z,t) are plotted at different times (b) t = 4, (c) t = 8.265,
(d) t = 12.25, and (e) t = 145, as indicated by the dotted lines in
panel (a).

different r collapse. In Fig. 9(a), we plot the time evolu-
tion of the velocity component vx(z,t) averaged over the
channel width, i.e., v̄x(t) = ∫ Dch/2

−Dch/2 vx(z,t) dz/Dch. Since the
strain deformations Ur

zx(z,t) are antisymmetric with respect
to the channel center at z = 0, we instead use Ū r

zx(t) =∫ 0
−Dch/2 [Ur

zx(z,t) − Ur
zx(−z,t)]dz/Dch to quantify the time

evolution of the overall strains in the system.
The negative pressure gradient tends to push the system to

the right in the setup depicted in Fig. 8. Its sudden application
at t = 0 leads to an acceleration of the system, inducing
the initial growth of v̄x(t) in Fig. 9(a). A snapshot of the
velocity and strain profiles is depicted in Fig. 9(b). However,
the growing strains in the system due to the no-slip boundary
conditions at z = ±Dch/2 lead to counteracting decelerating
stresses via Eqs. (113). As a consequence, the system comes
to rest at maximum overall distortion; see Fig. 9(a) and the
corresponding profiles in Fig. 9(c). Obviously, the system
overshoots a possible balance between the external pressure
gradient and the induced stresses as found at later times. The
velocity then reverses; see Fig. 9(a) and associated profiles
in Fig. 9(d). In this way, the system oscillates around the new
equilibrium point. Yet, the oscillation amplitude decreases due
to the viscous damping described by the last term in Eq. (111).
Finally, the system approaches a static distorted state close to
the profile depicted in Fig. 9(e). In analogy, when the external
pressure gradient is suddenly switched off again at a later time,
all strains reverse to zero in an oscillatory fashion (not shown).

Next, we allow for dissipative processes described by the
coefficients ζ

r(,s)
1 in Eqs. (63), (64), and (72). That is, induced

strains may decay due to irreversible processes. An example

023003-11



ANDREAS M. MENZEL PHYSICAL REVIEW E 94, 023003 (2016)

process is disentangling of polymer chains [16,17] in polymer
melts or weakly crosslinked polymeric systems.

Measuring time in units of 1/cma
1 ζma

1 , space in units of
bma/ζma

1

√
ρcma

1 , velocity in units of
√

cma
1 /ρ, pressure in units

of cma
1 bma , the viscosity ν1 in units of (bma)2/ζma

1 , as well as
c
r(,s)
1 , ζ

r(,s)
1 , and br in units of cma

1 , ζma
1 , and bma , respectively,

and as a consequence stresses �r in units of cma
1 , we find the

dynamic equations

∂tvx = − ∂xp +
∑

r

br∂z�
r
zx + 1

2
ν1∂

2
z vx, (114)

∂tU
r
zx = 1

2
br∂zvx − ζ r

1 �r
zx −

∑
s �=r

ζ
r,s
1 �s

zx, (115)

where

�r
zx = cr

1U
r
zx +

∑
s �=r

c
r,s
1 Us

zx, (116)

bma = ζma
1 = cma

1 = 1, and r,s ∈ {ma,co,in}.
At this point, let us turn to an example that shows the

limitations of the present formulation of our approach. Yet, this
simple example also reveals how the present formulation must
be extended to include still more general situations, and which
practical cases are represented by our current description.

We again consider a scenario where at t = 0 the external
pressure gradient is suddenly switched on to a nonvanishing
value, here ∂xp = −0.02. Once more, we set for simplicity
cr

1 = 1 = br and c
r,s
1 = ζ

r,s
1 = 0 (r,s ∈ {ma,in,co}). However,

the coefficients controlling the dissipative quasicurrents in the
dynamic strain equations are now chosen as ζma = 1, ζ co =
0.5, and ζ in = 0. The time evolution of the resulting velocity
and strains averaged across the channel is shown in Fig. 10(a).

In view of the chosen values for ζ r
1 , we might think, for

instance, of a nonpermanently crosslinked polymer matrix that
contains localized elastic inclusions. In that case, our intuition
would guide us to an ultimately nonvanishing net flow through
the channel, down the external pressure gradient. This flow
should be caused by the continuous disentangling processes
within the polymer matrix described by ζma

1 �= 0. However,
we observe in Fig. 10(a) that the flow ceases after a transient
time, i.e., vx(z,t → ∞) = 0. In our equations, we find the
underlying reason in the buildup of stresses in the inclusions
as a consequence of the nondecaying strains Uin

zx (ζ in
1 = 0); see

Fig. 10(a) and Eqs. (114)–(116). The more the system would
flow, the more these stresses build up and counteract the flow,
just as in our previous case for the wholly elastic system in
Fig. 9. In contrast to what one would expect in reality, the
buildup of stress �in here ceases the flow.

Why does our description fail in the presented situation?
The reason is that we formulated our approach only for
strongly coupled situations that can be described by one
overall momentum density g. Instead, we would now need
an additional macroscopic symmetrized tensor variable Ain

of second rank that can drive and reverse elastic distortions
of the inclusions, also relatively to the overall flow. It is the
analog to our globally defined A in the present formalism, the
components of which were given by Eq. (56). Further remarks
on this point are included in Sec. VIII, and a corresponding
theory shall be developed in the future. In contrast to that, an

FIG. 10. Response of the setup in Fig. 8 to an external pressure
gradient ∂xp = −0.02 suddenly switched on at t = 0. The system is
described by Eqs. (114)–(116), where we set ζ

r,s
1 = 0 and ν1 = 1

(r,s ∈ {ma,co,in}). In the first case (a) the flow field is directly
coupled to all zones (br = 1), while the “inclusions” respond in
a perfectly elastic reversible way (ζma

1 = 1, ζ co
1 = 0.5, ζ in

1 = 0,
cr

1 = 1, c
r,s
1 = 0). Then the overall flow finally ceases. In the second

case (b) there is no direct coupling between the flow field and
the coupling zones or inclusions (bma = 1, bco = bin = 0). The
nonvanishing coefficient ζ in

1 = 0.1 here is interpreted to result from
an overdamped deformation process of the inclusions due to their
coupling to their environment (ζma

1 = 1, ζ co
1 = 0.5). Strains are

energetically transmitted from the matrix via the coupling zones to the
inclusions via c

ma,co
1 = c

co,in
1 = −0.3 (cma,in

1 = 0, cr
1 = 1). A terminal

flow develops in this situation, with nonvanishing strains of all zones.

example system, where the features described by Fig. 10(a)
should be relevant, are entangled (semi)interpenetrating poly-
mer networks [20,21]. Or, for clearly separated time scales, we
simply neglect Uin as a variable, similarly to our procedure for
rigid inclusions in Sec. VII A, which then allows for a steady
net flow.

Nevertheless, from a practical point of view, we should not
be too pejorative. For many practical situations, our present
description will still be sufficient, if we may represent the
situation in the following way. First, we disconnect in our
linearized formulation the overall flow field v from the stresses
in the coupling zones and inclusions; i.e., we set bco = bin = 0.
Thus the flow field v is mainly connected to the matrix flow,
which for a bulk matrix and a sufficiently low concentration of
localized inclusions should represent a reasonable approxima-
tion. Next, we do allow for nonvanishing ζ co

1 and ζ in
1 , even if the

isolated inclusions only deform elastically in a reversible way.
In this situation, ζ in

1 �= 0 does not imply irreversible topologi-
cal processes inside the inclusions, such as disentanglements of
polymer chains. Rather, it represents the overdamped character
of their deformation kinetics, for instance due to the embedding
into and coupling to highly viscous coupling zones or matrix
environments. Finally, deformations are now transmitted from
the matrix via the coupling zones to the inclusions (and vice
versa) by (quasi)static energetic couplings, here given by
elastic coefficients c

ma,co
1 < 0 and c

co,in
1 < 0. Illustratively, this

means that the external pressure gradient generates flow and
resulting distortions in the matrix. If the matrix is deformed,
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FIG. 11. Rheological response of the systems introduced in Figs. 9, 10(a), and 10(b) to an oscillating external pressure gradient (∂xp)(t) =
0.02 sin(ωt). The first system is characterized by completely reversible strain deformations, the second one features dissipative contributions
to the strain quasicurrents via the coefficients ζ r

1 , while in the third system the components co and in are indirectly connected to the external
stimulus only by energetic couplings via the dissipative quasicurrents set by ζ r

1 (r ∈ {ma,co,in}). In this order, the results for the three different
systems are depicted from left to right in the different panels for the quantities indicated by the figure legends. As a function of frequency ω,
(a)–(c) show the corresponding oscillation amplitudes amp(ω), while (d)–(f) give the resulting phase lags pl(ω) of the responses, all shifted to
the interval [0,2π [. [We plot the phase lags with respect to −(∂xp)(t) because a static ∂xp < 0 leads to a flow into positive x direction.]

it is energetically most favorable for the coupling zones to
deform in a similar way, at least to a certain degree. If the
coupling zones are deformed, these strains are also partially
transmitted to the inclusions. Figure 10(b) shows the corre-
sponding process, leading to a net steady flow and induced
strains of all zones, just as what we would expect in this
situation.

With all these insights at hand, we can further think of
rheological applications. In our context of a Poiseuille channel
geometry, we may consider a periodically oscillating external
pressure gradient (∂xp)(t). Alternatively, a periodic tilting
within the gravitational field would serve a similar purpose.

As an illustration, we here briefly present results for
the three different systems introduced in Figs. 9, 10(a),
and 10(b). They are characterized by the material parameters
as given in the corresponding figure captions. An oscillating
external pressure gradient of the form (∂xp)(t) = 0.02 sin(ωt)
is applied.

For the three different systems, we numerically determined
the oscillation amplitudes as well as the phase lags of
their oscillations for the four quantities v̄x(t) and Ū r

zx(t)
(r ∈ {ma,co,in}). The results are plotted as a function of
frequency ω in Fig. 11. As may have been expected, the
system in Fig. 9 characterized by completely reversibly strains
and vanishing deformational damping (ζ r(,s)

1 = 0) shows a
pronounced response at a certain resonance frequency; see
Fig. 11(a). The resonance is reflected by a significant variation
in the phase shift of the response around the corresponding
frequency; see Fig. 11(d). Switching on the damping via the
coefficients ζ r

1 for the two other systems [see Figs. 11(b)
and 11(c)] naturally reduces resonance. As likewise may
have been expected, the systems (quasi)statically follow the
externally imposed pressure gradient at very low frequencies.
They show vanishing response when they cannot follow the
external stimulus anymore at too high frequencies. Particularly
for the third system, the increasing phase lag in Fig. 11(f) from
v̄x(t) to Ūma

zx (t) to Ū co
zx (t) to Ū in

zx (t) nicely illustrates how the

external stimulus is sequentially handed over from quantity to
quantity via their mutual couplings.

VIII. DISCUSSION

When we developed our approach, we included three zones
of possibly different strain deformations. As mentioned in
Sec. I, this was, for instance, inspired by the observation in
magnetic gels of a coupling zone around the inclusions that
may have (visco)elastic properties markedly different from
the bulk of the matrix material [22,23]. Depending on the
particular situation, this phenomenological division into three
zones may naturally be adjusted. On the one hand, if a still more
continuous transition between the properties of the inclusions
and the bulk matrix needs to be modeled, the effect of even
more intermediate strain variables may be included. On the
other hand, as we noted in Secs. VI and VII, it might not be
necessary to include an explicit additional strain variable for
all three zones. For instance, when rigid metallic particles are
embedded in a polymer matrix, it can be conceivable to neglect
the strain variable Uin in the (slow) macroscopic dynamics.

During our presentation, one may have noticed that the cou-
plings between our variables that excite relative translations
or rotations are relatively sparse. Nevertheless, we included
these variables because they will become important in more
complex situations. Here, we found that relative translations
can be induced by gradients in the temperature or relative
chemical potential via the dissipative current in Eq. (73).
Another physical way would be to create phase shifts between
the displacement dynamics of different components of the
material. For instance, shaking the whole block of material
up and down may induce an out-of-phase swinging of the
inclusions against the matrix. In our present hydrodynamic
approach, such situations are not included. We only use one
variable for the (overall) momentum density g. This implies a
pronounced coupling between the different components of the
material. In particular, overdamped and irreversible processes
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favor such restrictions. To resolve more decoupled problems,
where individual components may swing relatively to each
other, separate momentum densities for the different compo-
nents need to be introduced. Yet, as becomes clear from the
present study, in addition to separate velocity fields vco and vin

for the coupling zones and inclusions, also separate dynamic
fields ωco and ωin as well as Aco and Ain for their rotations
and strains, respectively, may be necessary. Similarly to the
strains Uco and Uin, which in general cannot be obtained from
coarse-grained macroscopic displacement fields uco and uin,
see Sec. II and Fig. 5, Aco and Ain in general cannot be obtained
from coarse-grained macroscopic velocity fields vco and vin.
Establishing corresponding two- or three-fluid hydrodynamic
descriptions [51,60–62] for (visco)elastic composite materials
will be an interesting subject for the future.

Finally, a different possibility to induce relative rotations
arises for anisotropic inclusions. These may be selectively
reoriented using externally applied fields. For instance, in
liquid crystal elastomers [6,35,63], relative rotations were
generated via external electric fields acting on the liquid
crystalline component in a swollen state [63–66]. Likewise,
anisotropic magnetic inclusions could be selectively reoriented
by magnetic fields [67,68]. We will report on a first application
of our formalism to magnetic gels elsewhere.

IX. CONCLUSIONS

In this work, we described the behavior of (visco)elastic
composite materials using a macroscopic hydrodynamic ap-
proach based on symmetry arguments. We integrated into our

characterization relative translations and relative rotations
between a matrix and embedded inclusions. Moreover, we
explicitly took into account the possible deformability of the
inclusions and their surroundings by macroscopic variables.
For this purpose, different strain tensors were introduced
to describe the possibly different deformational states of
these material components. A reformulation of this kind of
description revealed relative strains as a macroscopic variable.

During our motivation, we referred to polymeric materials
as an illustration. There, situations are conceivable in which
the dynamics of the inclusions or their immediate environment
takes place on time scales similar to those of the macroscopic
dynamics. Moreover, interpenetrating polymer networks may
likewise be addressed by our approach. Yet, our derivation was
based on symmetry principles only, not on specific chemical
interaction details. Therefore, it should apply to any other com-
posite material featuring the necessary match in time scales.
Finally, if this match is not found and a separation in time scales
prevails, our approach does not necessarily lose its significance
completely. In that case, when the systems deform reversibly
and are exposed to (quasi)static fields, the static part of our
theory based on the presented variables combined to an energy
density may still be meaningful. It reflects the additionally
important inner degrees of freedom in composite materials.
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